mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
commit
3c72b081fc
2 changed files with 481 additions and 330 deletions
797
paths.scad
797
paths.scad
|
@ -357,9 +357,11 @@ function path_tangents(path, closed=false, uniform=true) =
|
|||
// Compute the normal vector to the input path. This vector is perpendicular to the
|
||||
// path tangent and lies in the plane of the curve. For 3d paths we define the plane of the curve
|
||||
// at path point i to be the plane defined by point i and its two neighbors. At the endpoints of open paths
|
||||
// we use the three end points. The computed normal is the one lying in this plane and pointing to the
|
||||
// right of the direction of the path. If points are collinear then the path does not define a unique plane
|
||||
// and hence the (right pointing) normal is not uniquely defined. In this case the function issues an error.
|
||||
// we use the three end points. For 3d paths the computed normal is the one lying in this plane that points
|
||||
// towards the center of curvature at that path point. For 2d paths, which lie in the xy plane, the normal
|
||||
// is the path pointing to the right of the direction the path is traveling. If points are collinear then
|
||||
// a 3d path has no center of curvature, and hence the
|
||||
// normal is not uniquely defined. In this case the function issues an error.
|
||||
// For 2d paths the plane is always defined so the normal fails to exist only
|
||||
// when the derivative is zero (in the case of repeated points).
|
||||
function path_normals(path, tangents, closed=false) =
|
||||
|
@ -378,7 +380,8 @@ function path_normals(path, tangents, closed=false) =
|
|||
: select(path,i-1,i+1)
|
||||
)
|
||||
dim == 2 ? [tangents[i].y,-tangents[i].x]
|
||||
: let(v=cross(cross(pts[1]-pts[0], pts[2]-pts[0]),tangents[i]))
|
||||
: let( fff=i==10?echo(pts=pts, tangent=tangents[10],cp=cross(pts[1]-pts[0], pts[2]-pts[0])):0,
|
||||
v=cross(cross(pts[1]-pts[0], pts[2]-pts[0]),tangents[i]))
|
||||
assert(norm(v)>EPSILON, "3D path contains collinear points")
|
||||
unit(v)
|
||||
];
|
||||
|
@ -937,6 +940,342 @@ function assemble_path_fragments(fragments, eps=EPSILON, _finished=[]) =
|
|||
|
||||
|
||||
|
||||
// Function: path_cut_points()
|
||||
//
|
||||
// Usage:
|
||||
// cuts = path_cut_points(path, dists, [closed=], [direction=]);
|
||||
//
|
||||
// Description:
|
||||
// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut
|
||||
// points and indices of the next point in the path after that point. So for example, a return
|
||||
// value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after
|
||||
// this point is path[5]. If the path is too short then path_cut_points returns undef. If you set
|
||||
// `direction` to true then `path_cut_points` will also return the tangent vector to the path and a normal
|
||||
// vector to the path. It tries to find a normal vector that is coplanar to the path near the cut
|
||||
// point. If this fails it will return a normal vector parallel to the xy plane. The output with
|
||||
// direction vectors will be `[point, next_index, tangent, normal]`.
|
||||
// .
|
||||
// If you give the very last point of the path as a cut point then the returned index will be
|
||||
// one larger than the last index (so it will not be a valid index). If you use the closed
|
||||
// option then the returned index will be equal to the path length for cuts along the closing
|
||||
// path segment, and if you give a point equal to the path length you will get an
|
||||
// index of len(path)+1 for the index.
|
||||
//
|
||||
// Arguments:
|
||||
// path = path to cut
|
||||
// dists = distances where the path should be cut (a list) or a scalar single distance
|
||||
// ---
|
||||
// closed = set to true if the curve is closed. Default: false
|
||||
// direction = set to true to return direction vectors. Default: false
|
||||
//
|
||||
// Example(NORENDER):
|
||||
// square=[[0,0],[1,0],[1,1],[0,1]];
|
||||
// path_cut_points(square, [.5,1.5,2.5]); // Returns [[[0.5, 0], 1], [[1, 0.5], 2], [[0.5, 1], 3]]
|
||||
// path_cut_points(square, [0,1,2,3]); // Returns [[[0, 0], 1], [[1, 0], 2], [[1, 1], 3], [[0, 1], 4]]
|
||||
// path_cut_points(square, [0,0.8,1.6,2.4,3.2], closed=true); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], [[0, 0.8], 4]]
|
||||
// path_cut_points(square, [0,0.8,1.6,2.4,3.2]); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], undef]
|
||||
function path_cut_points(path, dists, closed=false, direction=false) =
|
||||
let(long_enough = len(path) >= (closed ? 3 : 2))
|
||||
assert(long_enough,len(path)<2 ? "Two points needed to define a path" : "Closed path must include three points")
|
||||
is_num(dists) ? path_cut_points(path, [dists],closed, direction)[0] :
|
||||
assert(is_vector(dists))
|
||||
assert(list_increasing(dists), "Cut distances must be an increasing list")
|
||||
let(cuts = _path_cut_points(path,dists,closed))
|
||||
!direction
|
||||
? cuts
|
||||
: let(
|
||||
dir = _path_cuts_dir(path, cuts, closed),
|
||||
normals = _path_cuts_normals(path, cuts, dir, closed)
|
||||
)
|
||||
hstack(cuts, array_group(dir,1), array_group(normals,1));
|
||||
|
||||
// Main recursive path cut function
|
||||
function _path_cut_points(path, dists, closed=false, pind=0, dtotal=0, dind=0, result=[]) =
|
||||
dind == len(dists) ? result :
|
||||
let(
|
||||
lastpt = len(result)==0? [] : last(result)[0], // location of last cut point
|
||||
dpartial = len(result)==0? 0 : norm(lastpt-select(path,pind)), // remaining length in segment
|
||||
nextpoint = dists[dind] < dpartial+dtotal // Do we have enough length left on the current segment?
|
||||
? [lerp(lastpt,select(path,pind),(dists[dind]-dtotal)/dpartial),pind]
|
||||
: _path_cut_single(path, dists[dind]-dtotal-dpartial, closed, pind)
|
||||
)
|
||||
_path_cut_points(path, dists, closed, nextpoint[1], dists[dind],dind+1, concat(result, [nextpoint]));
|
||||
|
||||
|
||||
// Search for a single cut point in the path
|
||||
function _path_cut_single(path, dist, closed=false, ind=0, eps=1e-7) =
|
||||
// If we get to the very end of the path (ind is last point or wraparound for closed case) then
|
||||
// check if we are within epsilon of the final path point. If not we're out of path, so we fail
|
||||
ind==len(path)-(closed?0:1) ?
|
||||
assert(dist<eps,"Path is too short for specified cut distance")
|
||||
[select(path,ind),ind+1]
|
||||
:let(d = norm(path[ind]-select(path,ind+1))) d > dist ?
|
||||
[lerp(path[ind],select(path,ind+1),dist/d), ind+1] :
|
||||
_path_cut_single(path, dist-d,closed, ind+1, eps);
|
||||
|
||||
// Find normal directions to the path, coplanar to local part of the path
|
||||
// Or return a vector parallel to the x-y plane if the above fails
|
||||
function _path_cuts_normals(path, cuts, dirs, closed=false) =
|
||||
[for(i=[0:len(cuts)-1])
|
||||
len(path[0])==2? [-dirs[i].y, dirs[i].x]
|
||||
:
|
||||
let(
|
||||
plane = len(path)<3 ? undef :
|
||||
let(start = max(min(cuts[i][1],len(path)-1),2)) _path_plane(path, start, start-2)
|
||||
)
|
||||
plane==undef?
|
||||
( dirs[i].x==0 && dirs[i].y==0 ? [1,0,0] // If it's z direction return x vector
|
||||
: unit([-dirs[i].y, dirs[i].x,0])) // otherwise perpendicular to projection
|
||||
: unit(cross(dirs[i],cross(plane[0],plane[1])))
|
||||
];
|
||||
|
||||
// Scan from the specified point (ind) to find a noncoplanar triple to use
|
||||
// to define the plane of the path.
|
||||
function _path_plane(path, ind, i,closed) =
|
||||
i<(closed?-1:0) ? undef :
|
||||
!collinear(path[ind],path[ind-1], select(path,i))?
|
||||
[select(path,i)-path[ind-1],path[ind]-path[ind-1]] :
|
||||
_path_plane(path, ind, i-1);
|
||||
|
||||
// Find the direction of the path at the cut points
|
||||
function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) =
|
||||
[for(ind=[0:len(cuts)-1])
|
||||
let(
|
||||
zeros = path[0]*0,
|
||||
nextind = cuts[ind][1],
|
||||
nextpath = unit(select(path, nextind+1)-select(path, nextind),zeros),
|
||||
thispath = unit(select(path, nextind) - select(path,nextind-1),zeros),
|
||||
lastpath = unit(select(path,nextind-1) - select(path, nextind-2),zeros),
|
||||
nextdir =
|
||||
nextind==len(path) && !closed? lastpath :
|
||||
(nextind<=len(path)-2 || closed) && approx(cuts[ind][0], path[nextind],eps)
|
||||
? unit(nextpath+thispath)
|
||||
: (nextind>1 || closed) && approx(cuts[ind][0],select(path,nextind-1),eps)
|
||||
? unit(thispath+lastpath)
|
||||
: thispath
|
||||
) nextdir
|
||||
];
|
||||
|
||||
|
||||
// Function: path_cut()
|
||||
// Topics: Paths
|
||||
// See Also: path_cut_points()
|
||||
// Usage:
|
||||
// path_list = path_cut(path, cutdist, [closed=]);
|
||||
// Description:
|
||||
// Given a list of distances in `cutdist`, cut the path into
|
||||
// subpaths at those lengths, returning a list of paths.
|
||||
// If the input path is closed then the final path will include the
|
||||
// original starting point. The list of cut distances must be
|
||||
// in ascending order. If you repeat a distance you will get an
|
||||
// empty list in that position in the output.
|
||||
// Arguments:
|
||||
// path = The original path to split.
|
||||
// cutdist = Distance or list of distances where path is cut
|
||||
// closed = If true, treat the path as a closed polygon.
|
||||
// Example(2D):
|
||||
// path = circle(d=100);
|
||||
// segs = path_cut(path, [50, 200], closed=true);
|
||||
// rainbow(segs) stroke($item);
|
||||
function path_cut(path,cutdist,closed) =
|
||||
is_num(cutdist) ? path_cut(path,[cutdist],closed) :
|
||||
assert(is_vector(cutdist))
|
||||
assert(last(cutdist)<path_length(path,closed=closed),"Cut distances must be smaller than the path length")
|
||||
assert(cutdist[0]>0, "Cut distances must be strictly positive")
|
||||
let(
|
||||
cutlist = path_cut_points(path,cutdist,closed=closed),
|
||||
cuts = len(cutlist)
|
||||
)
|
||||
[
|
||||
[ each list_head(path,cutlist[0][1]-1),
|
||||
if (!approx(cutlist[0][0], path[cutlist[0][1]-1])) cutlist[0][0]
|
||||
],
|
||||
for(i=[0:1:cuts-2])
|
||||
cutlist[i][0]==cutlist[i+1][0] ? []
|
||||
:
|
||||
[ if (!approx(cutlist[i][0], select(path,cutlist[i][1]))) cutlist[i][0],
|
||||
each slice(path, cutlist[i][1], cutlist[i+1][1]-1),
|
||||
if (!approx(cutlist[i+1][0], select(path,cutlist[i+1][1]-1))) cutlist[i+1][0],
|
||||
],
|
||||
[
|
||||
if (!approx(cutlist[cuts-1][0], select(path,cutlist[cuts-1][1]))) cutlist[cuts-1][0],
|
||||
each select(path,cutlist[cuts-1][1],closed ? 0 : -1)
|
||||
]
|
||||
];
|
||||
|
||||
|
||||
|
||||
// Input `data` is a list that sums to an integer.
|
||||
// Returns rounded version of input data so that every
|
||||
// entry is rounded to an integer and the sum is the same as
|
||||
// that of the input. Works by rounding an entry in the list
|
||||
// and passing the rounding error forward to the next entry.
|
||||
// This will generally distribute the error in a uniform manner.
|
||||
function _sum_preserving_round(data, index=0) =
|
||||
index == len(data)-1 ? list_set(data, len(data)-1, round(data[len(data)-1])) :
|
||||
let(
|
||||
newval = round(data[index]),
|
||||
error = newval - data[index]
|
||||
) _sum_preserving_round(
|
||||
list_set(data, [index,index+1], [newval, data[index+1]-error]),
|
||||
index+1
|
||||
);
|
||||
|
||||
|
||||
// Function: subdivide_path()
|
||||
// Usage:
|
||||
// newpath = subdivide_path(path, [N|refine], method);
|
||||
// Description:
|
||||
// Takes a path as input (closed or open) and subdivides the path to produce a more
|
||||
// finely sampled path. The new points can be distributed proportional to length
|
||||
// (`method="length"`) or they can be divided up evenly among all the path segments
|
||||
// (`method="segment"`). If the extra points don't fit evenly on the path then the
|
||||
// algorithm attempts to distribute them uniformly. The `exact` option requires that
|
||||
// the final length is exactly as requested. If you set it to `false` then the
|
||||
// algorithm will favor uniformity and the output path may have a different number of
|
||||
// points due to rounding error.
|
||||
// .
|
||||
// With the `"segment"` method you can also specify a vector of lengths. This vector,
|
||||
// `N` specfies the desired point count on each segment: with vector input, `subdivide_path`
|
||||
// attempts to place `N[i]-1` points on segment `i`. The reason for the -1 is to avoid
|
||||
// double counting the endpoints, which are shared by pairs of segments, so that for
|
||||
// a closed polygon the total number of points will be sum(N). Note that with an open
|
||||
// path there is an extra point at the end, so the number of points will be sum(N)+1.
|
||||
// Arguments:
|
||||
// path = path to subdivide
|
||||
// N = scalar total number of points desired or with `method="segment"` can be a vector requesting `N[i]-1` points on segment i.
|
||||
// refine = number of points to add each segment.
|
||||
// closed = set to false if the path is open. Default: True
|
||||
// exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform point sample that may not match the number of points requested. Default: True
|
||||
// method = One of `"length"` or `"segment"`. If `"length"`, adds vertices evenly along the total path length. If `"segment"`, adds points evenly among the segments. Default: `"length"`
|
||||
// Example(2D):
|
||||
// mypath = subdivide_path(square([2,2],center=true), 12);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D):
|
||||
// mypath = subdivide_path(square([8,2],center=true), 12);
|
||||
// move_copies(mypath)circle(r=.2,$fn=32);
|
||||
// Example(2D):
|
||||
// mypath = subdivide_path(square([8,2],center=true), 12, method="segment");
|
||||
// move_copies(mypath)circle(r=.2,$fn=32);
|
||||
// Example(2D):
|
||||
// mypath = subdivide_path(square([2,2],center=true), 17, closed=false);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): Specifying different numbers of points on each segment
|
||||
// mypath = subdivide_path(hexagon(side=2), [2,3,4,5,6,7], method="segment");
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): Requested point total is 14 but 15 points output due to extra end point
|
||||
// mypath = subdivide_path(pentagon(side=2), [3,4,3,4], method="segment", closed=false);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): Since 17 is not divisible by 5, a completely uniform distribution is not possible.
|
||||
// mypath = subdivide_path(pentagon(side=2), 17);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): With `exact=false` a uniform distribution, but only 15 points
|
||||
// mypath = subdivide_path(pentagon(side=2), 17, exact=false);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): With `exact=false` you can also get extra points, here 20 instead of requested 18
|
||||
// mypath = subdivide_path(pentagon(side=2), 18, exact=false);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(FlatSpin,VPD=15,VPT=[0,0,1.5]): Three-dimensional paths also work
|
||||
// mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12);
|
||||
// move_copies(mypath)sphere(r=.1,$fn=32);
|
||||
function subdivide_path(path, N, refine, closed=true, exact=true, method="length") =
|
||||
assert(is_path(path))
|
||||
assert(method=="length" || method=="segment")
|
||||
assert(num_defined([N,refine]),"Must give exactly one of N and refine")
|
||||
let(
|
||||
N = !is_undef(N)? N :
|
||||
!is_undef(refine)? len(path) * refine :
|
||||
undef
|
||||
)
|
||||
assert((is_num(N) && N>0) || is_vector(N),"Parameter N to subdivide_path must be postive number or vector")
|
||||
let(
|
||||
count = len(path) - (closed?0:1),
|
||||
add_guess = method=="segment"? (
|
||||
is_list(N)? (
|
||||
assert(len(N)==count,"Vector parameter N to subdivide_path has the wrong length")
|
||||
add_scalar(N,-1)
|
||||
) : repeat((N-len(path)) / count, count)
|
||||
) : // method=="length"
|
||||
assert(is_num(N),"Parameter N to subdivide path must be a number when method=\"length\"")
|
||||
let(
|
||||
path_lens = concat(
|
||||
[ for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i]) ],
|
||||
closed? [norm(path[len(path)-1]-path[0])] : []
|
||||
),
|
||||
add_density = (N - len(path)) / sum(path_lens)
|
||||
)
|
||||
path_lens * add_density,
|
||||
add = exact? _sum_preserving_round(add_guess) :
|
||||
[for (val=add_guess) round(val)]
|
||||
) concat(
|
||||
[
|
||||
for (i=[0:1:count]) each [
|
||||
for(j=[0:1:add[i]])
|
||||
lerp(path[i],select(path,i+1), j/(add[i]+1))
|
||||
]
|
||||
],
|
||||
closed? [] : [last(path)]
|
||||
);
|
||||
|
||||
|
||||
// Function: path_length_fractions()
|
||||
// Usage:
|
||||
// fracs = path_length_fractions(path, [closed]);
|
||||
// Description:
|
||||
// Returns the distance fraction of each point in the path along the path, so the first
|
||||
// point is zero and the final point is 1. If the path is closed the length of the output
|
||||
// will have one extra point because of the final connecting segment that connects the last
|
||||
// point of the path to the first point.
|
||||
function path_length_fractions(path, closed=false) =
|
||||
assert(is_path(path))
|
||||
assert(is_bool(closed))
|
||||
let(
|
||||
lengths = [
|
||||
0,
|
||||
for (i=[0:1:len(path)-(closed?1:2)])
|
||||
norm(select(path,i+1)-path[i])
|
||||
],
|
||||
partial_len = cumsum(lengths),
|
||||
total_len = last(partial_len)
|
||||
) partial_len / total_len;
|
||||
|
||||
|
||||
// Function: resample_path()
|
||||
// Usage:
|
||||
// newpath = resample_path(path, N|spacing, [closed]);
|
||||
// Description:
|
||||
// Compute a uniform resampling of the input path. If you specify `N` then the output path will have N
|
||||
// points spaced uniformly (by linear interpolation along the input path segments). The only points of the
|
||||
// input path that are guaranteed to appear in the output path are the starting and ending points.
|
||||
// If you specify `spacing` then the length you give will be rounded to the nearest spacing that gives
|
||||
// a uniform sampling of the path and the resulting uniformly sampled path is returned.
|
||||
// Note that because this function operates on a discrete input path the quality of the output depends on
|
||||
// the sampling of the input. If you want very accurate output, use a lot of points for the input.
|
||||
// Arguments:
|
||||
// path = path to resample
|
||||
// N = Number of points in output
|
||||
// spacing = Approximate spacing desired
|
||||
// closed = set to true if path is closed. Default: false
|
||||
function resample_path(path, N, spacing, closed=false) =
|
||||
assert(is_path(path))
|
||||
assert(num_defined([N,spacing])==1,"Must define exactly one of N and spacing")
|
||||
assert(is_bool(closed))
|
||||
let(
|
||||
length = path_length(path,closed),
|
||||
// In the open path case decrease N by 1 so that we don't try to get
|
||||
// path_cut to return the endpoint (which might fail due to rounding)
|
||||
// Add last point later
|
||||
N = is_def(N) ? N-(closed?0:1) : round(length/spacing),
|
||||
distlist = lerpn(0,length,N,false),
|
||||
cuts = path_cut_points(path, distlist, closed=closed)
|
||||
)
|
||||
[ each subindex(cuts,0),
|
||||
if (!closed) last(path) // Then add last point here
|
||||
];
|
||||
|
||||
|
||||
|
||||
|
||||
// Section: 2D Modules
|
||||
|
||||
|
||||
|
@ -1302,337 +1641,149 @@ module path_spread(path, n, spacing, sp=undef, rotate_children=true, closed=fals
|
|||
}
|
||||
|
||||
|
||||
// Function: path_cut_points()
|
||||
//
|
||||
// Usage:
|
||||
// cuts = path_cut_points(path, dists, [closed=], [direction=]);
|
||||
//
|
||||
// Description:
|
||||
// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut
|
||||
// points and indices of the next point in the path after that point. So for example, a return
|
||||
// value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after
|
||||
// this point is path[5]. If the path is too short then path_cut_points returns undef. If you set
|
||||
// `direction` to true then `path_cut_points` will also return the tangent vector to the path and a normal
|
||||
// vector to the path. It tries to find a normal vector that is coplanar to the path near the cut
|
||||
// point. If this fails it will return a normal vector parallel to the xy plane. The output with
|
||||
// direction vectors will be `[point, next_index, tangent, normal]`.
|
||||
// .
|
||||
// If you give the very last point of the path as a cut point then the returned index will be
|
||||
// one larger than the last index (so it will not be a valid index). If you use the closed
|
||||
// option then the returned index will be equal to the path length for cuts along the closing
|
||||
// path segment, and if you give a point equal to the path length you will get an
|
||||
// index of len(path)+1 for the index.
|
||||
//
|
||||
// Arguments:
|
||||
// path = path to cut
|
||||
// dists = distances where the path should be cut (a list) or a scalar single distance
|
||||
// ---
|
||||
// closed = set to true if the curve is closed. Default: false
|
||||
// direction = set to true to return direction vectors. Default: false
|
||||
//
|
||||
// Example(NORENDER):
|
||||
// square=[[0,0],[1,0],[1,1],[0,1]];
|
||||
// path_cut_points(square, [.5,1.5,2.5]); // Returns [[[0.5, 0], 1], [[1, 0.5], 2], [[0.5, 1], 3]]
|
||||
// path_cut_points(square, [0,1,2,3]); // Returns [[[0, 0], 1], [[1, 0], 2], [[1, 1], 3], [[0, 1], 4]]
|
||||
// path_cut_points(square, [0,0.8,1.6,2.4,3.2], closed=true); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], [[0, 0.8], 4]]
|
||||
// path_cut_points(square, [0,0.8,1.6,2.4,3.2]); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], undef]
|
||||
function path_cut_points(path, dists, closed=false, direction=false) =
|
||||
let(long_enough = len(path) >= (closed ? 3 : 2))
|
||||
assert(long_enough,len(path)<2 ? "Two points needed to define a path" : "Closed path must include three points")
|
||||
is_num(dists) ? path_cut_points(path, [dists],closed, direction)[0] :
|
||||
assert(is_vector(dists))
|
||||
assert(list_increasing(dists), "Cut distances must be an increasing list")
|
||||
let(cuts = _path_cut_points(path,dists,closed))
|
||||
!direction
|
||||
? cuts
|
||||
: let(
|
||||
dir = _path_cuts_dir(path, cuts, closed),
|
||||
normals = _path_cuts_normals(path, cuts, dir, closed)
|
||||
)
|
||||
hstack(cuts, array_group(dir,1), array_group(normals,1));
|
||||
|
||||
// Main recursive path cut function
|
||||
function _path_cut_points(path, dists, closed=false, pind=0, dtotal=0, dind=0, result=[]) =
|
||||
dind == len(dists) ? result :
|
||||
function _cut_interp(pathcut, path, data) =
|
||||
[for(entry=pathcut)
|
||||
let(
|
||||
lastpt = len(result)==0? [] : last(result)[0], // location of last cut point
|
||||
dpartial = len(result)==0? 0 : norm(lastpt-select(path,pind)), // remaining length in segment
|
||||
nextpoint = dists[dind] < dpartial+dtotal // Do we have enough length left on the current segment?
|
||||
? [lerp(lastpt,select(path,pind),(dists[dind]-dtotal)/dpartial),pind]
|
||||
: _path_cut_single(path, dists[dind]-dtotal-dpartial, closed, pind)
|
||||
)
|
||||
_path_cut_points(path, dists, closed, nextpoint[1], dists[dind],dind+1, concat(result, [nextpoint]));
|
||||
|
||||
|
||||
// Search for a single cut point in the path
|
||||
function _path_cut_single(path, dist, closed=false, ind=0, eps=1e-7) =
|
||||
// If we get to the very end of the path (ind is last point or wraparound for closed case) then
|
||||
// check if we are within epsilon of the final path point. If not we're out of path, so we fail
|
||||
ind==len(path)-(closed?0:1) ?
|
||||
assert(dist<eps,"Path is too short for specified cut distance")
|
||||
[select(path,ind),ind+1]
|
||||
:let(d = norm(path[ind]-select(path,ind+1))) d > dist ?
|
||||
[lerp(path[ind],select(path,ind+1),dist/d), ind+1] :
|
||||
_path_cut_single(path, dist-d,closed, ind+1, eps);
|
||||
|
||||
// Find normal directions to the path, coplanar to local part of the path
|
||||
// Or return a vector parallel to the x-y plane if the above fails
|
||||
function _path_cuts_normals(path, cuts, dirs, closed=false) =
|
||||
[for(i=[0:len(cuts)-1])
|
||||
len(path[0])==2? [-dirs[i].y, dirs[i].x] : (
|
||||
let(
|
||||
plane = len(path)<3 ? undef :
|
||||
let(start = max(min(cuts[i][1],len(path)-1),2)) _path_plane(path, start, start-2)
|
||||
)
|
||||
plane==undef?
|
||||
unit([-dirs[i].y, dirs[i].x,0]) :
|
||||
unit(cross(dirs[i],cross(plane[0],plane[1])))
|
||||
)
|
||||
];
|
||||
|
||||
// Scan from the specified point (ind) to find a noncoplanar triple to use
|
||||
// to define the plane of the path.
|
||||
function _path_plane(path, ind, i,closed) =
|
||||
i<(closed?-1:0) ? undef :
|
||||
!collinear(path[ind],path[ind-1], select(path,i))?
|
||||
[select(path,i)-path[ind-1],path[ind]-path[ind-1]] :
|
||||
_path_plane(path, ind, i-1);
|
||||
|
||||
// Find the direction of the path at the cut points
|
||||
function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) =
|
||||
[for(ind=[0:len(cuts)-1])
|
||||
let(
|
||||
zeros = path[0]*0,
|
||||
nextind = cuts[ind][1],
|
||||
nextpath = unit(select(path, nextind+1)-select(path, nextind),zeros),
|
||||
thispath = unit(select(path, nextind) - select(path,nextind-1),zeros),
|
||||
lastpath = unit(select(path,nextind-1) - select(path, nextind-2),zeros),
|
||||
nextdir =
|
||||
nextind==len(path) && !closed? lastpath :
|
||||
(nextind<=len(path)-2 || closed) && approx(cuts[ind][0], path[nextind],eps)
|
||||
? unit(nextpath+thispath)
|
||||
: (nextind>1 || closed) && approx(cuts[ind][0],select(path,nextind-1),eps)
|
||||
? unit(thispath+lastpath)
|
||||
: thispath
|
||||
) nextdir
|
||||
];
|
||||
|
||||
|
||||
// Function: path_cut()
|
||||
// Topics: Paths
|
||||
// See Also: path_cut_points()
|
||||
// Usage:
|
||||
// path_list = path_cut(path, cutdist, [closed=]);
|
||||
// Description:
|
||||
// Given a list of distances in `cutdist`, cut the path into
|
||||
// subpaths at those lengths, returning a list of paths.
|
||||
// If the input path is closed then the final path will include the
|
||||
// original starting point. The list of cut distances must be
|
||||
// in ascending order. If you repeat a distance you will get an
|
||||
// empty list in that position in the output.
|
||||
// Arguments:
|
||||
// path = The original path to split.
|
||||
// cutdist = Distance or list of distances where path is cut
|
||||
// closed = If true, treat the path as a closed polygon.
|
||||
// Example(2D):
|
||||
// path = circle(d=100);
|
||||
// segs = path_cut(path, [50, 200], closed=true);
|
||||
// rainbow(segs) stroke($item);
|
||||
function path_cut(path,cutdist,closed) =
|
||||
is_num(cutdist) ? path_cut(path,[cutdist],closed) :
|
||||
assert(is_vector(cutdist))
|
||||
assert(last(cutdist)<path_length(path,closed=closed),"Cut distances must be smaller than the path length")
|
||||
assert(cutdist[0]>0, "Cut distances must be strictly positive")
|
||||
let(
|
||||
cutlist = path_cut_points(path,cutdist,closed=closed),
|
||||
cuts = len(cutlist)
|
||||
)
|
||||
[
|
||||
[ each list_head(path,cutlist[0][1]-1),
|
||||
if (!approx(cutlist[0][0], path[cutlist[0][1]-1])) cutlist[0][0]
|
||||
],
|
||||
for(i=[0:1:cuts-2])
|
||||
cutlist[i][0]==cutlist[i+1][0] ? []
|
||||
:
|
||||
[ if (!approx(cutlist[i][0], select(path,cutlist[i][1]))) cutlist[i][0],
|
||||
each slice(path, cutlist[i][1], cutlist[i+1][1]-1),
|
||||
if (!approx(cutlist[i+1][0], select(path,cutlist[i+1][1]-1))) cutlist[i+1][0],
|
||||
],
|
||||
[
|
||||
if (!approx(cutlist[cuts-1][0], select(path,cutlist[cuts-1][1]))) cutlist[cuts-1][0],
|
||||
each select(path,cutlist[cuts-1][1],closed ? 0 : -1)
|
||||
]
|
||||
a = path[entry[1]-1],
|
||||
b = path[entry[1]],
|
||||
c = entry[0],
|
||||
i = max_index(v_abs(b-a)),
|
||||
factor = (c[i]-a[i])/(b[i]-a[i])
|
||||
)
|
||||
(1-factor)*data[entry[1]-1]+ factor * data[entry[1]]
|
||||
];
|
||||
|
||||
|
||||
|
||||
// Input `data` is a list that sums to an integer.
|
||||
// Returns rounded version of input data so that every
|
||||
// entry is rounded to an integer and the sum is the same as
|
||||
// that of the input. Works by rounding an entry in the list
|
||||
// and passing the rounding error forward to the next entry.
|
||||
// This will generally distribute the error in a uniform manner.
|
||||
function _sum_preserving_round(data, index=0) =
|
||||
index == len(data)-1 ? list_set(data, len(data)-1, round(data[len(data)-1])) :
|
||||
let(
|
||||
newval = round(data[index]),
|
||||
error = newval - data[index]
|
||||
) _sum_preserving_round(
|
||||
list_set(data, [index,index+1], [newval, data[index+1]-error]),
|
||||
index+1
|
||||
);
|
||||
|
||||
|
||||
// Function: subdivide_path()
|
||||
// Module: path_text()
|
||||
// Usage:
|
||||
// newpath = subdivide_path(path, [N|refine], method);
|
||||
// path_text(path, text, [size], [thickness], [font], [lettersize], [offset], [reverse], [normal], [top], [textmetrics])
|
||||
// Description:
|
||||
// Takes a path as input (closed or open) and subdivides the path to produce a more
|
||||
// finely sampled path. The new points can be distributed proportional to length
|
||||
// (`method="length"`) or they can be divided up evenly among all the path segments
|
||||
// (`method="segment"`). If the extra points don't fit evenly on the path then the
|
||||
// algorithm attempts to distribute them uniformly. The `exact` option requires that
|
||||
// the final length is exactly as requested. If you set it to `false` then the
|
||||
// algorithm will favor uniformity and the output path may have a different number of
|
||||
// points due to rounding error.
|
||||
// Place the text letter by letter onto the specified path using textmetrics (if available and requested)
|
||||
// or user specified letter spacing. By default letters are positioned on the tangent line to the path with the path normal
|
||||
// pointing toward the reader. The path normal points away from the center of curvature (the opposite of the normal produced
|
||||
// by path_normals()). Note that this means that if the center of curvature switches sides the text will flip upside down.
|
||||
// If you want text on such a path you must supply your own normal or top vector.
|
||||
// .
|
||||
// Text appears starting at the beginning of the path, so if the path moves right to left
|
||||
// then a left-to-right reading language will display in the wrong order. The text appears positioned to be
|
||||
// read from "outside" of the curve (from a point on the other side of the curve from the center of curvature).
|
||||
// If you need the text to read properly from the inside, you can set reverse to true to flip the text, or supply
|
||||
// your own normal.
|
||||
// .
|
||||
// With the `"segment"` method you can also specify a vector of lengths. This vector,
|
||||
// `N` specfies the desired point count on each segment: with vector input, `subdivide_path`
|
||||
// attempts to place `N[i]-1` points on segment `i`. The reason for the -1 is to avoid
|
||||
// double counting the endpoints, which are shared by pairs of segments, so that for
|
||||
// a closed polygon the total number of points will be sum(N). Note that with an open
|
||||
// path there is an extra point at the end, so the number of points will be sum(N)+1.
|
||||
// If you do not have the experimental textmetrics feature enabled then you must specify the space for the letters
|
||||
// using lettersize, which can be a scalar or array. You will have the easiest time getting good results by using
|
||||
// a monospace font such as Courier. Note that even with text metrics, spacing may be different because path_text()
|
||||
// doesn't do kerning to adjust positions of individual glyphs. Also if your font has ligatures they won't be used.
|
||||
// .
|
||||
// By default letters appear centered on the path. The offset can be specified to shift letters toward the reader (in
|
||||
// the direction of the normal).
|
||||
// .
|
||||
// You can specify your own normal by setting `normal` to a direction or a list of directions. Your normal vector should
|
||||
// point toward the reader. You can also specify
|
||||
// top, which directs the top of the letters in a desired direction. If you specify your own directions and they
|
||||
// are not perpendicular to the path then the direction you specify will take priority and the
|
||||
// letters will not rest on the tangent line of the path. Note that the normal or top directions that you
|
||||
// specify must not be parallel to the path.
|
||||
// Arguments:
|
||||
// path = path to subdivide
|
||||
// N = scalar total number of points desired or with `method="segment"` can be a vector requesting `N[i]-1` points on segment i.
|
||||
// refine = number of points to add each segment.
|
||||
// closed = set to false if the path is open. Default: True
|
||||
// exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform point sample that may not match the number of points requested. Default: True
|
||||
// method = One of `"length"` or `"segment"`. If `"length"`, adds vertices evenly along the total path length. If `"segment"`, adds points evenly among the segments. Default: `"length"`
|
||||
// Example(2D):
|
||||
// mypath = subdivide_path(square([2,2],center=true), 12);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D):
|
||||
// mypath = subdivide_path(square([8,2],center=true), 12);
|
||||
// move_copies(mypath)circle(r=.2,$fn=32);
|
||||
// Example(2D):
|
||||
// mypath = subdivide_path(square([8,2],center=true), 12, method="segment");
|
||||
// move_copies(mypath)circle(r=.2,$fn=32);
|
||||
// Example(2D):
|
||||
// mypath = subdivide_path(square([2,2],center=true), 17, closed=false);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): Specifying different numbers of points on each segment
|
||||
// mypath = subdivide_path(hexagon(side=2), [2,3,4,5,6,7], method="segment");
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): Requested point total is 14 but 15 points output due to extra end point
|
||||
// mypath = subdivide_path(pentagon(side=2), [3,4,3,4], method="segment", closed=false);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): Since 17 is not divisible by 5, a completely uniform distribution is not possible.
|
||||
// mypath = subdivide_path(pentagon(side=2), 17);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): With `exact=false` a uniform distribution, but only 15 points
|
||||
// mypath = subdivide_path(pentagon(side=2), 17, exact=false);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(2D): With `exact=false` you can also get extra points, here 20 instead of requested 18
|
||||
// mypath = subdivide_path(pentagon(side=2), 18, exact=false);
|
||||
// move_copies(mypath)circle(r=.1,$fn=32);
|
||||
// Example(FlatSpin,VPD=15,VPT=[0,0,1.5]): Three-dimensional paths also work
|
||||
// mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12);
|
||||
// move_copies(mypath)sphere(r=.1,$fn=32);
|
||||
function subdivide_path(path, N, refine, closed=true, exact=true, method="length") =
|
||||
assert(is_path(path))
|
||||
assert(method=="length" || method=="segment")
|
||||
assert(num_defined([N,refine]),"Must give exactly one of N and refine")
|
||||
let(
|
||||
N = !is_undef(N)? N :
|
||||
!is_undef(refine)? len(path) * refine :
|
||||
undef
|
||||
)
|
||||
assert((is_num(N) && N>0) || is_vector(N),"Parameter N to subdivide_path must be postive number or vector")
|
||||
let(
|
||||
count = len(path) - (closed?0:1),
|
||||
add_guess = method=="segment"? (
|
||||
is_list(N)? (
|
||||
assert(len(N)==count,"Vector parameter N to subdivide_path has the wrong length")
|
||||
add_scalar(N,-1)
|
||||
) : repeat((N-len(path)) / count, count)
|
||||
) : // method=="length"
|
||||
assert(is_num(N),"Parameter N to subdivide path must be a number when method=\"length\"")
|
||||
let(
|
||||
path_lens = concat(
|
||||
[ for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i]) ],
|
||||
closed? [norm(path[len(path)-1]-path[0])] : []
|
||||
),
|
||||
add_density = (N - len(path)) / sum(path_lens)
|
||||
)
|
||||
path_lens * add_density,
|
||||
add = exact? _sum_preserving_round(add_guess) :
|
||||
[for (val=add_guess) round(val)]
|
||||
) concat(
|
||||
[
|
||||
for (i=[0:1:count]) each [
|
||||
for(j=[0:1:add[i]])
|
||||
lerp(path[i],select(path,i+1), j/(add[i]+1))
|
||||
]
|
||||
],
|
||||
closed? [] : [last(path)]
|
||||
);
|
||||
// path = path to place the text on
|
||||
// text = text to create
|
||||
// size = font size
|
||||
// thickness = thickness of letters
|
||||
// font = font to use
|
||||
// ---
|
||||
// lettersize = scalar or array giving size of letters
|
||||
// offset = distance to shift letters "up" (towards the reader). Default: 0
|
||||
// normal = direction or list of directions pointing towards the reader of the text
|
||||
// top = direction or list of directions pointing toward the top of the text
|
||||
// reverse = reverse the letters if true. Default: false
|
||||
// textmetrics = if set to true and lettersize is not given then use the experimental textmetrics feature. You must be running a dev snapshot that includes this feature and have the feature turned on in your preferences. Default: false
|
||||
// Example: The examples use Courier, a monospaced font. The width is 1/1.2 times the specified size for this font. This text could wrap around a cylinder.
|
||||
// path = path3d(arc(100, r=25, angle=[245, 370]));
|
||||
// color("red")stroke(path, width=.3);
|
||||
// path_text(path, "Example text", font="Courier", size=5, lettersize = 5/1.2);
|
||||
// Example: By setting the normal to UP we can get text that lies flat, for writing around the edge of a disk:
|
||||
// path = path3d(arc(100, r=25, angle=[245, 370]));
|
||||
// color("red")stroke(path, width=.3);
|
||||
// path_text(path, "Example text", font="Courier", size=5, lettersize = 5/1.2, normal=UP);
|
||||
// Example: If we want text that reads from the other side we can use reverse. Note we have to reverse the direction of the path and also set the reverse option.
|
||||
// path = reverse(path3d(arc(100, r=25, angle=[65, 190])));
|
||||
// color("red")stroke(path, width=.3);
|
||||
// path_text(path, "Example text", font="Courier", size=5, lettersize = 5/1.2, reverse=true);
|
||||
// Example: text debossed onto a cylinder in a spiral. The text is 1 unit deep because it is half in, half out.
|
||||
// text = ("A long text example to wrap around a cylinder, possibly for a few times.");
|
||||
// L = 5*len(text);
|
||||
// maxang = 360*L/(PI*50);
|
||||
// spiral = [for(a=[0:1:maxang]) [25*cos(a), 25*sin(a), 10-30/maxang*a]];
|
||||
// difference(){
|
||||
// cyl(d=50, l=50, $fn=120);
|
||||
// path_text(spiral, text, size=5, lettersize=5/1.2, font="Courier", thickness=2);
|
||||
// }
|
||||
// Example: Same example but text embossed. Make sure you have enough depth for the letters to fully overlap the object.
|
||||
// text = ("A long text example to wrap around a cylinder, possibly for a few times.");
|
||||
// L = 5*len(text);
|
||||
// maxang = 360*L/(PI*50);
|
||||
// spiral = [for(a=[0:1:maxang]) [25*cos(a), 25*sin(a), 10-30/maxang*a]];
|
||||
// cyl(d=50, l=50, $fn=120);
|
||||
// path_text(spiral, text, size=5, lettersize=5/1.2, font="Courier", thickness=2);
|
||||
// Example: Here the text baseline sits on the path. (Note the default orientation makes text readable from below, so we specify the normal.)
|
||||
// path = arc(100, points = [[-20, 0, 20], [0,0,5], [20,0,20]]);
|
||||
// color("red")stroke(path,width=.2);
|
||||
// path_text(path, "Example Text", size=5, lettersize=5/1.2, font="Courier", normal=FRONT);
|
||||
// Example: If we use top to orient the text upward, the text baseline is no longer aligned with the path.
|
||||
// path = arc(100, points = [[-20, 0, 20], [0,0,5], [20,0,20]]);
|
||||
// color("red")stroke(path,width=.2);
|
||||
// path_text(path, "Example Text", size=5, lettersize=5/1.2, font="Courier", top=UP);
|
||||
// Example: The path center of curvature changes, and the text flips.
|
||||
// path = zrot(-120,p=path3d( concat(arc(100, r=25, angle=[0,90]), back(50,p=arc(100, r=25, angle=[268, 180])))));
|
||||
// color("red")stroke(path,width=.2);
|
||||
// path_text(path, "A shorter example", size=5, lettersize=5/1.2, font="Courier", thickness=2);
|
||||
// Example: We can fix it with top:
|
||||
// path = zrot(-120,p=path3d( concat(arc(100, r=25, angle=[0,90]), back(50,p=arc(100, r=25, angle=[268, 180])))));
|
||||
// color("red")stroke(path,width=.2);
|
||||
// path_text(path, "A shorter example", size=5, lettersize=5/1.2, font="Courier", thickness=2, top=UP);
|
||||
module path_text(path, text, font, size, thickness=1, lettersize, offset=0, reverse=false, normal, top, textmetrics=false)
|
||||
{
|
||||
dummy2=assert(num_defined([normal,top])<=1, "Cannot define both normal and top");
|
||||
normal = is_def(normal) && len(normal)==3 ? repeat(normal, len(path))
|
||||
: is_def(normal) ? normal
|
||||
: undef;
|
||||
|
||||
top = is_def(top) && len(top)==3 ? repeat(top, len(path))
|
||||
: is_def(top) ? top
|
||||
: undef;
|
||||
|
||||
// Function: path_length_fractions()
|
||||
// Usage:
|
||||
// fracs = path_length_fractions(path, [closed]);
|
||||
// Description:
|
||||
// Returns the distance fraction of each point in the path along the path, so the first
|
||||
// point is zero and the final point is 1. If the path is closed the length of the output
|
||||
// will have one extra point because of the final connecting segment that connects the last
|
||||
// point of the path to the first point.
|
||||
function path_length_fractions(path, closed=false) =
|
||||
assert(is_path(path))
|
||||
assert(is_bool(closed))
|
||||
let(
|
||||
lengths = [
|
||||
0,
|
||||
for (i=[0:1:len(path)-(closed?1:2)])
|
||||
norm(select(path,i+1)-path[i])
|
||||
],
|
||||
partial_len = cumsum(lengths),
|
||||
total_len = last(partial_len)
|
||||
) partial_len / total_len;
|
||||
lsize = is_def(lettersize) ? force_list(lettersize, len(text))
|
||||
: textmetrics ? [for(letter=text) let(t=textmetrics(letter, font=font, size=size)) t.advance[0]]
|
||||
: assert(false, "textmetrics disabled: Must specify letter size");
|
||||
|
||||
dummy1 = assert(sum(lsize)<=path_length(path),"Path is too short for the text");
|
||||
|
||||
pts = path_cut_points(path, add_scalar([0, each cumsum(lsize)],lsize[0]/2), direction=true);
|
||||
|
||||
// Function: resample_path()
|
||||
// Usage:
|
||||
// newpath = resample_path(path, N|spacing, [closed]);
|
||||
// Description:
|
||||
// Compute a uniform resampling of the input path. If you specify `N` then the output path will have N
|
||||
// points spaced uniformly (by linear interpolation along the input path segments). The only points of the
|
||||
// input path that are guaranteed to appear in the output path are the starting and ending points.
|
||||
// If you specify `spacing` then the length you give will be rounded to the nearest spacing that gives
|
||||
// a uniform sampling of the path and the resulting uniformly sampled path is returned.
|
||||
// Note that because this function operates on a discrete input path the quality of the output depends on
|
||||
// the sampling of the input. If you want very accurate output, use a lot of points for the input.
|
||||
// Arguments:
|
||||
// path = path to resample
|
||||
// N = Number of points in output
|
||||
// spacing = Approximate spacing desired
|
||||
// closed = set to true if path is closed. Default: false
|
||||
function resample_path(path, N, spacing, closed=false) =
|
||||
assert(is_path(path))
|
||||
assert(num_defined([N,spacing])==1,"Must define exactly one of N and spacing")
|
||||
assert(is_bool(closed))
|
||||
let(
|
||||
length = path_length(path,closed),
|
||||
// In the open path case decrease N by 1 so that we don't try to get
|
||||
// path_cut to return the endpoint (which might fail due to rounding)
|
||||
// Add last point later
|
||||
N = is_def(N) ? N-(closed?0:1) : round(length/spacing),
|
||||
distlist = lerpn(0,length,N,false),
|
||||
cuts = path_cut_points(path, distlist, closed=closed)
|
||||
)
|
||||
[ each subindex(cuts,0),
|
||||
if (!closed) last(path) // Then add last point here
|
||||
];
|
||||
usernorm = is_def(normal);
|
||||
usetop = is_def(top);
|
||||
|
||||
normpts = is_undef(normal) ? (reverse?1:-1)*subindex(pts,3) : _cut_interp(pts,path, normal);
|
||||
toppts = is_undef(top) ? undef : _cut_interp(pts,path,top);
|
||||
for(i=idx(text))
|
||||
assert(!usetop || !approx(pts[i][2]*toppts[i],norm(top[i])*norm(pts[i][2])),
|
||||
str("Specified top direction parallel to path at character ",i))
|
||||
assert(usetop || !approx(pts[i][2]*normpts[i],norm(normpts[i])*norm(pts[i][2])),
|
||||
str("Specified normal direction parallel to path at character ",i))
|
||||
let(
|
||||
adjustment = usetop ? (pts[i][2]*toppts[i])*toppts[i]/(toppts[i]*toppts[i])
|
||||
: usernorm ? (pts[i][2]*normpts[i])*normpts[i]/(normpts[i]*normpts[i])
|
||||
: [0,0,0]
|
||||
|
||||
)
|
||||
move(pts[i][0])
|
||||
multmatrix(affine3d_frame_map(x=pts[i][2]-adjustment,
|
||||
z=usetop ? undef : normpts[i],
|
||||
y=usetop ? toppts[i] : undef))
|
||||
up(offset-thickness/2)
|
||||
linear_extrude(height=thickness)
|
||||
left(lsize[0]/2)text(text[i], font=font, size=size);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -769,15 +769,15 @@ module square_threaded_nut(
|
|||
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
||||
// $slop = The printer-specific slop value, which adds clearance (`4*$slop`) to internal threads.
|
||||
// Example(2D): Thread Profile, ball_diam=4, ball_arc=100
|
||||
// projection(cut=true) ball_screw_rod(d=10, l=15, pitch=5, ball_diam=4, ball_arc=100, orient=BACK);
|
||||
// projection(cut=true) ball_screw_rod(d=10, l=15, pitch=5, ball_diam=4, ball_arc=100, orient=BACK, $fn=24);
|
||||
// Example(2D): Thread Profile, ball_diam=4, ball_arc=120
|
||||
// projection(cut=true) ball_screw_rod(d=10, l=15, pitch=5, ball_diam=4, ball_arc=120, orient=BACK);
|
||||
// projection(cut=true) ball_screw_rod(d=10, l=15, pitch=5, ball_diam=4, ball_arc=120, orient=BACK, $fn=24);
|
||||
// Example(2D): Thread Profile, ball_diam=3, ball_arc=120
|
||||
// projection(cut=true) ball_screw_rod(d=10, l=15, pitch=5, ball_diam=3, ball_arc=120, orient=BACK);
|
||||
// projection(cut=true) ball_screw_rod(d=10, l=15, pitch=5, ball_diam=3, ball_arc=120, orient=BACK, $fn=24);
|
||||
// Examples(Med):
|
||||
// ball_screw_rod(d=15, l=20, pitch=8, ball_diam=5, ball_arc=120, $fa=1, $fs=1);
|
||||
// ball_screw_rod(d=15, l=20, pitch=5, ball_diam=4, ball_arc=120, $fa=1, $fs=1);
|
||||
// ball_screw_rod(d=15, l=20, pitch=5, ball_diam=4, ball_arc=120, left_handed=true, $fa=1, $fs=1);
|
||||
// ball_screw_rod(d=15, l=20, pitch=8, ball_diam=5, ball_arc=120, $fa=1, $fs=0.5);
|
||||
// ball_screw_rod(d=15, l=20, pitch=5, ball_diam=4, ball_arc=120, $fa=1, $fs=0.5);
|
||||
// ball_screw_rod(d=15, l=20, pitch=5, ball_diam=4, ball_arc=120, left_handed=true, $fa=1, $fs=0.5);
|
||||
module ball_screw_rod(
|
||||
d, l, pitch,
|
||||
ball_diam=5, ball_arc=100,
|
||||
|
@ -787,7 +787,7 @@ module ball_screw_rod(
|
|||
bevel,bevel1,bevel2,
|
||||
anchor, spin, orient
|
||||
) {
|
||||
n = ceil(segs(ball_diam/2)*ball_arc/2/360);
|
||||
n = max(3,ceil(segs(ball_diam/2)*ball_arc/2/360));
|
||||
depth = ball_diam * (1-cos(ball_arc/2))/2;
|
||||
cpy = ball_diam/2/pitch*cos(ball_arc/2);
|
||||
profile = [
|
||||
|
|
Loading…
Reference in a new issue