mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
Merge pull request #925 from revarbat/revarbat_dev
Added rotate_sweep()
This commit is contained in:
commit
3fe1ae77ee
1 changed files with 110 additions and 7 deletions
117
skin.scad
117
skin.scad
|
@ -666,11 +666,113 @@ function linear_sweep(
|
||||||
) reorient(anchor,spin,orient, geom=geom, p=vnf);
|
) reorient(anchor,spin,orient, geom=geom, p=vnf);
|
||||||
|
|
||||||
|
|
||||||
|
// Function&Module: rotate_sweep()
|
||||||
|
// Usage: As Function
|
||||||
|
// vnf = rotate_sweep(shape, angle, ...);
|
||||||
|
// Usage: As Module
|
||||||
|
// rotate_sweep(shape, angle, ...) [ATTACHMENTS];
|
||||||
|
// Topics: Extrusion, Sweep, Revolution
|
||||||
|
// Description:
|
||||||
|
// Takes a polygon or [region](regions.scad) and sweeps it in a rotation around the Z axis.
|
||||||
|
// When called as a function, returns a [VNF](vnf.scad).
|
||||||
|
// When called as a module, creates the sweep as geometry.
|
||||||
|
// Arguments:
|
||||||
|
// shape = The polygon or [region](regions.scad) to sweep around the Z axis.
|
||||||
|
// angle = If given, specifies the number of degrees to sweep the shape around the Z axis, counterclockwise from the X+ axis. Default: 360 (full rotation)
|
||||||
|
// ---
|
||||||
|
// style = {{vnf_vertex_array()}} style. Default: "min_edge"
|
||||||
|
// convexity = (Module only) Convexity setting for use with polyhedron. Default: 10
|
||||||
|
// cp = Centerpoint for determining "intersect" anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid"
|
||||||
|
// atype = Select "hull" or "intersect" anchor types. Default: "hull"
|
||||||
|
// anchor = Translate so anchor point is at the origin. Default: "origin"
|
||||||
|
// spin = Rotate this many degrees around Z axis after anchor. Default: 0
|
||||||
|
// orient = Vector to rotate top towards after spin (module only)
|
||||||
|
// See Also: linear_sweep(), sweep()
|
||||||
|
// Example:
|
||||||
|
// rgn = [
|
||||||
|
// for (a = [0, 120, 240]) let(
|
||||||
|
// cp = polar_to_xy(15, a) + [30,0]
|
||||||
|
// ) each [
|
||||||
|
// move(cp, p=circle(r=10)),
|
||||||
|
// move(cp, p=hexagon(d=15)),
|
||||||
|
// ]
|
||||||
|
// ];
|
||||||
|
// rotate_sweep(rgn, angle=240);
|
||||||
|
// Example:
|
||||||
|
// rgn = right(30, p=union([for (a = [0, 90]) rot(a, p=rect([15,5]))]));
|
||||||
|
// rotate_sweep(rgn);
|
||||||
|
function rotate_sweep(
|
||||||
|
shape, angle=360,
|
||||||
|
style="min_edge", cp="centroid",
|
||||||
|
atype="hull", anchor="origin",
|
||||||
|
spin=0, orient=UP
|
||||||
|
) =
|
||||||
|
let( region = force_region(shape) )
|
||||||
|
assert(is_region(region), "Input is not a region or polygon.")
|
||||||
|
let(
|
||||||
|
bounds = pointlist_bounds(flatten(region)),
|
||||||
|
min_x = bounds[0].x,
|
||||||
|
max_x = bounds[1].x
|
||||||
|
)
|
||||||
|
assert(min_x>=0, "Input region must exist entirely in the X+ half-plane.")
|
||||||
|
let(
|
||||||
|
steps = segs(max_x),
|
||||||
|
transforms = [
|
||||||
|
if (angle==360) for (i=[0:1:steps-1]) rot([90,0,360-i*360/steps]),
|
||||||
|
if (angle<360) for (i=[0:1:steps-1]) rot([90,0,angle-i*angle/(steps-1)]),
|
||||||
|
],
|
||||||
|
vnf = sweep(
|
||||||
|
region, transforms,
|
||||||
|
closed=angle==360,
|
||||||
|
caps=angle!=360,
|
||||||
|
style=style, cp=cp,
|
||||||
|
atype=atype, anchor=anchor,
|
||||||
|
spin=spin, orient=orient
|
||||||
|
)
|
||||||
|
) vnf;
|
||||||
|
|
||||||
|
|
||||||
|
module rotate_sweep(
|
||||||
|
shape, angle=360,
|
||||||
|
style="min_edge",
|
||||||
|
cp="centroid",
|
||||||
|
convexity=10,
|
||||||
|
atype="hull",
|
||||||
|
anchor="origin",
|
||||||
|
spin=0,
|
||||||
|
orient=UP
|
||||||
|
) {
|
||||||
|
region = force_region(shape);
|
||||||
|
check = assert(is_region(region), "Input is not a region or polygon.");
|
||||||
|
bounds = pointlist_bounds(flatten(region));
|
||||||
|
min_x = bounds[0].x;
|
||||||
|
max_x = bounds[1].x;
|
||||||
|
check2 = assert(min_x>=0, "Input region must exist entirely in the X+ half-plane.");
|
||||||
|
steps = segs(max_x);
|
||||||
|
transforms = [
|
||||||
|
if (angle==360) for (i=[0:1:steps-1]) rot([90,0,360-i*360/steps]),
|
||||||
|
if (angle<360) for (i=[0:1:steps-1]) rot([90,0,angle-i*angle/(steps-1)]),
|
||||||
|
];
|
||||||
|
sweep(
|
||||||
|
region, transforms,
|
||||||
|
closed=angle==360,
|
||||||
|
caps=angle!=360,
|
||||||
|
style=style, cp=cp,
|
||||||
|
convexity=convexity,
|
||||||
|
atype=atype, anchor=anchor,
|
||||||
|
spin=spin, orient=orient
|
||||||
|
) children();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
// Function&Module: spiral_sweep()
|
// Function&Module: spiral_sweep()
|
||||||
// Usage:
|
// Usage: As Module
|
||||||
// spiral_sweep(poly, h, r, turns, [higbee=], [center=], [r1=], [r2=], [d=], [d1=], [d2=], [higbee1=], [higbee2=], [internal=], [anchor=], [spin=], [orient=])[ATTACHMENTS];
|
// spiral_sweep(poly, h, r|d=, turns, [higbee=], [center=], [higbee1=], [higbee2=], [internal=], ...)[ATTACHMENTS];
|
||||||
// vnf = spiral_sweep(poly, h, r, turns, ...);
|
// spiral_sweep(poly, h, r1=|d1=, r2=|d2=, turns, [higbee=], [center=], [higbee1=], [higbee2=], [internal=], ...)[ATTACHMENTS];
|
||||||
|
// Usage: As Function
|
||||||
|
// vnf = spiral_sweep(poly, h, r|d=, turns, ...);
|
||||||
|
// vnf = spiral_sweep(poly, h, r1=|d1=, r1=|d2=, turns, ...);
|
||||||
|
// Topics: Extrusion, Sweep
|
||||||
// Description:
|
// Description:
|
||||||
// Takes a closed 2D polygon path, centered on the XY plane, and sweeps/extrudes it along a 3D spiral path
|
// Takes a closed 2D polygon path, centered on the XY plane, and sweeps/extrudes it along a 3D spiral path
|
||||||
// of a given radius, height and degrees of rotation. The origin in the profile traces out the helix of the specified radius.
|
// of a given radius, height and degrees of rotation. The origin in the profile traces out the helix of the specified radius.
|
||||||
|
@ -693,6 +795,7 @@ function linear_sweep(
|
||||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
|
||||||
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
|
||||||
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`.
|
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`.
|
||||||
|
// See Also: sweep(), linear_sweep(), rotate_sweep(), path_sweep()
|
||||||
// Example:
|
// Example:
|
||||||
// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]];
|
// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]];
|
||||||
// spiral_sweep(poly, h=200, r=50, turns=3, $fn=36);
|
// spiral_sweep(poly, h=200, r=50, turns=3, $fn=36);
|
||||||
|
@ -790,7 +893,6 @@ module spiral_sweep(poly, h, r, turns=1, higbee, center, r1, r2, d, d1, d2, higb
|
||||||
// vector for the path, so this process is constructing a shape whose normal cross sections are equal to your specified shape.
|
// vector for the path, so this process is constructing a shape whose normal cross sections are equal to your specified shape.
|
||||||
// If you do not supply a list of tangent vectors then an approximate tangent vector is computed
|
// If you do not supply a list of tangent vectors then an approximate tangent vector is computed
|
||||||
// based on the path points you supply using {{path_tangents()}}.
|
// based on the path points you supply using {{path_tangents()}}.
|
||||||
// .
|
|
||||||
// Figure(3D,Big,VPR=[70,0,345],VPD=20,VPT=[5.5,10.8,-2.7],NoScales): This example shows how the shape, in this case the quadrilateral defined by `[[0, 0], [0, 1], [0.25, 1], [1, 0]]`, appears as the cross section of the swept polyhedron. The blue line shows the path. The normal vector to the shape is shown in black; it is based at the origin and points upwards in the Z direction. The sweep aligns this normal vector with the blue path tangent, which in this case, flips the shape around. Note that for a 2D path like this one, the Y direction in the shape is mapped to the Z direction in the sweep.
|
// Figure(3D,Big,VPR=[70,0,345],VPD=20,VPT=[5.5,10.8,-2.7],NoScales): This example shows how the shape, in this case the quadrilateral defined by `[[0, 0], [0, 1], [0.25, 1], [1, 0]]`, appears as the cross section of the swept polyhedron. The blue line shows the path. The normal vector to the shape is shown in black; it is based at the origin and points upwards in the Z direction. The sweep aligns this normal vector with the blue path tangent, which in this case, flips the shape around. Note that for a 2D path like this one, the Y direction in the shape is mapped to the Z direction in the sweep.
|
||||||
// tri= [[0, 0], [0, 1], [.25,1], [1, 0]];
|
// tri= [[0, 0], [0, 1], [.25,1], [1, 0]];
|
||||||
// path = arc(r=5,n=81,angle=[-20,65]);
|
// path = arc(r=5,n=81,angle=[-20,65]);
|
||||||
|
@ -800,7 +902,7 @@ module spiral_sweep(poly, h, r, turns=1, higbee, center, r1, r2, d, d1, d2, higb
|
||||||
// color("blue")stroke(path3d(arc(r=5,n=101,angle=[-20,80])),width=.1,endcap2="arrow2");
|
// color("blue")stroke(path3d(arc(r=5,n=101,angle=[-20,80])),width=.1,endcap2="arrow2");
|
||||||
// color("red")stroke([path3d(tri)],width=.1);
|
// color("red")stroke([path3d(tri)],width=.1);
|
||||||
// stroke([CENTER,UP], width=.07,endcap2="arrow2",color="black");
|
// stroke([CENTER,UP], width=.07,endcap2="arrow2",color="black");
|
||||||
// .
|
// Continues:
|
||||||
// In the figure you can see that the swept polyhedron, shown in transparent gray, has the quadrilateral as its cross
|
// In the figure you can see that the swept polyhedron, shown in transparent gray, has the quadrilateral as its cross
|
||||||
// section. The quadrilateral is positioned perpendicular to the path, which is shown in blue, so that the normal
|
// section. The quadrilateral is positioned perpendicular to the path, which is shown in blue, so that the normal
|
||||||
// vector for the quadrilateral is parallel to the tangent vector for the path. The origin for the shape is the point
|
// vector for the quadrilateral is parallel to the tangent vector for the path. The origin for the shape is the point
|
||||||
|
@ -924,6 +1026,7 @@ module spiral_sweep(poly, h, r, turns=1, higbee, center, r1, r2, d, d1, d2, higb
|
||||||
// orient = Vector to rotate top towards after spin
|
// orient = Vector to rotate top towards after spin
|
||||||
// atype = Select "hull" or "intersect" anchor types. Default: "hull"
|
// atype = Select "hull" or "intersect" anchor types. Default: "hull"
|
||||||
// cp = Centerpoint for determining "intersect" anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid"
|
// cp = Centerpoint for determining "intersect" anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid"
|
||||||
|
// See Also: sweep(), linear_sweep(), rotate_sweep(), spiral_sweep()
|
||||||
// Example(NoScales): A simple sweep of a square along a sine wave:
|
// Example(NoScales): A simple sweep of a square along a sine wave:
|
||||||
// path = [for(theta=[-180:5:180]) [theta/10, 10*sin(theta)]];
|
// path = [for(theta=[-180:5:180]) [theta/10, 10*sin(theta)]];
|
||||||
// sq = square(6,center=true);
|
// sq = square(6,center=true);
|
||||||
|
@ -1471,11 +1574,11 @@ function _ofs_face_edge(face,firstlen,second=false) =
|
||||||
// style = vnf_vertex_array style. Default: "min_edge"
|
// style = vnf_vertex_array style. Default: "min_edge"
|
||||||
// ---
|
// ---
|
||||||
// convexity = convexity setting for use with polyhedron. (module only) Default: 10
|
// convexity = convexity setting for use with polyhedron. (module only) Default: 10
|
||||||
|
// cp = Centerpoint for determining "intersect" anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid"
|
||||||
|
// atype = Select "hull" or "intersect" anchor types. Default: "hull"
|
||||||
// anchor = Translate so anchor point is at the origin. Default: "origin"
|
// anchor = Translate so anchor point is at the origin. Default: "origin"
|
||||||
// spin = Rotate this many degrees around Z axis after anchor. Default: 0
|
// spin = Rotate this many degrees around Z axis after anchor. Default: 0
|
||||||
// orient = Vector to rotate top towards after spin (module only)
|
// orient = Vector to rotate top towards after spin (module only)
|
||||||
// atype = Select "hull" or "intersect" anchor types. Default: "hull"
|
|
||||||
// cp = Centerpoint for determining "intersect" anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid"
|
|
||||||
// Example(VPR=[45,0,74],VPD=175,VPT=[-3.8,12.4,19]): A bent object that also changes shape along its length.
|
// Example(VPR=[45,0,74],VPD=175,VPT=[-3.8,12.4,19]): A bent object that also changes shape along its length.
|
||||||
// radius = 75;
|
// radius = 75;
|
||||||
// angle = 40;
|
// angle = 40;
|
||||||
|
|
Loading…
Reference in a new issue