mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
speed improvement for vnf_centroid
This commit is contained in:
parent
e9468f92e1
commit
408833d4ef
1 changed files with 14 additions and 19 deletions
33
vnf.scad
33
vnf.scad
|
@ -358,7 +358,7 @@ module vnf_polyhedron(vnf, convexity=2) {
|
||||||
// no holes; otherwise the results are undefined. Returns a positive volume if face direction is clockwise and a negative volume
|
// no holes; otherwise the results are undefined. Returns a positive volume if face direction is clockwise and a negative volume
|
||||||
// if face direction is counter-clockwise.
|
// if face direction is counter-clockwise.
|
||||||
|
|
||||||
// Algorithm adapted/simplified from: https://wwwf.imperial.ac.uk/~rn/centroid.pdf
|
// Divide the polyhedron into tetrahedra with the origin as one vertex and sum up the signed volume.
|
||||||
function vnf_volume(vnf) =
|
function vnf_volume(vnf) =
|
||||||
let(verts = vnf[0])
|
let(verts = vnf[0])
|
||||||
sum([
|
sum([
|
||||||
|
@ -374,27 +374,22 @@ function vnf_volume(vnf) =
|
||||||
// Returns the centroid of the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and
|
// Returns the centroid of the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and
|
||||||
// no holes; otherwise the results are undefined.
|
// no holes; otherwise the results are undefined.
|
||||||
|
|
||||||
// Algorithm from: https://wwwf.imperial.ac.uk/~rn/centroid.pdf
|
// Divide the solid up into tetrahedra with the origin as one vertex. The centroid of a tetrahedron is the average of its vertices.
|
||||||
|
// The centroid of the total is the volume weighted average.
|
||||||
function vnf_centroid(vnf) =
|
function vnf_centroid(vnf) =
|
||||||
let(
|
let(
|
||||||
verts = vnf[0],
|
verts = vnf[0],
|
||||||
val=sum([
|
val = sum([ for(face=vnf[1], j=[1:1:len(face)-2])
|
||||||
for(face=vnf[1], j=[1:1:len(face)-2])
|
let(
|
||||||
let(
|
v0 = verts[face[0]],
|
||||||
v0 = verts[face[0]],
|
v1 = verts[face[j]],
|
||||||
v1 = verts[face[j]],
|
v2 = verts[face[j+1]],
|
||||||
v2 = verts[face[j+1]],
|
vol = cross(v2,v1)*v0
|
||||||
n = cross(v2-v0,v1-v0)
|
)
|
||||||
) [
|
[ vol, (v0+v1+v2)*vol ]
|
||||||
v0 * n,
|
])
|
||||||
vmul(n,
|
)
|
||||||
sqr(v0 + v1) +
|
val[1]/val[0]/4;
|
||||||
sqr(v0 + v2) +
|
|
||||||
sqr(v1 + v2)
|
|
||||||
)
|
|
||||||
]
|
|
||||||
])
|
|
||||||
) val[1]/val[0]/8;
|
|
||||||
|
|
||||||
|
|
||||||
function _triangulate_planar_convex_polygons(polys) =
|
function _triangulate_planar_convex_polygons(polys) =
|
||||||
|
|
Loading…
Reference in a new issue