mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2024-12-29 00:09:41 +00:00
Merge branch 'master' into master
This commit is contained in:
commit
41b7c210e8
9 changed files with 367 additions and 148 deletions
|
@ -12,7 +12,8 @@
|
|||
// Usage:
|
||||
// test = approx(a, b, [eps])
|
||||
// Description:
|
||||
// Compares two numbers or vectors, and returns true if they are closer than `eps` to each other.
|
||||
// Compares two numbers, vectors, or matrices. Returns true if they are closer than `eps` to each other.
|
||||
// Results are undefined if `a` and `b` are of different types, or if vectors or matrices contain non-numbers.
|
||||
// Arguments:
|
||||
// a = First value.
|
||||
// b = Second value.
|
||||
|
@ -21,12 +22,22 @@
|
|||
// test1 = approx(-0.3333333333,-1/3); // Returns: true
|
||||
// test2 = approx(0.3333333333,1/3); // Returns: true
|
||||
// test3 = approx(0.3333,1/3); // Returns: false
|
||||
// test4 = approx(0.3333,1/3,eps=1e-3); // Returns: true
|
||||
// test4 = approx(0.3333,1/3,eps=1e-3); // Returns: true
|
||||
// test5 = approx(PI,3.1415926536); // Returns: true
|
||||
// test6 = approx([0,0,sin(45)],[0,0,sqrt(2)/2]); // Returns: true
|
||||
function approx(a,b,eps=EPSILON) =
|
||||
(a==b && is_bool(a) == is_bool(b)) ||
|
||||
(is_num(a) && is_num(b) && abs(a-b) <= eps) ||
|
||||
(is_list(a) && is_list(b) && len(a) == len(b) && [] == [for (i=idx(a)) if (!approx(a[i],b[i],eps=eps)) 1]);
|
||||
a == b? is_bool(a) == is_bool(b) :
|
||||
is_num(a) && is_num(b)? abs(a-b) <= eps :
|
||||
is_list(a) && is_list(b) && len(a) == len(b)? (
|
||||
[] == [
|
||||
for (i=idx(a))
|
||||
let(aa=a[i], bb=b[i])
|
||||
if(
|
||||
is_num(aa) && is_num(bb)? abs(aa-bb) > eps :
|
||||
!approx(aa,bb,eps=eps)
|
||||
) 1
|
||||
]
|
||||
) : false;
|
||||
|
||||
|
||||
// Function: all_zero()
|
||||
|
@ -290,12 +301,12 @@ function compare_lists(a, b) =
|
|||
// idx = find_approx(val, list, [start=], [eps=]);
|
||||
// indices = find_approx(val, list, all=true, [start=], [eps=]);
|
||||
// Description:
|
||||
// Finds the first item in `list` that matches `val`, returning the index.
|
||||
// Finds the first item in `list` that matches `val`, returning the index. Returns `undef` if there is no match.
|
||||
// Arguments:
|
||||
// val = The value to search for. If given a function literal of signature `function (x)`, uses that function to check list items. Returns true for a match.
|
||||
// list = The list to search through.
|
||||
// ---
|
||||
// start = The index to start searching from.
|
||||
// start = The index to start searching from. Default: 0
|
||||
// all = If true, returns a list of all matching item indices.
|
||||
// eps = The maximum allowed floating point rounding error for numeric comparisons.
|
||||
function find_approx(val, list, start=0, all=false, eps=EPSILON) =
|
||||
|
@ -778,3 +789,4 @@ function list_smallest(list, k) =
|
|||
let( bigger = [for(li=list) if(li>v) li ] )
|
||||
concat(smaller, equal, list_smallest(bigger, k-len(smaller) -len(equal)));
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
|
252
geometry.scad
252
geometry.scad
|
@ -38,14 +38,10 @@ function _is_point_on_line(point, line, bounded=false, eps=EPSILON) =
|
|||
t = v0*v1/(v1*v1),
|
||||
bounded = force_list(bounded,2)
|
||||
)
|
||||
abs(cross(v0,v1))<eps*norm(v1)
|
||||
abs(cross(v0,v1))<=eps*norm(v1)
|
||||
&& (!bounded[0] || t>=-eps)
|
||||
&& (!bounded[1] || t<1+eps) ;
|
||||
|
||||
function xis_point_on_line(point, line, bounded=false, eps=EPSILON) =
|
||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||
point_line_distance(point, line, bounded)<eps;
|
||||
|
||||
|
||||
///Internal - distance from point `d` to the line passing through the origin with unit direction n
|
||||
///_dist2line works for any dimension
|
||||
|
@ -61,7 +57,68 @@ function _valid_line(line,dim,eps=EPSILON) =
|
|||
function _valid_plane(p, eps=EPSILON) = is_vector(p,4) && ! approx(norm(p),0,eps);
|
||||
|
||||
|
||||
/// Internal Function: point_left_of_line2d()
|
||||
/// Internal Function: _is_at_left()
|
||||
/// Usage:
|
||||
/// pt = point_left_of_line2d(point, line);
|
||||
/// Topics: Geometry, Points, Lines
|
||||
/// Description:
|
||||
/// Return true iff a 2d point is on or at left of the line defined by `line`.
|
||||
/// Arguments:
|
||||
/// pt = The 2d point to check position of.
|
||||
/// line = Array of two 2d points forming the line segment to test against.
|
||||
/// eps = Tolerance in the geometrical tests.
|
||||
function _is_at_left(pt,line,eps=EPSILON) = _tri_class([pt,line[0],line[1]],eps) <= 0;
|
||||
|
||||
|
||||
/// Internal Function: _degenerate_tri()
|
||||
/// Usage:
|
||||
/// degen = _degenerate_tri(triangle);
|
||||
/// Topics: Geometry, Triangles
|
||||
/// Description:
|
||||
/// Return true for a specific kind of degeneracy: any two triangle vertices are equal
|
||||
/// Arguments:
|
||||
/// tri = A list of three 2d points
|
||||
/// eps = Tolerance in the geometrical tests.
|
||||
function _degenerate_tri(tri,eps) =
|
||||
max(norm(tri[0]-tri[1]), norm(tri[1]-tri[2]), norm(tri[2]-tri[0])) < eps ;
|
||||
|
||||
|
||||
/// Internal Function: _tri_class()
|
||||
/// Usage:
|
||||
/// class = _tri_class(triangle);
|
||||
/// Topics: Geometry, Triangles
|
||||
/// Description:
|
||||
/// Return 1 if the triangle `tri` is CW.
|
||||
/// Return 0 if the triangle `tri` has colinear vertices.
|
||||
/// Return -1 if the triangle `tri` is CCW.
|
||||
/// Arguments:
|
||||
/// tri = A list of the three 2d vertices of a triangle.
|
||||
/// eps = Tolerance in the geometrical tests.
|
||||
function _tri_class(tri, eps=EPSILON) =
|
||||
let( crx = cross(tri[1]-tri[2],tri[0]-tri[2]) )
|
||||
abs( crx ) <= eps*norm(tri[1]-tri[2])*norm(tri[0]-tri[2]) ? 0 : sign( crx );
|
||||
|
||||
|
||||
/// Internal Function: _pt_in_tri()
|
||||
/// Usage:
|
||||
/// class = _pt_in_tri(point, tri);
|
||||
/// Topics: Geometry, Points, Triangles
|
||||
/// Description:
|
||||
// For CW triangles `tri` :
|
||||
/// return 1 if point is inside the triangle interior.
|
||||
/// return =0 if point is on the triangle border.
|
||||
/// return -1 if point is outside the triangle.
|
||||
/// Arguments:
|
||||
/// point = The point to check position of.
|
||||
/// tri = A list of the three 2d vertices of a triangle.
|
||||
/// eps = Tolerance in the geometrical tests.
|
||||
function _pt_in_tri(point, tri, eps=EPSILON) =
|
||||
min( _tri_class([tri[0],tri[1],point],eps),
|
||||
_tri_class([tri[1],tri[2],point],eps),
|
||||
_tri_class([tri[2],tri[0],point],eps) );
|
||||
|
||||
|
||||
/// Internal Function: _point_left_of_line2d()
|
||||
/// Usage:
|
||||
/// pt = point_left_of_line2d(point, line);
|
||||
/// Topics: Geometry, Points, Lines
|
||||
|
@ -72,10 +129,11 @@ function _valid_plane(p, eps=EPSILON) = is_vector(p,4) && ! approx(norm(p),0,eps
|
|||
/// Arguments:
|
||||
/// point = The point to check position of.
|
||||
/// line = Array of two points forming the line segment to test against.
|
||||
function _point_left_of_line2d(point, line) =
|
||||
function _point_left_of_line2d(point, line, eps=EPSILON) =
|
||||
assert( is_vector(point,2) && is_vector(line*point, 2), "Improper input." )
|
||||
cross(line[0]-point, line[1]-line[0]);
|
||||
|
||||
// cross(line[0]-point, line[1]-line[0]);
|
||||
_tri_class([point,line[1],line[0]],eps);
|
||||
|
||||
|
||||
// Function: is_collinear()
|
||||
// Usage:
|
||||
|
@ -1640,11 +1698,11 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
|
|||
|
||||
// Function: polygon_triangulate()
|
||||
// Usage:
|
||||
// triangles = polygon_triangulate(poly, [ind], [eps])
|
||||
// triangles = polygon_triangulate(poly, [ind], [error], [eps])
|
||||
// Description:
|
||||
// Given a simple polygon in 2D or 3D, triangulates it and returns a list
|
||||
// of triples indexing into the polygon vertices. When the optional argument `ind` is
|
||||
// given, it is used as an index list into `poly` to define the polygon. In that case,
|
||||
// given, it is used as an index list into `poly` to define the polygon vertices. In that case,
|
||||
// `poly` may have a length greater than `ind`. When `ind` is undefined, all points in `poly`
|
||||
// are considered as vertices of the polygon.
|
||||
// .
|
||||
|
@ -1653,46 +1711,50 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
|
|||
// vector with the same direction of the polygon normal.
|
||||
// .
|
||||
// The function produce correct triangulations for some non-twisted non-simple polygons.
|
||||
// A polygon is non-twisted iff it is simple or there is a partition of it in
|
||||
// simple polygons with the same winding. These polygons may have "touching" vertices
|
||||
// A polygon is non-twisted iff it is simple or it has a partition in
|
||||
// simple polygons with the same winding such that the intersection of any two partitions is
|
||||
// made of full edges and/or vertices of both partitions. These polygons may have "touching" vertices
|
||||
// (two vertices having the same coordinates, but distinct adjacencies) and "contact" edges
|
||||
// (edges whose vertex pairs have the same pairwise coordinates but are in reversed order) but has
|
||||
// no self-crossing. See examples bellow. If all polygon edges are contact edges,
|
||||
// it returns an empty list for 2d polygons and issues an error for 3d polygons.
|
||||
// no self-crossing. See examples bellow. If all polygon edges are contact edges (polygons with
|
||||
// zero area), it returns an empty list for 2d polygons and reports an error for 3d polygons.
|
||||
// Triangulation errors are reported either by an assert error (when `error=true`) or by returning
|
||||
// `undef` (when `error=false`). Invalid arguments always produce an assert error.
|
||||
// .
|
||||
// Self-crossing polygons have no consistent winding and usually produce an error but
|
||||
// when an error is not issued the outputs are not correct triangulations. The function
|
||||
// Twisted polygons have no consistent winding and when input to this function usually reports
|
||||
// an error but when an error is not reported the outputs are not correct triangulations. The function
|
||||
// can work for 3d non-planar polygons if they are close enough to planar but may otherwise
|
||||
// issue an error for this case.
|
||||
// report an error for this case.
|
||||
// Arguments:
|
||||
// poly = Array of vertices for the polygon.
|
||||
// poly = Array of the polygon vertices.
|
||||
// ind = A list indexing the vertices of the polygon in `poly`.
|
||||
// error = If false, returns `undef` when the polygon cannot be triangulated; otherwise, issues an assert error. Default: true.
|
||||
// eps = A maximum tolerance in geometrical tests. Default: EPSILON
|
||||
// Example(2D,NoAxes):
|
||||
// Example(2D,NoAxes): a simple polygon; see from above
|
||||
// poly = star(id=10, od=15,n=11);
|
||||
// tris = polygon_triangulate(poly);
|
||||
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
|
||||
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
|
||||
// color("magenta") up(2) stroke(poly,.25,closed=true);
|
||||
// color("black") up(3) vnf_debug([path3d(poly),[]],faces=false,size=1);
|
||||
// Example(2D,NoAxes): a polygon with a hole and one "contact" edge
|
||||
// Example(2D,NoAxes): a polygon with a hole and one "contact" edge; see from above
|
||||
// poly = [ [-10,0], [10,0], [0,10], [-10,0], [-4,4], [4,4], [0,2], [-4,4] ];
|
||||
// tris = polygon_triangulate(poly);
|
||||
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
|
||||
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
|
||||
// color("magenta") up(2) stroke(poly,.25,closed=true);
|
||||
// color("black") up(3) vnf_debug([path3d(poly),[]],faces=false,size=1);
|
||||
// Example(2D,NoAxes): a polygon with "touching" vertices and no holes
|
||||
// Example(2D,NoAxes): a polygon with "touching" vertices and no holes; see from above
|
||||
// poly = [ [0,0], [5,5], [-5,5], [0,0], [-5,-5], [5,-5] ];
|
||||
// tris = polygon_triangulate(poly);
|
||||
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
|
||||
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
|
||||
// color("magenta") up(2) stroke(poly,.25,closed=true);
|
||||
// color("black") up(3) vnf_debug([path3d(poly),[]],faces=false,size=1);
|
||||
// Example(2D,NoAxes): a polygon with "contact" edges and no holes
|
||||
// Example(2D,NoAxes): a polygon with "contact" edges and no holes; see from above
|
||||
// poly = [ [0,0], [10,0], [10,10], [0,10], [0,0], [3,3], [7,3],
|
||||
// [7,7], [7,3], [3,3] ];
|
||||
// tris = polygon_triangulate(poly); // see from the top
|
||||
// tris = polygon_triangulate(poly);
|
||||
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
|
||||
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
|
||||
// color("magenta") up(2) stroke(poly,.25,closed=true);
|
||||
|
@ -1704,102 +1766,122 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
|
|||
// vnf_tri = [vnf[0], [for(face=vnf[1]) each polygon_triangulate(vnf[0], face) ] ];
|
||||
// color("blue")
|
||||
// vnf_wireframe(vnf_tri, width=.15);
|
||||
function polygon_triangulate(poly, ind, eps=EPSILON) =
|
||||
function polygon_triangulate(poly, ind, error=true, eps=EPSILON) =
|
||||
assert(is_path(poly) && len(poly)>=3, "Polygon `poly` should be a list of at least three 2d or 3d points")
|
||||
assert(is_undef(ind)
|
||||
|| (is_vector(ind) && min(ind)>=0 && max(ind)<len(poly) ),
|
||||
assert(is_undef(ind) || (is_vector(ind) && min(ind)>=0 && max(ind)<len(poly) ),
|
||||
"Improper or out of bounds list of indices")
|
||||
let( ind = is_undef(ind) ? count(len(poly)) : ind )
|
||||
len(ind) <=2 ? [] :
|
||||
len(ind) == 3
|
||||
? _is_degenerate([poly[ind[0]], poly[ind[1]], poly[ind[2]]], eps) ? [] :
|
||||
? _degenerate_tri([poly[ind[0]], poly[ind[1]], poly[ind[2]]], eps) ? [] :
|
||||
// non zero area
|
||||
assert( norm(scalar_vec3(cross(poly[ind[1]]-poly[ind[0]], poly[ind[2]]-poly[ind[0]]))) > 2*eps,
|
||||
"The polygon vertices are collinear.")
|
||||
[ind]
|
||||
let( degen = norm(scalar_vec3(cross(poly[ind[1]]-poly[ind[0]], poly[ind[2]]-poly[ind[0]]))) < 2*eps )
|
||||
assert( ! error || ! degen, "The polygon vertices are collinear.")
|
||||
degen ? undef : [ind]
|
||||
: len(poly[ind[0]]) == 3
|
||||
? // represents the polygon projection on its plane as a 2d polygon
|
||||
? // find a representation of the polygon as a 2d polygon by projecting it on its own plane
|
||||
let(
|
||||
ind = deduplicate_indexed(poly, ind, eps)
|
||||
)
|
||||
len(ind)<3 ? [] :
|
||||
let(
|
||||
pts = select(poly,ind),
|
||||
nrm = polygon_normal(pts)
|
||||
nrm = -polygon_normal(pts)
|
||||
)
|
||||
assert( nrm!=undef,
|
||||
"The polygon has self-intersections or its vertices are collinear or non coplanar.")
|
||||
assert( ! error || (nrm != undef),
|
||||
"The polygon has self-intersections or zero area or its vertices are collinear or non coplanar.")
|
||||
nrm == undef ? undef :
|
||||
let(
|
||||
imax = max_index([for(p=pts) norm(p-pts[0]) ]),
|
||||
v1 = unit( pts[imax] - pts[0] ),
|
||||
v2 = cross(v1,nrm),
|
||||
prpts = pts*transpose([v1,v2])
|
||||
prpts = pts*transpose([v1,v2]) // the 2d projection of pts on the polygon plane
|
||||
)
|
||||
[for(tri=_triangulate(prpts, count(len(ind)), eps)) select(ind,tri) ]
|
||||
: let( cw = is_polygon_clockwise(select(poly, ind)) )
|
||||
cw
|
||||
? [for(tri=_triangulate( poly, reverse(ind), eps )) reverse(tri) ]
|
||||
: _triangulate( poly, ind, eps );
|
||||
let( tris = _triangulate(prpts, count(len(ind)), error, eps) )
|
||||
tris == undef ? undef :
|
||||
[for(tri=tris) select(ind,tri) ]
|
||||
: is_polygon_clockwise(select(poly, ind))
|
||||
? _triangulate( poly, ind, error, eps )
|
||||
: let( tris = _triangulate( poly, reverse(ind), error, eps ) )
|
||||
tris == undef ? undef :
|
||||
[for(tri=tris) reverse(tri) ];
|
||||
|
||||
|
||||
function _triangulate(poly, ind, eps=EPSILON, tris=[]) =
|
||||
// poly is supposed to be a 2d cw polygon
|
||||
// implements a modified version of ear cut method for non-twisted polygons
|
||||
// the polygons accepted by this function are those decomposable in simple
|
||||
// CW polygons.
|
||||
function _triangulate(poly, ind, error, eps=EPSILON, tris=[]) =
|
||||
len(ind)==3
|
||||
? _is_degenerate(select(poly,ind),eps)
|
||||
? tris // last 3 pts perform a degenerate triangle, ignore it
|
||||
? _degenerate_tri(select(poly,ind),eps)
|
||||
? tris // if last 3 pts perform a degenerate triangle, ignore it
|
||||
: concat(tris,[ind]) // otherwise, include it
|
||||
: let( ear = _get_ear(poly,ind,eps) )
|
||||
assert( ear!=undef,
|
||||
"The polygon has self-intersections or its vertices are collinear or non coplanar.")
|
||||
is_list(ear) // degenerate ear
|
||||
? _triangulate(poly, select(ind,ear[0]+2, ear[0]), eps, tris) // discard it
|
||||
assert( ! error || (ear != undef),
|
||||
"The polygon has twists or all its vertices are collinear or non coplanar.")
|
||||
ear == undef ? undef :
|
||||
is_list(ear) // is it a degenerate ear ?
|
||||
? len(ind) <= 4 ? tris :
|
||||
_triangulate(poly, select(ind,ear[0]+3, ear[0]), error, eps, tris) // discard it
|
||||
: let(
|
||||
ear_tri = select(ind,ear,ear+2),
|
||||
indr = select(ind,ear+2, ear) // remaining point indices
|
||||
indr = select(ind,ear+2, ear) // indices of the remaining path
|
||||
)
|
||||
_triangulate(poly, indr, eps, concat(tris,[ear_tri]));
|
||||
_triangulate(poly, indr, error, eps, concat(tris,[ear_tri]));
|
||||
|
||||
|
||||
// a returned ear will be:
|
||||
// 1. a CCW (non-degenerate) triangle, made of subsequent vertices, without other
|
||||
// points inside except possibly at its vertices
|
||||
// 1. a CW non-reflex triangle, made of subsequent poly vertices, without any other
|
||||
// poly points inside except possibly at its own vertices
|
||||
// 2. or a degenerate triangle where two vertices are coincident
|
||||
// the returned ear is specified by the index of `ind` of its first vertex
|
||||
function _get_ear(poly, ind, eps, _i=0) =
|
||||
_i>=len(ind) ? undef : // poly has no ears
|
||||
function _get_ear(poly, ind, eps, _i=0) =
|
||||
let( lind = len(ind) )
|
||||
lind==3 ? 0 :
|
||||
let( // the _i-th ear candidate
|
||||
p0 = poly[ind[_i]],
|
||||
p1 = poly[ind[(_i+1)%len(ind)]],
|
||||
p2 = poly[ind[(_i+2)%len(ind)]]
|
||||
p1 = poly[ind[(_i+1)%lind]],
|
||||
p2 = poly[ind[(_i+2)%lind]]
|
||||
)
|
||||
// degenerate triangles are returned codified
|
||||
_is_degenerate([p0,p1,p2],eps) ? [_i] :
|
||||
// if it is not a convex vertex, check the next one
|
||||
_is_cw2(p0,p1,p2,eps) ? _get_ear(poly,ind,eps, _i=_i+1) :
|
||||
let( // vertex p1 is convex
|
||||
// check if the triangle contains any other point
|
||||
// except possibly its own vertices
|
||||
to_tst = select(ind,_i+3, _i-1),
|
||||
q = [(p0-p2).y, (p2-p0).x], // orthogonal to ray [p0,p2] pointing right
|
||||
r = [(p2-p1).y, (p1-p2).x], // orthogonal to ray [p2,p1] pointing right
|
||||
s = [(p1-p0).y, (p0-p1).x], // orthogonal to ray [p1,p0] pointing right
|
||||
inside = [for(p=select(poly,to_tst)) // for vertices other than p0, p1 and p2
|
||||
if( (p-p0)*q<=0 && (p-p2)*r<=0 && (p-p1)*s<=0 // p is on the triangle
|
||||
&& norm(p-p0)>eps // but not on any vertex of it
|
||||
&& norm(p-p1)>eps
|
||||
&& norm(p-p2)>eps )
|
||||
p ]
|
||||
// if vertex p1 is a convex candidate to be an ear,
|
||||
// check if the triangle [p0,p1,p2] contains any other point
|
||||
// except possibly p0 and p2
|
||||
// exclude the ear candidate central vertex p1 from the verts to check
|
||||
_tri_class([p0,p1,p2],eps) > 0
|
||||
&& _none_inside(select(ind,_i+2, _i),poly,p0,p1,p2,eps) ? _i : // found an ear
|
||||
// otherwise check the next ear candidate
|
||||
_i<lind-1 ? _get_ear(poly, ind, eps, _i=_i+1) :
|
||||
// poly has no ears, look for wiskers
|
||||
let( wiskers = [for(j=idx(ind)) if(norm(poly[ind[j]]-poly[ind[(j+2)%lind]])<eps) j ] )
|
||||
wiskers==[] ? undef : [wiskers[0]];
|
||||
|
||||
|
||||
|
||||
// returns false ASA it finds some reflex vertex of poly[idxs[.]]
|
||||
// inside the triangle different from p0 and p2
|
||||
// note: to simplify the expressions it is assumed that the input polygon has no twists
|
||||
function _none_inside(idxs,poly,p0,p1,p2,eps,i=0) =
|
||||
i>=len(idxs) ? true :
|
||||
let(
|
||||
vert = poly[idxs[i]],
|
||||
prev_vert = poly[select(idxs,i-1)],
|
||||
next_vert = poly[select(idxs,i+1)]
|
||||
)
|
||||
inside==[] ? _i : // found an ear
|
||||
// check the next ear candidate
|
||||
_get_ear(poly, ind, eps, _i=_i+1);
|
||||
|
||||
|
||||
// true for some specific kinds of degeneracy
|
||||
function _is_degenerate(tri,eps) =
|
||||
norm(tri[0]-tri[1])<eps || norm(tri[1]-tri[2])<eps || norm(tri[2]-tri[0])<eps ;
|
||||
|
||||
|
||||
function _is_cw2(a,b,c,eps=EPSILON) = cross(a-c,b-c)<eps*norm(a-c)*norm(b-c);
|
||||
|
||||
// check if vert prevent [p0,p1,p2] to be an ear
|
||||
// this conditions might have a simpler expression
|
||||
_tri_class([prev_vert, vert, next_vert],eps) <= 0 // reflex condition
|
||||
&& ( // vert is a cw reflex poly vertex inside the triangle [p0,p1,p2]
|
||||
( _tri_class([p0,p1,vert],eps)>0 &&
|
||||
_tri_class([p1,p2,vert],eps)>0 &&
|
||||
_tri_class([p2,p0,vert],eps)>=0 )
|
||||
// or it is equal to p1 and some of its adjacent edges cross the open segment (p0,p2)
|
||||
|| ( norm(vert-p1) < eps
|
||||
&& _is_at_left(p0,[prev_vert,p1],eps) && _is_at_left(p2,[p1,prev_vert],eps)
|
||||
&& _is_at_left(p2,[p1,next_vert],eps) && _is_at_left(p0,[next_vert,p1],eps)
|
||||
)
|
||||
)
|
||||
? false
|
||||
: _none_inside(idxs,poly,p0,p1,p2,eps,i=i+1);
|
||||
|
||||
|
||||
// Function: is_polygon_clockwise()
|
||||
|
|
|
@ -230,14 +230,15 @@ function select(list, start, end) =
|
|||
: end==undef
|
||||
? is_num(start)
|
||||
? list[ (start%l+l)%l ]
|
||||
: assert( is_list(start) || is_range(start), "Invalid start parameter")
|
||||
: assert( start==[] || is_vector(start) || is_range(start), "Invalid start parameter")
|
||||
[for (i=start) list[ (i%l+l)%l ] ]
|
||||
: assert(is_finite(start), "When `end` is given, `start` parameter should be a number.")
|
||||
assert(is_finite(end), "Invalid end parameter.")
|
||||
let( s = (start%l+l)%l, e = (end%l+l)%l )
|
||||
(s <= e)
|
||||
? [for (i = [s:1:e]) list[i]]
|
||||
: concat([for (i = [s:1:l-1]) list[i]], [for (i = [0:1:e]) list[i]]) ;
|
||||
? [ for (i = [s:1:e]) list[i] ]
|
||||
: [ for (i = [s:1:l-1]) list[i],
|
||||
for (i = [0:1:e]) list[i] ] ;
|
||||
|
||||
|
||||
// Function: slice()
|
||||
|
|
|
@ -278,9 +278,8 @@ function _path_self_intersections(path, closed=true, eps=EPSILON) =
|
|||
// signs at its two vertices can have an intersection with segment
|
||||
// [a1,a2]. The variable signals is zero when abs(vals[j]-ref) is less than
|
||||
// eps and the sign of vals[j]-ref otherwise.
|
||||
signals = [for(j=[i+2:1:plen-(i==0 && closed? 2: 1)]) vals[j]-ref > eps ? 1
|
||||
: vals[j]-ref < -eps ? -1
|
||||
: 0]
|
||||
signals = [for(j=[i+2:1:plen-(i==0 && closed? 2: 1)])
|
||||
abs(vals[j]-ref) < eps ? 0 : sign(vals[j]-ref) ]
|
||||
)
|
||||
if(max(signals)>=0 && min(signals)<=0 ) // some remaining edge intersects line [a1,a2]
|
||||
for(j=[i+2:1:plen-(i==0 && closed? 3: 2)])
|
||||
|
|
|
@ -427,9 +427,9 @@ function _region_region_intersections(region1, region2, closed1=true,closed2=tru
|
|||
for(p2=idx(region2))
|
||||
let(
|
||||
poly = closed2?close_path(region2[p2]):region2[p2],
|
||||
signs = [for(v=poly*seg_normal) v-ref> eps ? 1 : v-ref<-eps ? -1 : 0]
|
||||
signs = [for(v=poly*seg_normal) abs(v-ref) < eps ? 0 : sign(v-ref) ]
|
||||
)
|
||||
if(max(signs)>=0 && min(signs)<=0) // some edge edge intersects line [a1,a2]
|
||||
if(max(signs)>=0 && min(signs)<=0) // some edge intersects line [a1,a2]
|
||||
for(j=[0:1:len(poly)-2])
|
||||
if(signs[j]!=signs[j+1])
|
||||
let( // exclude non-crossing and collinear segments
|
||||
|
|
32
tests/test_all.scad
Normal file
32
tests/test_all.scad
Normal file
|
@ -0,0 +1,32 @@
|
|||
include <test_affine.scad>
|
||||
include <test_attachments.scad>
|
||||
include <test_comparisons.scad>
|
||||
include <test_coords.scad>
|
||||
include <test_cubetruss.scad>
|
||||
include <test_distributors.scad>
|
||||
include <test_drawing.scad>
|
||||
include <test_edges.scad>
|
||||
include <test_fnliterals.scad>
|
||||
include <test_geometry.scad>
|
||||
include <test_hull.scad>
|
||||
include <test_linalg.scad>
|
||||
include <test_linear_bearings.scad>
|
||||
include <test_lists.scad>
|
||||
include <test_math.scad>
|
||||
include <test_mutators.scad>
|
||||
include <test_paths.scad>
|
||||
include <test_quaternions.scad>
|
||||
include <test_regions.scad>
|
||||
include <test_rounding.scad>
|
||||
include <test_screw_drive.scad>
|
||||
include <test_shapes2d.scad>
|
||||
include <test_shapes3d.scad>
|
||||
include <test_skin.scad>
|
||||
include <test_strings.scad>
|
||||
include <test_structs.scad>
|
||||
include <test_transforms.scad>
|
||||
include <test_trigonometry.scad>
|
||||
include <test_utility.scad>
|
||||
include <test_vectors.scad>
|
||||
include <test_version.scad>
|
||||
include <test_vnf.scad>
|
|
@ -85,14 +85,14 @@ module test_polygon_triangulate() {
|
|||
poly1 = [ [-10,0,-10], [10,0,10], [0,10,0], [-10,0,-10], [-4,4,-4], [4,4,4], [0,2,0], [-4,4,-4] ];
|
||||
poly2 = [ [0,0], [5,5], [-5,5], [0,0], [-5,-5], [5,-5] ];
|
||||
poly3 = [ [0,0], [10,0], [10,10], [10,13], [10,10], [0,10], [0,0], [3,3], [7,3], [7,7], [7,3], [3,3] ];
|
||||
tris0 = sort(polygon_triangulate(poly0));
|
||||
tris0 = (polygon_triangulate(poly0));
|
||||
assert(approx(tris0, [[0, 1, 2]]));
|
||||
tris1 = (polygon_triangulate(poly1));
|
||||
assert(approx(tris1,( [[2, 3, 4], [6, 7, 0], [2, 4, 5], [6, 0, 1], [1, 2, 5], [5, 6, 1]])));
|
||||
assert(approx(tris1,( [[2, 3, 4], [6, 7, 0], [2, 4, 5], [6, 0, 1], [1, 2, 5], [5, 6, 1]])));
|
||||
tris2 = (polygon_triangulate(poly2));
|
||||
assert(approx(tris2,([[0, 1, 2], [3, 4, 5]])));
|
||||
assert(approx(tris2,( [[3, 4, 5], [1, 2, 3]])));
|
||||
tris3 = (polygon_triangulate(poly3));
|
||||
assert(approx(tris3,( [[5, 6, 7], [7, 8, 9], [10, 11, 0], [5, 7, 9], [10, 0, 1], [4, 5, 9], [9, 10, 1], [1, 4, 9]])));
|
||||
assert(approx(tris3,( [[5, 6, 7], [11, 0, 1], [5, 7, 8], [10, 11, 1], [5, 8, 9], [10, 1, 2], [4, 5, 9], [9, 10, 2]])));
|
||||
}
|
||||
|
||||
module test__normalize_plane(){
|
||||
|
|
|
@ -491,12 +491,11 @@ function _bt_tree(points, ind, leafsize=25) =
|
|||
bounds = pointlist_bounds(select(points,ind)),
|
||||
coord = max_index(bounds[1]-bounds[0]),
|
||||
projc = [for(i=ind) points[i][coord] ],
|
||||
pmc = mean(projc),
|
||||
pivot = min_index([for(p=projc) abs(p-pmc)]),
|
||||
meanpr = mean(projc),
|
||||
pivot = min_index([for(p=projc) abs(p-meanpr)]),
|
||||
radius = max([for(i=ind) norm(points[ind[pivot]]-points[i]) ]),
|
||||
median = median(projc),
|
||||
Lind = [for(i=idx(ind)) if(projc[i]<=median && i!=pivot) ind[i] ],
|
||||
Rind = [for(i=idx(ind)) if(projc[i] >median && i!=pivot) ind[i] ]
|
||||
Lind = [for(i=idx(ind)) if(projc[i]<=meanpr && i!=pivot) ind[i] ],
|
||||
Rind = [for(i=idx(ind)) if(projc[i] >meanpr && i!=pivot) ind[i] ]
|
||||
)
|
||||
[ ind[pivot], radius, _bt_tree(points, Lind, leafsize), _bt_tree(points, Rind, leafsize) ];
|
||||
|
||||
|
|
172
vnf.scad
172
vnf.scad
|
@ -318,14 +318,13 @@ function vnf_merge(vnfs, cleanup=false, eps=EPSILON) =
|
|||
cleanup? _vnf_cleanup(verts,faces,eps) : [verts,faces];
|
||||
|
||||
|
||||
|
||||
function _vnf_cleanup(verts,faces,eps) =
|
||||
let(
|
||||
dedup = vector_search(verts,eps,verts), // collect vertex duplicates
|
||||
map = [for(i=idx(verts)) min(dedup[i]) ], // remap duplic vertices
|
||||
offset = cumsum([for(i=idx(verts)) map[i]==i ? 0 : 1 ]), // remaping face vertex offsets
|
||||
map2 = list(idx(verts))-offset, // map old vertex indices to new indices
|
||||
nverts = [for(i=idx(verts)) if(map[i]==i) verts[i] ], // eliminates all unreferenced vertices
|
||||
nverts = [for(i=idx(verts)) if(map[i]==i) verts[i] ], // this doesn't eliminate unreferenced vertices
|
||||
nfaces =
|
||||
[ for(face=faces)
|
||||
let(
|
||||
|
@ -385,35 +384,124 @@ function _join_paths_at_vertices(path1,path2,v1,v2) =
|
|||
];
|
||||
|
||||
|
||||
// Given a region that is connected and has its outer border in region[0],
|
||||
// produces a polygon with the same points that has overlapping connected paths
|
||||
// to join internal holes to the outer border. Output is a single path.
|
||||
function _cleave_connected_region(region) =
|
||||
len(region)==0? [] :
|
||||
len(region)<=1? clockwise_polygon(region[0]) :
|
||||
let(
|
||||
dists = [
|
||||
for (i=[1:1:len(region)-1])
|
||||
_path_path_closest_vertices(region[0],region[i])
|
||||
],
|
||||
idxi = min_index(column(dists,0)),
|
||||
newoline = _join_paths_at_vertices(
|
||||
region[0], region[idxi+1],
|
||||
dists[idxi][1], dists[idxi][2]
|
||||
)
|
||||
) len(region)==2? clockwise_polygon(newoline) :
|
||||
let(
|
||||
orgn = [
|
||||
newoline,
|
||||
for (i=idx(region))
|
||||
if (i>0 && i!=idxi+1)
|
||||
region[i]
|
||||
]
|
||||
)
|
||||
assert(len(orgn)<len(region))
|
||||
_cleave_connected_region(orgn);
|
||||
/// Internal Function: _cleave_connected_region(region, eps)
|
||||
/// Description:
|
||||
/// Given a region that is connected and has its outer border in region[0],
|
||||
/// produces a overlapping connected path to join internal holes to
|
||||
/// the outer border without adding points. Output is a single non-simple polygon.
|
||||
/// Requirements:
|
||||
/// It expects that all region paths be simple closed paths, with region[0] CW and
|
||||
/// the other paths CCW and encircled by region[0]. The input region paths are also
|
||||
/// supposed to be disjoint except for common vertices and common edges but with
|
||||
/// no crossings. It may return `undef` if these conditions are not met.
|
||||
/// This function implements an extension of the algorithm discussed in:
|
||||
/// https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
|
||||
function _cleave_connected_region(region, eps=EPSILON) =
|
||||
len(region)==1 ? region[0] :
|
||||
let(
|
||||
outer = deduplicate(region[0]), //
|
||||
holes = [for(i=[1:1:len(region)-1]) // deduplication possibly unneeded
|
||||
deduplicate( region[i] ) ], //
|
||||
extridx = [for(li=holes) max_index(column(li,0)) ],
|
||||
// the right extreme vertex for each hole sorted by decreasing x values
|
||||
extremes = sort( [for(i=idx(holes)) [ i, extridx[i], -holes[i][extridx[i]].x] ], idx=2 )
|
||||
)
|
||||
_polyHoles(outer, holes, extremes, eps, 0);
|
||||
|
||||
|
||||
// connect the hole paths one at a time to the outer path.
|
||||
// 'extremes' is the list of the right extreme vertex of each hole sorted by decreasing abscissas
|
||||
// see: _cleave_connected_region(region, eps)
|
||||
function _polyHoles(outer, holes, extremes, eps=EPSILON, n=0) =
|
||||
let(
|
||||
extr = extremes[n], //
|
||||
hole = holes[extr[0]], // hole path to bridge to the outer path
|
||||
ipt = extr[1], // index of the hole point with maximum abscissa
|
||||
brdg = _bridge(hole[ipt], outer, eps) // the index of a point in outer to bridge hole[ipt] to
|
||||
)
|
||||
brdg == undef ? undef :
|
||||
let(
|
||||
l = len(outer),
|
||||
lh = len(hole),
|
||||
// the new outer polygon bridging the hole to the old outer
|
||||
npoly =
|
||||
approx(outer[brdg], hole[ipt], eps)
|
||||
? [ for(i=[brdg: 1: brdg+l]) outer[i%l] ,
|
||||
for(i=[ipt+1: 1: ipt+lh-1]) hole[i%lh] ]
|
||||
: [ for(i=[brdg: 1: brdg+l]) outer[i%l] ,
|
||||
for(i=[ipt: 1: ipt+lh]) hole[i%lh] ]
|
||||
)
|
||||
n==len(holes)-1 ? npoly :
|
||||
_polyHoles(npoly, holes, extremes, eps, n+1);
|
||||
|
||||
// find a point in outer to be connected to pt in the interior of outer
|
||||
// by a segment that not cross or touch any non adjacente edge of outer.
|
||||
// return the index of a vertex in the outer path where the bridge should end
|
||||
// see _polyHoles(outer, holes, extremes, eps)
|
||||
function _bridge(pt, outer,eps) =
|
||||
// find the intersection of a ray from pt to the right
|
||||
// with the boundary of the outer cycle
|
||||
let(
|
||||
l = len(outer),
|
||||
crxs =
|
||||
let( edges = pair(outer,wrap=true) )
|
||||
[for( i = idx(edges) )
|
||||
let( edge = edges[i] )
|
||||
// consider just descending outer edges at right of pt crossing ordinate pt.y
|
||||
if( (edge[0].y > pt.y+eps)
|
||||
&& (edge[1].y <= pt.y)
|
||||
&& _is_at_left(pt, [edge[1], edge[0]], eps) )
|
||||
[ i,
|
||||
// the point of edge with ordinate pt.y
|
||||
abs(pt.y-edge[1].y)<eps ? edge[1] :
|
||||
let( u = (pt-edge[1]).y / (edge[0]-edge[1]).y )
|
||||
(1-u)*edge[1] + u*edge[0]
|
||||
]
|
||||
]
|
||||
)
|
||||
crxs == [] ? undef :
|
||||
let(
|
||||
// the intersection point of the nearest edge to pt with minimum slope
|
||||
minX = min([for(p=crxs) p[1].x]),
|
||||
crxcand = [for(crx=crxs) if(crx[1].x < minX+eps) crx ], // nearest edges
|
||||
nearest = min_index([for(crx=crxcand)
|
||||
(outer[crx[0]].x - pt.x) / (outer[crx[0]].y - pt.y) ]), // minimum slope
|
||||
proj = crxcand[nearest],
|
||||
vert0 = outer[proj[0]], // the two vertices of the nearest crossing edge
|
||||
vert1 = outer[(proj[0]+1)%l],
|
||||
isect = proj[1] // the intersection point
|
||||
)
|
||||
norm(pt-vert1) < eps ? (proj[0]+1)%l : // if pt touches an outer vertex, return its index
|
||||
// as vert0.y > pt.y then pt!=vert0
|
||||
norm(pt-isect) < eps ? undef : // if pt touches the middle of an outer edge -> error
|
||||
let(
|
||||
// the edge [vert0, vert1] necessarily satisfies vert0.y > vert1.y
|
||||
// indices of candidates to an outer bridge point
|
||||
cand =
|
||||
(vert0.x > pt.x)
|
||||
? [ proj[0],
|
||||
// select reflex vertices inside of the triangle [pt, vert0, isect]
|
||||
for(i=idx(outer))
|
||||
if( _tri_class(select(outer,i-1,i+1),eps) <= 0
|
||||
&& _pt_in_tri(outer[i], [pt, vert0, isect], eps)>=0 )
|
||||
i
|
||||
]
|
||||
: [ (proj[0]+1)%l,
|
||||
// select reflex vertices inside of the triangle [pt, isect, vert1]
|
||||
for(i=idx(outer))
|
||||
if( _tri_class(select(outer,i-1,i+1),eps) <= 0
|
||||
&& _pt_in_tri(outer[i], [pt, isect, vert1], eps)>=0 )
|
||||
i
|
||||
],
|
||||
// choose the candidate outer[i] such that the line [pt, outer[i]] has minimum slope
|
||||
// among those with minimum slope choose the nearest to pt
|
||||
slopes = [for(i=cand) 1-abs(outer[i].x-pt.x)/norm(outer[i]-pt) ],
|
||||
min_slp = min(slopes),
|
||||
cand2 = [for(i=idx(cand)) if(slopes[i]<=min_slp+eps) cand[i] ],
|
||||
nearest = min_index([for(i=cand2) norm(pt-outer[i]) ])
|
||||
)
|
||||
cand2[nearest];
|
||||
|
||||
|
||||
// Function: vnf_from_region()
|
||||
// Usage:
|
||||
|
@ -436,13 +524,15 @@ function _cleave_connected_region(region) =
|
|||
function vnf_from_region(region, transform, reverse=false) =
|
||||
let (
|
||||
regions = region_parts(force_region(region)),
|
||||
vnfs = [
|
||||
for (rgn = regions) let(
|
||||
cleaved = path3d(_cleave_connected_region(rgn)),
|
||||
face = is_undef(transform)? cleaved : apply(transform,cleaved),
|
||||
faceidxs = reverse? [for (i=[len(face)-1:-1:0]) i] : [for (i=[0:1:len(face)-1]) i]
|
||||
) [face, [faceidxs]]
|
||||
],
|
||||
vnfs =
|
||||
[ for (rgn = regions)
|
||||
let( cleaved = path3d(_cleave_connected_region(rgn)) )
|
||||
assert( cleaved, "The region is invalid")
|
||||
let(
|
||||
face = is_undef(transform)? cleaved : apply(transform,cleaved),
|
||||
faceidxs = reverse? [for (i=[len(face)-1:-1:0]) i] : [for (i=[0:1:len(face)-1]) i]
|
||||
) [face, [faceidxs]]
|
||||
],
|
||||
outvnf = vnf_merge(vnfs)
|
||||
)
|
||||
vnf_triangulate(outvnf);
|
||||
|
@ -550,9 +640,13 @@ function _link_indicator(l,imin,imax) =
|
|||
function vnf_triangulate(vnf) =
|
||||
let(
|
||||
verts = vnf[0],
|
||||
faces = [for (face=vnf[1]) each len(face)==3 ? [face] :
|
||||
polygon_triangulate(verts, face)]
|
||||
) [verts, faces];
|
||||
faces = [for (face=vnf[1])
|
||||
each (len(face)==3 ? [face] :
|
||||
let( tris = polygon_triangulate(verts, face) )
|
||||
assert( tris!=undef, "Some `vnf` face cannot be triangulated.")
|
||||
tris ) ]
|
||||
)
|
||||
[verts, faces];
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue