mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
commit
4404dfde45
3 changed files with 200 additions and 32 deletions
|
@ -140,7 +140,7 @@ function _point_left_of_line2d(point, line, eps=EPSILON) =
|
|||
|
||||
// Function: is_collinear()
|
||||
// Usage:
|
||||
// test = is_collinear(a, [b, c], [eps]);
|
||||
// bool = is_collinear(a, [b, c], [eps]);
|
||||
// Topics: Geometry, Points, Collinearity
|
||||
// Description:
|
||||
// Returns true if the points `a`, `b` and `c` are co-linear or if the list of points `a` is collinear.
|
||||
|
@ -161,7 +161,7 @@ function is_collinear(a, b, c, eps=EPSILON) =
|
|||
|
||||
// Function: point_line_distance()
|
||||
// Usage:
|
||||
// pt = point_line_distance(line, pt, bounded);
|
||||
// dist = point_line_distance(line, pt, [bounded]);
|
||||
// Topics: Geometry, Points, Lines, Distance
|
||||
// Description:
|
||||
// Finds the shortest distance from the point `pt` to the specified line, segment or ray.
|
||||
|
@ -421,7 +421,7 @@ function line_from_points(points, fast=false, eps=EPSILON) =
|
|||
|
||||
// Function: is_coplanar()
|
||||
// Usage:
|
||||
// test = is_coplanar(points,[eps]);
|
||||
// bool = is_coplanar(points,[eps]);
|
||||
// Topics: Geometry, Coplanarity
|
||||
// Description:
|
||||
// Returns true if the given 3D points are non-collinear and are on a plane.
|
||||
|
@ -765,6 +765,7 @@ function plane_line_angle(plane, line) =
|
|||
// Given a plane definition `[A,B,C,D]`, where `Ax+By+Cz=D`, and a list of 2d or
|
||||
// 3d points, return the closest 3D orthogonal projection of the points on the plane.
|
||||
// In other words, for every point given, returns the closest point to it on the plane.
|
||||
// If points is a single point then returns a single point result.
|
||||
// Arguments:
|
||||
// plane = The `[A,B,C,D]` plane definition where `Ax+By+Cz=D` is the formula of the plane.
|
||||
// points = List of points to project
|
||||
|
@ -824,7 +825,7 @@ function _pointlist_greatest_distance(points,plane) =
|
|||
|
||||
// Function: are_points_on_plane()
|
||||
// Usage:
|
||||
// test = are_points_on_plane(points, plane, [eps]);
|
||||
// bool = are_points_on_plane(points, plane, [eps]);
|
||||
// Topics: Geometry, Planes, Points
|
||||
// Description:
|
||||
// Returns true if the given 3D points are on the given plane.
|
||||
|
@ -841,7 +842,7 @@ function are_points_on_plane(points, plane, eps=EPSILON) =
|
|||
|
||||
/// Internal Function: is_point_above_plane()
|
||||
/// Usage:
|
||||
/// test = _is_point_above_plane(plane, point);
|
||||
/// bool = _is_point_above_plane(plane, point);
|
||||
/// Topics: Geometry, Planes
|
||||
// Description:
|
||||
/// Given a plane as [A,B,C,D] where the cartesian equation for that plane
|
||||
|
@ -860,7 +861,7 @@ function _is_point_above_plane(plane, point) =
|
|||
|
||||
// Function: circle_line_intersection()
|
||||
// Usage:
|
||||
// isect = circle_line_intersection(c,<r|d>,[line],[bounded],[eps]);
|
||||
// isect = circle_line_intersection(c, r|d=, line, [bounded], [eps=]);
|
||||
// Topics: Geometry, Circles, Lines, Intersection
|
||||
// Description:
|
||||
// Find intersection points between a 2d circle and a line, ray or segment specified by two points.
|
||||
|
@ -903,7 +904,7 @@ function _circle_or_sphere_line_intersection(c,r,line,bounded=false,d,eps=EPSILO
|
|||
|
||||
// Function: circle_circle_intersection()
|
||||
// Usage:
|
||||
// pts = circle_circle_tangents(c1, r1|d1, c2, r2|d2, [eps]);
|
||||
// pts = circle_circle_tangents(c1, r1|d1=, c2, r2|d2=, [eps]);
|
||||
// Topics: Geometry, Circles
|
||||
// Description:
|
||||
// Compute the intersection points of two circles. Returns a list of the intersection points, which
|
||||
|
@ -969,10 +970,10 @@ function circle_circle_intersection(c1,r1,c2,r2,eps=EPSILON,d1,d2) =
|
|||
|
||||
// Function&Module: circle_2tangents()
|
||||
// Usage: As Function
|
||||
// circ = circle_2tangents(pt1, pt2, pt3, r|d, [tangents]);
|
||||
// circ = circle_2tangents(pt1, pt2, pt3, r|d=, [tangents=]);
|
||||
// Topics: Geometry, Circles, Tangents
|
||||
// Usage: As Module
|
||||
// circle_2tangents(pt1, pt2, pt3, r|d, [h], [center]);
|
||||
// circle_2tangents(pt1, pt2, pt3, r|d=, [h=], [center=]);
|
||||
// Description:
|
||||
// Given a pair of rays with a common origin, and a known circle radius/diameter, finds
|
||||
// the centerpoint for the circle of that size that touches both rays tangentally.
|
||||
|
@ -998,6 +999,7 @@ function circle_circle_intersection(c1,r1,c2,r2,eps=EPSILON,d1,d2) =
|
|||
// pt2 = The starting point of both rays.
|
||||
// pt3 = A point that the second ray passes though.
|
||||
// r = The radius of the circle to find.
|
||||
// ---
|
||||
// d = The diameter of the circle to find.
|
||||
// h = Height of the cylinder to create, when called as a module.
|
||||
// center = When called as a module, center the cylinder if true, Default: false
|
||||
|
@ -1063,6 +1065,7 @@ function circle_2tangents(pt1, pt2, pt3, r, d, tangents=false) =
|
|||
|
||||
|
||||
module circle_2tangents(pt1, pt2, pt3, r, d, h, center=false) {
|
||||
no_children($children);
|
||||
c = circle_2tangents(pt1=pt1, pt2=pt2, pt3=pt3, r=r, d=d);
|
||||
assert(!is_undef(c), "Cannot find circle when both rays are collinear.");
|
||||
cp = c[0]; n = c[1];
|
||||
|
@ -1147,6 +1150,7 @@ function circle_3points(pt1, pt2, pt3) =
|
|||
|
||||
|
||||
module circle_3points(pt1, pt2, pt3, h, center=false) {
|
||||
no_children($children);
|
||||
c = circle_3points(pt1, pt2, pt3);
|
||||
assert(!is_undef(c[0]), "Points cannot be collinear.");
|
||||
cp = c[0]; r = c[1]; n = c[2];
|
||||
|
@ -1161,16 +1165,17 @@ module circle_3points(pt1, pt2, pt3, h, center=false) {
|
|||
|
||||
// Function: circle_point_tangents()
|
||||
// Usage:
|
||||
// tangents = circle_point_tangents(r|d, cp, pt);
|
||||
// tangents = circle_point_tangents(r|d=, cp, pt);
|
||||
// Topics: Geometry, Circles, Tangents
|
||||
// Description:
|
||||
// Given a 2d circle and a 2d point outside that circle, finds the 2d tangent point(s) on the circle for a
|
||||
// line passing through the point. Returns a list of zero or more 2D tangent points.
|
||||
// Arguments:
|
||||
// r = Radius of the circle.
|
||||
// d = Diameter of the circle.
|
||||
// cp = The coordinates of the 2d circle centerpoint.
|
||||
// pt = The coordinates of the 2d external point.
|
||||
// ---
|
||||
// d = Diameter of the circle.
|
||||
// Example(3D):
|
||||
// cp = [-10,-10]; r = 30; pt = [30,10];
|
||||
// tanpts = circle_point_tangents(r=r, cp=cp, pt=pt);
|
||||
|
@ -1178,7 +1183,7 @@ module circle_3points(pt1, pt2, pt3, h, center=false) {
|
|||
// color("cyan") for(tp=tanpts) {stroke([tp,pt]); stroke([tp,cp]);}
|
||||
// color("red") move_copies(tanpts) circle(d=3,$fn=12);
|
||||
// color("blue") move_copies([cp,pt]) circle(d=3,$fn=12);
|
||||
function circle_point_tangents(r, d, cp, pt) =
|
||||
function circle_point_tangents(r, cp, pt, d) =
|
||||
assert(is_finite(r) || is_finite(d), "Invalid radius or diameter." )
|
||||
assert(is_path([cp, pt],dim=2), "Invalid center point or external point.")
|
||||
let(
|
||||
|
@ -1196,7 +1201,7 @@ function circle_point_tangents(r, d, cp, pt) =
|
|||
|
||||
// Function: circle_circle_tangents()
|
||||
// Usage:
|
||||
// segs = circle_circle_tangents(c1, r1|d1, c2, r2|d2);
|
||||
// segs = circle_circle_tangents(c1, r1|d1=, c2, r2|d2=);
|
||||
// Topics: Geometry, Circles, Tangents
|
||||
// Description:
|
||||
// Computes 2d lines tangents to a pair of circles in 2d. Returns a list of line endpoints [p1,p2] where
|
||||
|
@ -1281,7 +1286,7 @@ function circle_circle_tangents(c1,r1,c2,r2,d1,d2) =
|
|||
|
||||
/// Internal Function: _noncollinear_triple()
|
||||
/// Usage:
|
||||
/// test = _noncollinear_triple(points);
|
||||
/// bool = _noncollinear_triple(points);
|
||||
/// Topics: Geometry, Noncollinearity
|
||||
/// Description:
|
||||
/// Finds the indices of three non-collinear points from the pointlist `points`.
|
||||
|
@ -1319,11 +1324,9 @@ function _noncollinear_triple(points,error=true,eps=EPSILON) =
|
|||
// Section: Sphere Calculations
|
||||
|
||||
|
||||
|
||||
|
||||
// Function: sphere_line_intersection()
|
||||
// Usage:
|
||||
// isect = sphere_line_intersection(c,<r|d>,[line],[bounded],[eps]);
|
||||
// isect = sphere_line_intersection(c,r|d=,line,[bounded],[eps=]);
|
||||
// Topics: Geometry, Spheres, Lines, Intersection
|
||||
// Description:
|
||||
// Find intersection points between a sphere and a line, ray or segment specified by two points.
|
||||
|
@ -1348,7 +1351,7 @@ function sphere_line_intersection(c,r,line,bounded=false,d,eps=EPSILON) =
|
|||
|
||||
// Function: polygon_area()
|
||||
// Usage:
|
||||
// area = polygon_area(poly);
|
||||
// area = polygon_area(poly, [signed]);
|
||||
// Topics: Geometry, Polygons, Area
|
||||
// Description:
|
||||
// Given a 2D or 3D simple planar polygon, returns the area of that polygon.
|
||||
|
@ -1474,7 +1477,7 @@ function polygon_normal(poly) =
|
|||
|
||||
// Function: point_in_polygon()
|
||||
// Usage:
|
||||
// test = point_in_polygon(point, poly, [nonzero], [eps])
|
||||
// bool = point_in_polygon(point, poly, [nonzero], [eps])
|
||||
// Topics: Geometry, Polygons
|
||||
// Description:
|
||||
// This function tests whether the given 2D point is inside, outside or on the boundary of
|
||||
|
@ -1832,7 +1835,7 @@ function _merge_segments(insegs,outsegs, eps, i=1) =
|
|||
// report an error for this case.
|
||||
// Arguments:
|
||||
// poly = Array of the polygon vertices.
|
||||
// ind = A list indexing the vertices of the polygon in `poly`.
|
||||
// ind = If given, a list of indices indexing the vertices of the polygon in `poly`. Default: use all the points of poly
|
||||
// error = If false, returns `undef` when the polygon cannot be triangulated; otherwise, issues an assert error. Default: true.
|
||||
// eps = A maximum tolerance in geometrical tests. Default: EPSILON
|
||||
// Example(2D,NoAxes): a simple polygon; see from above
|
||||
|
@ -1991,7 +1994,7 @@ function _none_inside(idxs,poly,p0,p1,p2,eps,i=0) =
|
|||
|
||||
// Function: is_polygon_clockwise()
|
||||
// Usage:
|
||||
// test = is_polygon_clockwise(poly);
|
||||
// bool = is_polygon_clockwise(poly);
|
||||
// Topics: Geometry, Polygons, Clockwise
|
||||
// See Also: clockwise_polygon(), ccw_polygon(), reverse_polygon()
|
||||
// Description:
|
||||
|
@ -2181,7 +2184,7 @@ function align_polygon(reference, poly, angles, cp, trans, return_ind=false) =
|
|||
|
||||
// Function: are_polygons_equal()
|
||||
// Usage:
|
||||
// b = are_polygons_equal(poly1, poly2, [eps])
|
||||
// bool = are_polygons_equal(poly1, poly2, [eps])
|
||||
// Description:
|
||||
// Returns true if poly1 and poly2 are the same polongs
|
||||
// within given epsilon tolerance.
|
||||
|
@ -2236,7 +2239,7 @@ function ___is_polygon_in_list(poly, polys, i) =
|
|||
|
||||
// Function: hull()
|
||||
// Usage:
|
||||
// hull(points);
|
||||
// face_list_or_index_list = hull(points);
|
||||
// Description:
|
||||
// Takes a list of 2D or 3D points (but not both in the same list) and returns either the list of
|
||||
// indexes into `points` that forms the 2D convex hull perimeter path, or the list of faces that
|
||||
|
@ -2272,6 +2275,7 @@ function hull(points) =
|
|||
// pts = [for (phi = [30:60:150], theta = [0:60:359]) spherical_to_xyz(10, theta, phi)];
|
||||
// hull_points(pts);
|
||||
module hull_points(points, fast=false) {
|
||||
no_children($children);
|
||||
assert(is_path(points))
|
||||
assert(len(points)>=3, "Point list must contain 3 points")
|
||||
if (len(points[0])==2)
|
||||
|
@ -2309,7 +2313,7 @@ function _is_cw(a,b,c,all) =
|
|||
|
||||
// Function: hull2d_path()
|
||||
// Usage:
|
||||
// hull2d_path(points,all)
|
||||
// index_list = hull2d_path(points,all)
|
||||
// Description:
|
||||
// Takes a list of arbitrary 2D points, and finds the convex hull polygon to enclose them.
|
||||
// Returns a path as a list of indices into `points`.
|
||||
|
@ -2371,7 +2375,7 @@ function _hull_collinear(points) =
|
|||
|
||||
// Function: hull3d_faces()
|
||||
// Usage:
|
||||
// hull3d_faces(points)
|
||||
// faces = hull3d_faces(points)
|
||||
// Description:
|
||||
// Takes a list of arbitrary 3D points, and finds the convex hull polyhedron to enclose
|
||||
// them. Returns a list of triangular faces, where each face is a list of indexes into the given `points`
|
||||
|
@ -2482,7 +2486,7 @@ function _find_first_noncoplanar(plane, points, i=0) =
|
|||
|
||||
// Function: is_polygon_convex()
|
||||
// Usage:
|
||||
// test = is_polygon_convex(poly);
|
||||
// bool = is_polygon_convex(poly, [eps]);
|
||||
// Topics: Geometry, Convexity, Test
|
||||
// Description:
|
||||
// Returns true if the given 2D or 3D polygon is convex.
|
||||
|
@ -2527,7 +2531,7 @@ function is_polygon_convex(poly,eps=EPSILON) =
|
|||
|
||||
// Function: convex_distance()
|
||||
// Usage:
|
||||
// dist = convex_distance(pts1, pts2,[eps=]);
|
||||
// dist = convex_distance(points1, points2,eps);
|
||||
// Topics: Geometry, Convexity, Distance
|
||||
// See also:
|
||||
// convex_collision(), hull()
|
||||
|
@ -2586,7 +2590,7 @@ function _GJK_distance(points1, points2, eps=EPSILON, lbd, d, simplex=[]) =
|
|||
|
||||
// Function: convex_collision()
|
||||
// Usage:
|
||||
// test = convex_collision(pts1, pts2, [eps=]);
|
||||
// bool = convex_collision(points1, points2, [eps]);
|
||||
// Topics: Geometry, Convexity, Collision, Intersection
|
||||
// See also:
|
||||
// convex_distance(), hull()
|
||||
|
|
162
threading.scad
162
threading.scad
|
@ -12,6 +12,8 @@
|
|||
// Section: Standard (UTS/ISO) Threading
|
||||
|
||||
// Module: threaded_rod()
|
||||
// Usage:
|
||||
// threaded_rod(d, l, pitch, [internal=], ...) [ATTACHMENTS];
|
||||
// Description:
|
||||
// Constructs a standard ISO (metric) or UTS (English) threaded rod. These threads are close to triangular,
|
||||
// with a 60 degree thread angle. You can give the outer diameter and get the "basic form" or you can
|
||||
|
@ -57,6 +59,16 @@
|
|||
// threaded_nut(od=4.5/8*INCH,id=d,h=3/8*INCH,pitch=pitch,starts=starts,anchor=BOTTOM);
|
||||
// threaded_nut(od=4.5/8*INCH,id=d,h=3/8*INCH,pitch=pitch,starts=starts,left_handed=true,anchor=BOTTOM);
|
||||
// }
|
||||
function threaded_rod(
|
||||
d, l, pitch,
|
||||
left_handed=false,
|
||||
bevel,bevel1,bevel2,starts=1,
|
||||
internal=false,
|
||||
d1, d2,
|
||||
higbee, higbee1, higbee2,
|
||||
anchor, spin, orient
|
||||
) = no_function("threaded_rod");
|
||||
|
||||
module threaded_rod(
|
||||
d, l, pitch,
|
||||
left_handed=false,
|
||||
|
@ -115,6 +127,8 @@ module threaded_rod(
|
|||
|
||||
|
||||
// Module: threaded_nut()
|
||||
// Usage:
|
||||
// threaded_nut(od, id, h, pitch,...) [ATTACHMENTS];
|
||||
// Description:
|
||||
// Constructs a hex nut for an ISO (metric) or UTS (English) threaded rod.
|
||||
// Arguments:
|
||||
|
@ -135,6 +149,11 @@ module threaded_rod(
|
|||
// Examples(Med):
|
||||
// threaded_nut(od=16, id=8, h=8, pitch=1.25, $slop=0.05, $fa=1, $fs=1);
|
||||
// threaded_nut(od=16, id=8, h=8, pitch=1.25, left_handed=true, bevel=true, $slop=0.1, $fa=1, $fs=1);
|
||||
function threaded_nut(
|
||||
od, id, h,
|
||||
pitch, starts=1, left_handed=false, bevel, bevel1, bevel2, id1,id2,
|
||||
anchor, spin, orient
|
||||
)=no_function("threaded_nut");
|
||||
module threaded_nut(
|
||||
od, id, h,
|
||||
pitch, starts=1, left_handed=false, bevel, bevel1, bevel2, id1,id2,
|
||||
|
@ -180,6 +199,8 @@ module threaded_nut(
|
|||
|
||||
|
||||
// Module: trapezoidal_threaded_rod()
|
||||
// Usage:
|
||||
// trapezoidal_threaded_rod(d, l, pitch, [thread_angle], [thread_depth], [internal=], ...) [ATTACHMENTS];
|
||||
// Description:
|
||||
// Constructs a threaded rod with a symmetric trapezoidal thread. Trapezoidal threads are used for lead screws because
|
||||
// they are one of the strongest symmetric profiles. This tooth shape is stronger than a similarly
|
||||
|
@ -256,6 +277,17 @@ module threaded_nut(
|
|||
// cube(50, center=true);
|
||||
// trapezoidal_threaded_rod(d=40, l=51, pitch=5, thread_angle=30, internal=true, orient=RIGHT, $fn=36);
|
||||
// }
|
||||
function trapezoidal_threaded_rod(
|
||||
d, l, pitch,
|
||||
thread_angle=30,
|
||||
thread_depth=undef,
|
||||
left_handed=false,
|
||||
bevel,bevel1,bevel2,
|
||||
starts=1,
|
||||
internal=false,
|
||||
higbee, higbee1, higbee2,d1,d2,
|
||||
center, anchor, spin, orient
|
||||
) = no_function("trapezoidal_threaded_rod");
|
||||
module trapezoidal_threaded_rod(
|
||||
d, l, pitch,
|
||||
thread_angle=30,
|
||||
|
@ -289,6 +321,8 @@ module trapezoidal_threaded_rod(
|
|||
|
||||
|
||||
// Module: trapezoidal_threaded_nut()
|
||||
// Usage:
|
||||
// trapezoidal_threaded_nut(od, id, h, pitch, [thread_angle], [thread_depth], ...) [ATTACHMENTS];
|
||||
// Description:
|
||||
// Constructs a hex nut for a symmetric trapzoidal threaded rod.
|
||||
// By default produces the nominal dimensions
|
||||
|
@ -316,6 +350,17 @@ module trapezoidal_threaded_rod(
|
|||
// trapezoidal_threaded_nut(od=16, id=8, h=8, pitch=2, bevel=true, $slop=0.05, anchor=UP);
|
||||
// trapezoidal_threaded_nut(od=17.4, id=10, h=10, pitch=2, $slop=0.1, left_handed=true);
|
||||
// trapezoidal_threaded_nut(od=17.4, id=10, h=10, pitch=2, starts=3, $fa=1, $fs=1, $slop=0.15);
|
||||
function trapezoidal_threaded_rod(
|
||||
d, l, pitch,
|
||||
thread_angle=30,
|
||||
thread_depth=undef,
|
||||
left_handed=false,
|
||||
bevel,bevel1,bevel2,
|
||||
starts=1,
|
||||
internal=false,
|
||||
higbee, higbee1, higbee2,d1,d2,
|
||||
center, anchor, spin, orient
|
||||
) = no_function("trapezoidal_threaded_nut");
|
||||
module trapezoidal_threaded_nut(
|
||||
od,
|
||||
id,
|
||||
|
@ -350,6 +395,8 @@ module trapezoidal_threaded_nut(
|
|||
|
||||
|
||||
// Module: acme_threaded_rod()
|
||||
// Usage:
|
||||
// acme_threaded_rod(d, l, tpi|pitch=, [internal=], ...) [ATTACHMENTS];
|
||||
// Description:
|
||||
// Constructs an ACME trapezoidal threaded screw rod. This form has a 29 degree thread angle with a
|
||||
// symmetric trapezoidal thread.
|
||||
|
@ -378,6 +425,15 @@ module trapezoidal_threaded_nut(
|
|||
// Examples(Med):
|
||||
// acme_threaded_rod(d=3/8*INCH, l=20, pitch=1/8*INCH, $fn=32);
|
||||
// acme_threaded_rod(d=10, l=30, pitch=2, starts=3, $fa=1, $fs=1);
|
||||
function acme_threaded_rod(
|
||||
d, l, tpi, pitch,
|
||||
starts=1,
|
||||
left_handed=false,
|
||||
bevel,bevel1,bevel2,
|
||||
internal=false,
|
||||
higbee, higbee1, higbee2,
|
||||
anchor, spin, orient
|
||||
) = no_function("acme_threaded_rod");
|
||||
module acme_threaded_rod(
|
||||
d, l, tpi, pitch,
|
||||
starts=1,
|
||||
|
@ -406,6 +462,8 @@ module acme_threaded_rod(
|
|||
|
||||
|
||||
// Module: acme_threaded_nut()
|
||||
// Usage:
|
||||
// acme_threaded_nut(od, id, h, tpi|pitch=, ...) [ATTACHMENTS];
|
||||
// Description:
|
||||
// Constructs a hex nut for an ACME threaded screw rod.
|
||||
// Arguments:
|
||||
|
@ -426,6 +484,13 @@ module acme_threaded_rod(
|
|||
// Examples(Med):
|
||||
// acme_threaded_nut(od=16, id=3/8*INCH, h=8, tpi=8, $slop=0.05);
|
||||
// acme_threaded_nut(od=16, id=1/2*INCH, h=10, tpi=12, starts=3, $slop=0.1, $fa=1, $fs=1);
|
||||
function acme_threaded_nut(
|
||||
od, id, h, tpi, pitch,
|
||||
starts=1,
|
||||
left_handed=false,
|
||||
bevel,bevel1,bevel2,
|
||||
anchor, spin, orient
|
||||
) = no_function("acme_threaded_nut");
|
||||
module acme_threaded_nut(
|
||||
od, id, h, tpi, pitch,
|
||||
starts=1,
|
||||
|
@ -455,6 +520,8 @@ module acme_threaded_nut(
|
|||
// Section: Pipe Threading
|
||||
|
||||
// Module: npt_threaded_rod()
|
||||
// Usage:
|
||||
// npt_threaded_rod(size, [internal=], ...) [ATTACHMENTS];
|
||||
// Description:
|
||||
// Constructs a standard NPT pipe end threading. If `internal=true`, creates a mask for making
|
||||
// internal pipe threads. Tapers smaller upwards if `internal=false`. Tapers smaller downwards
|
||||
|
@ -490,6 +557,14 @@ module acme_threaded_nut(
|
|||
// cyl(d=3/4*INCH, l=42, $fn=32);
|
||||
// }
|
||||
// }
|
||||
function npt_threaded_rod(
|
||||
size=1/2,
|
||||
left_handed=false,
|
||||
bevel,bevel1,bevel2,
|
||||
hollow=false,
|
||||
internal=false,
|
||||
anchor, spin, orient
|
||||
)=no_function("npt_threaded_rod");
|
||||
module npt_threaded_rod(
|
||||
size=1/2,
|
||||
left_handed=false,
|
||||
|
@ -564,6 +639,8 @@ module npt_threaded_rod(
|
|||
// Section: Buttress Threading
|
||||
|
||||
// Module: buttress_threaded_rod()
|
||||
// Usage:
|
||||
// buttress_threaded_rod(d, l, pitch, [internal=], ...) [ATTACHMENTS];
|
||||
// Description:
|
||||
// Constructs a simple buttress threaded rod with a 45 degree angle. The buttress thread or sawtooth thread has low friction and high loading
|
||||
// in one direction at the cost of higher friction and inferior loading in the other direction. Buttress threads are sometimes used on
|
||||
|
@ -593,6 +670,17 @@ module npt_threaded_rod(
|
|||
// Examples(Med):
|
||||
// buttress_threaded_rod(d=10, l=20, pitch=1.25, left_handed=true, $fa=1, $fs=1);
|
||||
// buttress_threaded_rod(d=25, l=20, pitch=2, $fa=1, $fs=1);
|
||||
function buttress_threaded_rod(
|
||||
d=10, l=100, pitch=2,
|
||||
left_handed=false,
|
||||
bevel,bevel1,bevel2,
|
||||
internal=false,
|
||||
higbee=0,
|
||||
higbee1,
|
||||
higbee2,
|
||||
d1,d2,
|
||||
anchor, spin, orient
|
||||
) = no_function("buttress_threaded_rod");
|
||||
module buttress_threaded_rod(
|
||||
d=10, l=100, pitch=2,
|
||||
left_handed=false,
|
||||
|
@ -631,6 +719,8 @@ module buttress_threaded_rod(
|
|||
|
||||
|
||||
// Module: buttress_threaded_nut()
|
||||
// Usage:
|
||||
// buttress_threaded_nut(od, id, h, pitch, ...) [ATTACHMENTS];
|
||||
// Description:
|
||||
// Constructs a hex nut for a simple buttress threaded screw rod.
|
||||
// Arguments:
|
||||
|
@ -649,6 +739,12 @@ module buttress_threaded_rod(
|
|||
// $slop = The printer-specific slop value, which adds clearance (`4*$slop`) to internal threads.
|
||||
// Examples(Med):
|
||||
// buttress_threaded_nut(od=16, id=8, h=8, pitch=1.25, left_handed=true, $slop=0.05, $fa=1, $fs=1);
|
||||
function buttress_threaded_nut(
|
||||
od=16, id=10, h=10,
|
||||
pitch=2, left_handed=false,
|
||||
bevel,bevel1,bevel2,
|
||||
anchor, spin, orient
|
||||
) = no_function("buttress_threaded_nut");
|
||||
module buttress_threaded_nut(
|
||||
od=16, id=10, h=10,
|
||||
pitch=2, left_handed=false,
|
||||
|
@ -679,6 +775,8 @@ module buttress_threaded_nut(
|
|||
// Section: Square Threading
|
||||
|
||||
// Module: square_threaded_rod()
|
||||
// Usage:
|
||||
// square_threaded_rod(d, l, pitch, [internal=], ...) [ATTACHMENTS];
|
||||
// Description:
|
||||
// Constructs a square profile threaded screw rod. The greatest advantage of square threads is that they have the least friction and a much higher intrinsic efficiency than trapezoidal threads.
|
||||
// They produce no radial load on the nut. However, square threads cannot carry as much load as trapezoidal threads.
|
||||
|
@ -707,6 +805,16 @@ module buttress_threaded_nut(
|
|||
// square_threaded_rod(d=10, l=15, pitch=2, orient=BACK);
|
||||
// Examples(Med):
|
||||
// square_threaded_rod(d=10, l=20, pitch=2, starts=2, $fn=32);
|
||||
function square_threaded_rod(
|
||||
d, l, pitch,
|
||||
left_handed=false,
|
||||
bevel,bevel1,bevel2,
|
||||
starts=1,
|
||||
internal=false,
|
||||
higbee=0, higbee1, higbee2,
|
||||
d1,d2,
|
||||
anchor, spin, orient
|
||||
) = no_function("square_threaded_rod");
|
||||
module square_threaded_rod(
|
||||
d, l, pitch,
|
||||
left_handed=false,
|
||||
|
@ -738,6 +846,8 @@ module square_threaded_rod(
|
|||
|
||||
|
||||
// Module: square_threaded_nut()
|
||||
// Usage:
|
||||
// square_threaded_nut(od, id, h, pitch, ...) [ATTACHMENTS];
|
||||
// Description:
|
||||
// Constructs a hex nut for a square profile threaded screw rod.
|
||||
// Arguments:
|
||||
|
@ -757,6 +867,14 @@ module square_threaded_rod(
|
|||
// $slop = The printer-specific slop value, which adds clearance (`4*$slop`) to internal threads.
|
||||
// Examples(Med):
|
||||
// square_threaded_nut(od=16, id=10, h=10, pitch=2, starts=2, $slop=0.1, $fn=32);
|
||||
function square_threaded_nut(
|
||||
od, id, h,
|
||||
pitch,
|
||||
left_handed=false,
|
||||
bevel,bevel1,bevel2,
|
||||
starts=1,
|
||||
anchor, spin, orient
|
||||
) = no_function("square_threaded_nut");
|
||||
module square_threaded_nut(
|
||||
od, id, h,
|
||||
pitch,
|
||||
|
@ -782,6 +900,8 @@ module square_threaded_nut(
|
|||
// Section: Ball Screws
|
||||
|
||||
// Module: ball_screw_rod()
|
||||
// Usage:
|
||||
// ball_screw_rod(d, l, pitch, [ball_diam], [ball_arc], [internal=], ...) [ATTACHMENTS];
|
||||
// Description:
|
||||
// Constructs a ball screw rod. This type of rod is used with ball bearings.
|
||||
// Arguments:
|
||||
|
@ -811,6 +931,15 @@ module square_threaded_nut(
|
|||
// ball_screw_rod(d=15, l=20, pitch=8, ball_diam=5, ball_arc=120, $fa=1, $fs=0.5);
|
||||
// ball_screw_rod(d=15, l=20, pitch=5, ball_diam=4, ball_arc=120, $fa=1, $fs=0.5);
|
||||
// ball_screw_rod(d=15, l=20, pitch=5, ball_diam=4, ball_arc=120, left_handed=true, $fa=1, $fs=0.5);
|
||||
function ball_screw_rod(
|
||||
d, l, pitch,
|
||||
ball_diam=5, ball_arc=100,
|
||||
starts=1,
|
||||
left_handed=false,
|
||||
internal=false,
|
||||
bevel,bevel1,bevel2,
|
||||
anchor, spin, orient
|
||||
) = no_function("ball_screw_rod");
|
||||
module ball_screw_rod(
|
||||
d, l, pitch,
|
||||
ball_diam=5, ball_arc=100,
|
||||
|
@ -846,6 +975,8 @@ module ball_screw_rod(
|
|||
// Section: Generic Threading
|
||||
|
||||
// Module: generic_threaded_rod()
|
||||
// Usage:
|
||||
// generic_threaded_rod(d, l, pitch, profile, [internal=], ...) [ATTACHMENTS];
|
||||
// Description:
|
||||
// Constructs a generic threaded rod using an arbitrary thread profile that you supply. The rod can be tapered (e.g. for pipe threads).
|
||||
// For specific thread types use other modules that supply the appropriate profile.
|
||||
|
@ -911,6 +1042,17 @@ module ball_screw_rod(
|
|||
// [ 7/16, -depth/pitch*1.07]
|
||||
// ];
|
||||
// generic_threaded_rod(d=10, l=40, pitch=2, profile=profile);
|
||||
function generic_threaded_rod(
|
||||
d, l, pitch, profile,
|
||||
left_handed=false,
|
||||
bevel,
|
||||
bevel1, bevel2,
|
||||
starts=1,
|
||||
internal=false,
|
||||
d1, d2,
|
||||
higbee, higbee1, higbee2,
|
||||
center, anchor, spin, orient
|
||||
) = no_function("generic_threaded_rod");
|
||||
module generic_threaded_rod(
|
||||
d, l, pitch, profile,
|
||||
left_handed=false,
|
||||
|
@ -1062,6 +1204,8 @@ module generic_threaded_rod(
|
|||
|
||||
|
||||
// Module: generic_threaded_nut()
|
||||
// Usage:
|
||||
// generic_threaded_nut(od, id, h, pitch, profile, ...) [ATTACHMENTS];
|
||||
// Description:
|
||||
// Constructs a hexagonal nut for an generic threaded rod using a user-supplied thread profile.
|
||||
// See generic_threaded_rod for details on the profile specification.
|
||||
|
@ -1083,6 +1227,18 @@ module generic_threaded_rod(
|
|||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
|
||||
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
|
||||
// $slop = The printer-specific slop value, which adds clearance (`4*$slop`) to internal threads.
|
||||
function generic_threaded_nut(
|
||||
od,
|
||||
id,
|
||||
h,
|
||||
pitch,
|
||||
profile,
|
||||
left_handed=false,
|
||||
starts=1,
|
||||
bevel,bevel1,bevel2,
|
||||
id1,id2,
|
||||
anchor, spin, orient
|
||||
) = no_function("generic_threaded_nut");
|
||||
module generic_threaded_nut(
|
||||
od,
|
||||
id,
|
||||
|
@ -1208,6 +1364,12 @@ module generic_threaded_nut(
|
|||
// thread_helix(d=10, pitch=2, thread_depth=0.75, flank_angle=15, turns=2.5, higbee=1, $fn=72);
|
||||
// thread_helix(d=10, pitch=2, thread_depth=0.75, flank_angle=15, turns=2, higbee=2, internal=true, $fn=72);
|
||||
// thread_helix(d=10, pitch=2, thread_depth=0.75, flank_angle=15, turns=1, left_handed=true, higbee=1, $fn=36);
|
||||
function thread_helix(
|
||||
d, pitch, thread_depth, flank_angle, turns=2,
|
||||
profile, starts=1, left_handed=false, internal=false,
|
||||
d1, d2, higbee, higbee1, higbee2,
|
||||
anchor, spin, orient
|
||||
) = no_function("thread_helix");
|
||||
module thread_helix(
|
||||
d, pitch, thread_depth, flank_angle, turns=2,
|
||||
profile, starts=1, left_handed=false, internal=false,
|
||||
|
|
10
vectors.scad
10
vectors.scad
|
@ -17,13 +17,14 @@
|
|||
|
||||
// Function: is_vector()
|
||||
// Usage:
|
||||
// is_vector(v, [length], ...);
|
||||
// bool = is_vector(v, [length], [zero=], [all_nonzero=], [eps=]);
|
||||
// Description:
|
||||
// Returns true if v is a list of finite numbers.
|
||||
// Arguments:
|
||||
// v = The value to test to see if it is a vector.
|
||||
// length = If given, make sure the vector is `length` items long.
|
||||
// zero = If false, require that the length/`norm()` of the vector is not approximately zero. If true, require the length/`norm()` of the vector to be approximately zero-length. Default: `undef` (don't check vector length/`norm()`.)
|
||||
// ---
|
||||
// zero = If false, require that the `norm()` of the vector is not approximately zero. If true, require the `norm()` of the vector to be approximately zero. Default: `undef` (don't check vector `norm()`.)
|
||||
// all_nonzero = If true, requires all elements of the vector to be more than `eps` different from zero. Default: `false`
|
||||
// eps = The minimum vector length that is considered non-zero. Default: `EPSILON` (`1e-9`)
|
||||
// Example:
|
||||
|
@ -73,7 +74,8 @@ function add_scalar(v,s) =
|
|||
// v3 = v_mul(v1, v2);
|
||||
// Description:
|
||||
// Element-wise multiplication. Multiplies each element of `v1` by the corresponding element of `v2`.
|
||||
// Both `v1` and `v2` must be the same length. Returns a vector of the products.
|
||||
// Both `v1` and `v2` must be the same length. Returns a vector of the products. Note that
|
||||
// the items in `v1` and `v2` can be anything that OpenSCAD will multiply.
|
||||
// Arguments:
|
||||
// v1 = The first vector.
|
||||
// v2 = The second vector.
|
||||
|
@ -135,7 +137,7 @@ function v_ceil(v) =
|
|||
|
||||
// Function: v_lookup()
|
||||
// Usage:
|
||||
// v2 = v_ceil(x, v);
|
||||
// v2 = v_lookup(x, v);
|
||||
// Description:
|
||||
// Works just like the built-in function [`lookup()`](https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Mathematical_Functions#lookup), except that it can also interpolate between vector result values of the same length.
|
||||
// Arguments:
|
||||
|
|
Loading…
Reference in a new issue