Merge pull request #286 from revarbat/revarbat_dev

Fixes for docs Usage tags.
This commit is contained in:
Revar Desmera 2020-10-03 20:36:39 -07:00 committed by GitHub
commit 4443be2bbb
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 51 additions and 27 deletions

View file

@ -399,7 +399,8 @@ function affine3d_chain(affines, _m=undef, _i=0) =
// Function: apply()
// Usage: apply(transform, points)
// Usage:
// pts = apply(transform, points)
// Description:
// Applies the specified transformation matrix to a point list (or single point). Both inputs can be 2d or 3d, and it is also allowed
// to supply 3d transformations with 2d data as long as the the only action on the z coordinate is a simple scaling.
@ -423,7 +424,8 @@ function apply(transform,points) =
// Function: apply_list()
// Usage: apply_list(points, transform_list)
// Usage:
// pts = apply_list(points, transform_list)
// Description:
// Transforms the specified point list (or single point) using a list of transformation matrices. Transformations on
// the list are applied in the order they appear in the list (as in right multiplication of matrices). Both inputs can be

View file

@ -1146,7 +1146,8 @@ function subindex(M, idx) =
// Function: submatrix()
// Usage: submatrix(M, idx1, idx2)
// Usage:
// mat = submatrix(M, idx1, idx2)
// Description:
// The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columns listed in idx2.
// Arguments:
@ -1245,7 +1246,8 @@ function diagonal_matrix(diag,offdiag=0) =
// Function: submatrix_set()
// Usage: submatrix_set(M,A,[m],[n])
// Usage:
// mat = submatrix_set(M,A,[m],[n])
// Description:
// Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but
// you can specify offset coordinates m and n. If A (as adjusted by m and n) extends beyond the bounds

View file

@ -1443,7 +1443,8 @@ function circle_point_tangents(r, d, cp, pt) =
// Function: circle_circle_tangents()
// Usage: circle_circle_tangents(c1, r1|d1, c2, r2|d2)
// Usage:
// segs = circle_circle_tangents(c1, r1|d1, c2, r2|d2);
// Description:
// Computes 2d lines tangents to a pair of circles in 2d. Returns a list of line endpoints [p1,p2] where
// p2 is the tangent point on circle 1 and p2 is the tangent point on circle 2.

View file

@ -731,7 +731,8 @@ function null_space(A,eps=1e-12) =
// Function: qr_factor()
// Usage: qr = qr_factor(A,[pivot])
// Usage:
// qr = qr_factor(A,[pivot]);
// Description:
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R,P]. This factorization can be
// used to solve linear systems of equations. The factorization is A = Q*R*transpose(P). If pivot is false (the default)
@ -780,7 +781,8 @@ function _swap_matrix(n,i,j) =
// Function: back_substitute()
// Usage: back_substitute(R, b, <transpose>)
// Usage:
// x = back_substitute(R, b, <transpose>);
// Description:
// Solves the problem Rx=b where R is an upper triangular square matrix. The lower triangular entries of R are
// ignored. If transpose==true then instead solve transpose(R)*x=b.

View file

@ -316,7 +316,8 @@ function path_closest_point(path, pt) =
// Function: path_tangents()
// Usage: path_tangents(path, [closed], [uniform])
// Usage:
// tangs = path_tangents(path, <closed>, <uniform>);
// Description:
// Compute the tangent vector to the input path. The derivative approximation is described in deriv().
// The returns vectors will be normalized to length 1. If any derivatives are zero then
@ -348,7 +349,8 @@ function path_tangents(path, closed=false, uniform=true) =
// Function: path_normals()
// Usage: path_normals(path, [tangents], [closed])
// Usage:
// norms = path_normals(path, <tangents>, <closed>);
// Description:
// Compute the normal vector to the input path. This vector is perpendicular to the
// path tangent and lies in the plane of the curve. When there are collinear points,
@ -371,7 +373,8 @@ function path_normals(path, tangents, closed=false) =
// Function: path_curvature()
// Usage: path_curvature(path, [closed])
// Usage:
// curvs = path_curvature(path, <closed>);
// Description:
// Numerically estimate the curvature of the path (in any dimension).
function path_curvature(path, closed=false) =
@ -388,7 +391,8 @@ function path_curvature(path, closed=false) =
// Function: path_torsion()
// Usage: path_torsion(path, [closed])
// Usage:
// tortions = path_torsion(path, <closed>);
// Description:
// Numerically estimate the torsion of a 3d path.
function path_torsion(path, closed=false) =
@ -1290,7 +1294,8 @@ function subdivide_path(path, N, refine, closed=true, exact=true, method="length
// Function: path_length_fractions()
// Usage: path_length_fractions(path, [closed])
// Usage:
// fracs = path_length_fractions(path, <closed>);
// Description:
// Returns the distance fraction of each point in the path along the path, so the first
// point is zero and the final point is 1. If the path is closed the length of the output
@ -1311,7 +1316,8 @@ function path_length_fractions(path, closed=false) =
// Function: resample_path()
// Usage: resample_path(path, N|spacing, [closed])
// Usage:
// newpath = resample_path(path, N|spacing, <closed>);
// Description:
// Compute a uniform resampling of the input path. If you specify `N` then the output path will have N
// points spaced uniformly (by linear interpolation along the input path segments). The only points of the

View file

@ -543,7 +543,8 @@ _stellated_polyhedra_ = [
// Function: regular_polyhedron_info()
//
// Usage: regular_polyhedron_info(info, ....)
// Usage:
// x = regular_polyhedron_info(info, ....);
//
// Description:
// Calculate characteristics of regular polyhedra or the selection set for regular_polyhedron().

View file

@ -405,6 +405,10 @@ class LeafNode(object):
dummy, title = line.split(":", 1)
title = title.strip()
lines, block = get_comment_block(lines, prefix)
if block == []:
print("Error: Usage header without any usage examples.")
print(line)
sys.exit(-2)
self.usages.append([title, block])
continue
if line.startswith("Description:"):

View file

@ -512,8 +512,9 @@ function subdivide_and_slice(profiles, slices, numpoints, method="length", close
slice_profiles(fixpoly, slices, closed);
// Function slice_profiles()
// Usage: slice_profiles(profiles,slices,[closed])
// Function: slice_profiles()
// Usage:
// profs = slice_profiles(profiles,slices,<closed>);
// Description:
// Given an input list of profiles, linearly interpolate between each pair to produce a
// more finely sampled list. The parameters `slices` specifies the number of slices to
@ -640,7 +641,8 @@ function _dp_extract_map(map) =
// Internal Function: _skin_distance_match(poly1,poly2)
// Usage: _skin_distance_match(poly1,poly2)
// Usage:
// polys = _skin_distance_match(poly1,poly2);
// Description:
// Find a way of associating the vertices of poly1 and vertices of poly2
// that minimizes the sum of the length of the edges that connect the two polygons.
@ -686,16 +688,17 @@ function _skin_distance_match(poly1,poly2) =
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Internal Function: _skin_tangent_match()
// Usage: _skin_tangent_match(poly1, poly2)
// Usage:
// x = _skin_tangent_match(poly1, poly2)
// Description:
// Finds a mapping of the vertices of the larger polygon onto the smaller one. Whichever input is the
// shorter path is the polygon, and the longer input is the curve. For every edge of the polygon, the algorithm seeks a plane that contains that
// edge and is tangent to the curve. There will be more than one such point. To choose one, the algorithm centers the polygon and curve on their centroids
// and chooses the closer tangent point. The algorithm works its way around the polygon, computing a series of tangent points and then maps all of the
// points on the curve between two tangent points into one vertex of the polygon. This algorithm can fail if the curve has too few points or if it is concave.
// Finds a mapping of the vertices of the larger polygon onto the smaller one. Whichever input is the
// shorter path is the polygon, and the longer input is the curve. For every edge of the polygon, the algorithm seeks a plane that contains that
// edge and is tangent to the curve. There will be more than one such point. To choose one, the algorithm centers the polygon and curve on their centroids
// and chooses the closer tangent point. The algorithm works its way around the polygon, computing a series of tangent points and then maps all of the
// points on the curve between two tangent points into one vertex of the polygon. This algorithm can fail if the curve has too few points or if it is concave.
// Arguments:
// poly1 = input polygon
// poly2 = input polygon
// poly1 = input polygon
// poly2 = input polygon
function _skin_tangent_match(poly1, poly2) =
let(
swap = len(poly1)>len(poly2),
@ -794,7 +797,10 @@ function associate_vertices(polygons, split, curpoly=0) =
// Function&Module: sweep()
// Usage: sweep(shape, transformations, [closed], [caps])
// Usage: As Module
// sweep(shape, transformations, <closed<, <caps>)
// Usage: As Function
// vnf = sweep(shape, transformations, <closed>, <caps>);
// Description:
// The input `shape` must be a non-self-intersecting polygon in two dimensions, and `transformations`
// is a list of 4x4 transformation matrices. The sweep algorithm applies each transformation in sequence

View file

@ -8,7 +8,7 @@
//////////////////////////////////////////////////////////////////////
BOSL_VERSION = [2,0,437];
BOSL_VERSION = [2,0,438];
// Section: BOSL Library Version Functions