mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-28 23:39:36 +00:00
normalized project_plane and lift_plane to match other transform
functions.
This commit is contained in:
parent
94abf65857
commit
493ef62826
8 changed files with 158 additions and 140 deletions
207
coords.scad
207
coords.scad
|
@ -179,112 +179,131 @@ function xy_to_polar(x,y=undef) = let(
|
|||
|
||||
|
||||
// Function: project_plane()
|
||||
// Usage: With the plane defined by 3 Points
|
||||
// pt = project_plane(point, a, b, c);
|
||||
// Usage: With the plane defined by Pointlist
|
||||
// pt = project_plane(point, POINTLIST);
|
||||
// Usage: With the plane defined by Plane Definition [A,B,C,D] Where Ax+By+Cz=D
|
||||
// pt = project_plane(point, PLANE);
|
||||
// Topics: Coordinates, Points, Paths
|
||||
// See Also: lift_plane()
|
||||
// Usage:
|
||||
// xy = project_plane(plane, p);
|
||||
// Usage: To get a transform matrix
|
||||
// M = project_plane(plane)
|
||||
// Description:
|
||||
// Converts the given 3D points from global coordinates to the 2D planar coordinates of the closest
|
||||
// points on the plane. This coordinate system can be useful in taking a set of nearly coplanar
|
||||
// points, and converting them to a pure XY set of coordinates for manipulation, before converting
|
||||
// them back to the original 3D plane. The parameter `point` may be a single point or a list of points
|
||||
// The plane may be given in one of three ways:
|
||||
// - by three points, `a`, `b`, and `c`, the planar coordinate system will have `[0,0]` at point `a`, and the Y+ axis will be towards point `b`.
|
||||
// - by a list of points passed by `a`, finds three reasonably spaced non-collinear points in the list and uses them as points `a`, `b`, and `c` as above.
|
||||
// - by a plane definition `[A,B,C,D]` passed by `a` where `Ax+By+Cz=D`, the closest point on that plane to the global origin at `[0,0,0]` will be the planar coordinate origin `[0,0]`.
|
||||
// Maps the provided 3d point(s) from 3D coordinates to a 2d coordinate system defined by `plane`. Points that are not
|
||||
// on the specified plane will be projected orthogonally onto the plane. This coordinate system is useful if you need
|
||||
// to perform 2d operations on a coplanar set of data. After those operations are done you can return the data
|
||||
// to 3d with `lift_plane()`. You could also use this to force approximately coplanar data to be exactly coplanar.
|
||||
// The parameter p can be a point, path, region, bezier patch or VNF.
|
||||
// The plane can be specified as
|
||||
// - A list of three points. The planar coordinate system will have [0,0] at plane[0], and plane[1] will lie on the Y+ axis.
|
||||
// - A list of coplanar points that define a plane (not-collinear)
|
||||
// - A plane definition `[A,B,C,D]` where `Ax+By+CZ=D`. The closest point on that plane to the origin will map to the origin in the new coordinate system.
|
||||
// .
|
||||
// If you omit the point specification then `project_plane()` returns a rotation matrix that maps the specified plane to the XY plane.
|
||||
// Note that if you apply this transformation to data lying on the plane it will produce 3D points with the Z coordinate of zero.
|
||||
// Topics: Coordinates, Points, Paths
|
||||
// See Also: project_plane(), projection_on_plane()
|
||||
// Arguments:
|
||||
// point = The 3D point, or list of 3D points to project into the plane's 2D coordinate system.
|
||||
// a = A 3D point that the plane passes through or a list of points or a plane definition vector.
|
||||
// b = A 3D point that the plane passes through. Used to define the plane.
|
||||
// c = A 3D point that the plane passes through. Used to define the plane.
|
||||
// plane = plane specification or point list defining the plane
|
||||
// p = 3D point, path, region, VNF or bezier patch to project
|
||||
// Example:
|
||||
// pt = [5,-5,5];
|
||||
// a=[0,0,0]; b=[10,-10,0]; c=[10,0,10];
|
||||
// xy = project_plane(pt, a, b, c);
|
||||
// xy2 = project_plane(pt, [a,b,c]);
|
||||
// Example(3D):
|
||||
// points = move([10,20,30], p=yrot(25, p=path3d(circle(d=100, $fn=36))));
|
||||
// plane = plane_from_normal([1,0,1]);
|
||||
// proj = project_plane(points,plane);
|
||||
// n = plane_normal(plane);
|
||||
// cp = centroid(proj);
|
||||
// color("red") move_copies(points) sphere(d=2,$fn=12);
|
||||
// color("blue") rot(from=UP,to=n,cp=cp) move_copies(proj) sphere(d=2,$fn=12);
|
||||
// move(cp) {
|
||||
// rot(from=UP,to=n) {
|
||||
// anchor_arrow(30);
|
||||
// %cube([120,150,0.1],center=true);
|
||||
// }
|
||||
// }
|
||||
function project_plane(point, a, b, c) =
|
||||
is_undef(b) && is_undef(c) && is_list(a)? let(
|
||||
mat = is_vector(a,4)? plane_transform(a) :
|
||||
assert(is_path(a) && len(a)>=3)
|
||||
plane_transform(plane_from_points(a)),
|
||||
pts = is_vector(point)? point2d(apply(mat,point)) :
|
||||
is_path(point)? path2d(apply(mat,point)) :
|
||||
is_region(point)? [for (x=point) path2d(apply(mat,x))] :
|
||||
assert(false, "point must be a 3D point, path, or region.")
|
||||
) pts :
|
||||
assert(is_vector(a))
|
||||
assert(is_vector(b))
|
||||
assert(is_vector(c))
|
||||
assert(is_vector(point)||is_path(point))
|
||||
let(
|
||||
u = unit(b-a),
|
||||
v = unit(c-a),
|
||||
n = unit(cross(u,v)),
|
||||
w = unit(cross(n,u)),
|
||||
relpoint = apply(move(-a),point)
|
||||
) relpoint * transpose([w,u]);
|
||||
// xy = project_plane([a,b,c],pt);
|
||||
// Example(3D): The yellow points in 3D project onto the red points in 2D
|
||||
// M = [[-1, 2, -1, -2], [-1, -3, 2, -1], [2, 3, 4, 53], [0, 0, 0, 1]];
|
||||
// data = apply(M,path3d(circle(r=10, $fn=20)));
|
||||
// move_copies(data) sphere(r=1);
|
||||
// color("red") move_copies(project_plane(data, data)) sphere(r=1);
|
||||
// Example:
|
||||
// xyzpath = move([10,20,30], p=yrot(25, p=path3d(circle(d=100))));
|
||||
// mat = project_plane(xyzpath);
|
||||
// xypath = path2d(apply(mat, xyzpath));
|
||||
// #stroke(xyzpath,closed=true);
|
||||
// stroke(xypath,closed=true);
|
||||
function project_plane(plane,p) =
|
||||
is_matrix(plane,3,3) && is_undef(p) ? // no data, 3 points given
|
||||
assert(!collinear(plane),"Points defining the plane must not be collinear")
|
||||
let(
|
||||
v = plane[2]-plane[0],
|
||||
y = unit(plane[1]-plane[0]), // y axis goes to point b
|
||||
x = unit(v-(v*y)*y) // x axis
|
||||
)
|
||||
affine3d_frame_map(x,y) * move(-plane[0])
|
||||
: is_vector(plane,4) && is_undef(p) ? // no data, plane given in "plane"
|
||||
assert(_valid_plane(plane), "Plane is not valid")
|
||||
let(
|
||||
n = point3d(plane),
|
||||
cp = n * plane[3] / (n*n)
|
||||
)
|
||||
rot(from=n, to=UP) * move(-cp)
|
||||
: is_path(plane,3) && is_undef(p) ? // no data, generic point list plane
|
||||
assert(len(plane)>=3, "Need three points to define a plane")
|
||||
let(plane = plane_from_points(plane))
|
||||
assert(is_def(plane), "Point list is not coplanar")
|
||||
project_plane(plane)
|
||||
: assert(is_def(p), str("Invalid plane specification",plane))
|
||||
is_vnf(p) ? [project_plane(plane,p[0]), p[1]]
|
||||
: is_list(p) && is_list(p[0]) && is_vector(p[0][0],3) ? // bezier patch or region
|
||||
[for(plist=p) project_plane(plane,plist)]
|
||||
: assert(is_vector(p,3) || is_path(p,3),str("Data must be a 3d point, path, region, vnf or bezier patch",p))
|
||||
is_matrix(plane,3,3) ?
|
||||
assert(!collinear(plane),"Points defining the plane must not be collinear")
|
||||
let(
|
||||
v = plane[2]-plane[0],
|
||||
y = unit(plane[1]-plane[0]), // y axis goes to point b
|
||||
x = unit(v-(v*y)*y) // x axis
|
||||
) move(-plane[0],p) * transpose([x,y])
|
||||
: is_vector(p) ? point2d(apply(project_plane(plane),p))
|
||||
: path2d(apply(project_plane(plane),p));
|
||||
|
||||
|
||||
|
||||
// Function: lift_plane()
|
||||
// Usage: With 3 Points
|
||||
// xyz = lift_plane(point, a, b, c);
|
||||
// Usage: With Pointlist
|
||||
// xyz = lift_plane(point, POINTLIST);
|
||||
// Usage: With Plane Definition [A,B,C,D] Where Ax+By+Cz=D
|
||||
// xyz = lift_plane(point, PLANE);
|
||||
// Usage:
|
||||
// xyz = lift_plane(plane, p);
|
||||
// Usage: to get transform matrix
|
||||
// M = lift_plane(plane);
|
||||
// Topics: Coordinates, Points, Paths
|
||||
// See Also: project_plane()
|
||||
// Description:
|
||||
// Converts the given 2D point from planar coordinates to the global 3D coordinates of the point on the plane.
|
||||
// Can be called one of three ways:
|
||||
// - Given three points, `a`, `b`, and `c`, the planar coordinate system will have `[0,0]` at point `a`, and the Y+ axis will be towards point `b`.
|
||||
// - Given a list of points, finds three non-collinear points in the list and uses them as points `a`, `b`, and `c` as above.
|
||||
// - Given a plane definition `[A,B,C,D]` where `Ax+By+Cz=D`, the closest point on that plane to the global origin at `[0,0,0]` will be the planar coordinate origin `[0,0]`.
|
||||
// Converts the given 2D point on the plane to 3D coordinates of the specified plane.
|
||||
// The parameter p can be a point, path, region, bezier patch or VNF.
|
||||
// The plane can be specified as
|
||||
// - A list of three points. The planar coordinate system will have [0,0] at plane[0], and plane[1] will lie on the Y+ axis.
|
||||
// - A list of coplanar points that define a plane (not-collinear)
|
||||
// - A plane definition `[A,B,C,D]` where `Ax+By+CZ=D`. The closest point on that plane to the origin will map to the origin in the new coordinate system.
|
||||
// If you do not supply `p` then you get a transformation matrix which operates in 3D, assuming that the Z coordinate of the points is zero.
|
||||
// This matrix is a rotation, the inverse of the one produced by project_plane.
|
||||
// Arguments:
|
||||
// point = The 2D point, or list of 2D points in the plane's coordinate system to get the 3D position of.
|
||||
// a = A 3D point that the plane passes through. Used to define the plane.
|
||||
// b = A 3D point that the plane passes through. Used to define the plane.
|
||||
// c = A 3D point that the plane passes through. Used to define the plane.
|
||||
function lift_plane(point, a, b, c) =
|
||||
is_undef(b) && is_undef(c) && is_list(a)? let(
|
||||
mat = is_vector(a,4)? plane_transform(a) :
|
||||
assert(is_path(a) && len(a)>=3)
|
||||
plane_transform(plane_from_points(a)),
|
||||
imat = matrix_inverse(mat),
|
||||
pts = is_vector(point)? apply(imat,point3d(point)) :
|
||||
is_path(point)? apply(imat,path3d(point)) :
|
||||
is_region(point)? [for (x=point) apply(imat,path3d(x))] :
|
||||
assert(false, "point must be a 2D point, path, or region.")
|
||||
) pts :
|
||||
assert(is_vector(a))
|
||||
assert(is_vector(b))
|
||||
assert(is_vector(c))
|
||||
assert(is_vector(point)||is_path(point))
|
||||
let(
|
||||
u = unit(b-a),
|
||||
v = unit(c-a),
|
||||
n = unit(cross(u,v)),
|
||||
w = unit(cross(n,u)),
|
||||
remapped = point*[w,u]
|
||||
) apply(move(a),remapped);
|
||||
// plane = Plane specification or list of points to define a plane
|
||||
// p = points, path, region, VNF, or bezier patch to transform.
|
||||
function lift_plane(plane, p) =
|
||||
is_matrix(plane,3,3) && is_undef(p) ? // no data, 3 p given
|
||||
let(
|
||||
v = plane[2]-plane[0],
|
||||
y = unit(plane[1]-plane[0]), // y axis goes to point b
|
||||
x = unit(v-(v*y)*y) // x axis
|
||||
)
|
||||
move(plane[0]) * affine3d_frame_map(x,y,reverse=true)
|
||||
: is_vector(plane,4) && is_undef(p) ? // no data, plane given in "plane"
|
||||
assert(_valid_plane(plane), "Plane is not valid")
|
||||
let(
|
||||
n = point3d(plane),
|
||||
cp = n * plane[3] / (n*n)
|
||||
)
|
||||
move(cp) * rot(from=UP, to=n)
|
||||
: is_path(plane,3) && is_undef(p) ? // no data, generic point list plane
|
||||
assert(len(plane)>=3, "Need three p to define a plane")
|
||||
let(plane = plane_from_points(plane))
|
||||
assert(is_def(plane), "Point list is not coplanar")
|
||||
lift_plane(plane)
|
||||
: is_vnf(p) ? [lift_plane(plane,p[0]), p[1]]
|
||||
: is_list(p) && is_list(p[0]) && is_vector(p[0][0],3) ? // bezier patch or region
|
||||
[for(plist=p) lift_plane(plane,plist)]
|
||||
: assert(is_vector(p,2) || is_path(p,2),"Data must be a 2d point, path, region, vnf or bezier patch")
|
||||
is_matrix(plane,3,3) ?
|
||||
let(
|
||||
v = plane[2]-plane[0],
|
||||
y = unit(plane[1]-plane[0]), // y axis goes to point b
|
||||
x = unit(v-(v*y)*y) // x axis
|
||||
) move(plane[0],p * [x,y])
|
||||
: apply(lift_plane(plane),is_vector(p) ? point3d(p) : path3d(p));
|
||||
|
||||
|
||||
// Function: cylindrical_to_xyz()
|
||||
|
|
|
@ -1024,31 +1024,6 @@ function plane_offset(plane) =
|
|||
plane[3]/norm([plane.x, plane.y, plane.z]);
|
||||
|
||||
|
||||
// Function: plane_transform()
|
||||
// Usage:
|
||||
// mat = plane_transform(plane);
|
||||
// Description:
|
||||
// Given a plane definition `[A,B,C,D]`, where `Ax+By+Cz=D`, returns a 3D affine
|
||||
// transformation matrix that will linear transform points on that plane
|
||||
// into points on the XY plane. You can generally then use `path2d()` to drop the
|
||||
// Z coordinates, so you can work with the points in 2D.
|
||||
// Arguments:
|
||||
// plane = The `[A,B,C,D]` plane definition where `Ax+By+Cz=D` is the formula of the plane.
|
||||
// Example(3D):
|
||||
// xyzpath = move([10,20,30], p=yrot(25, p=path3d(circle(d=100))));
|
||||
// plane = plane_from_points(xyzpath);
|
||||
// mat = plane_transform(plane);
|
||||
// xypath = path2d(apply(mat, xyzpath));
|
||||
// #stroke(xyzpath,closed=true);
|
||||
// stroke(xypath,closed=true);
|
||||
function plane_transform(plane) =
|
||||
let(
|
||||
plane = normalize_plane(plane),
|
||||
n = point3d(plane),
|
||||
cp = n * plane[3]
|
||||
)
|
||||
rot(from=n, to=UP) * move(-cp);
|
||||
|
||||
|
||||
// Function: projection_on_plane()
|
||||
// Usage:
|
||||
|
@ -1227,8 +1202,8 @@ function polygon_line_intersection(poly, line, bounded=false, eps=EPSILON) =
|
|||
linevec = unit(line[1] - line[0]),
|
||||
lp1 = line[0] + (bounded[0]? 0 : -1000000) * linevec,
|
||||
lp2 = line[1] + (bounded[1]? 0 : 1000000) * linevec,
|
||||
poly2d = clockwise_polygon(project_plane(poly, plane)),
|
||||
line2d = project_plane([lp1,lp2], plane),
|
||||
poly2d = clockwise_polygon(project_plane(plane, poly)),
|
||||
line2d = project_plane(plane, [lp1,lp2]),
|
||||
parts = split_path_at_region_crossings(line2d, [poly2d], closed=false),
|
||||
inside = [for (part = parts)
|
||||
if (point_in_polygon(mean(part), poly2d)>0) part
|
||||
|
@ -1236,15 +1211,15 @@ function polygon_line_intersection(poly, line, bounded=false, eps=EPSILON) =
|
|||
)
|
||||
!inside? undef :
|
||||
let(
|
||||
isegs = [for (seg = inside) lift_plane(seg, plane) ]
|
||||
isegs = [for (seg = inside) lift_plane(plane, seg) ]
|
||||
)
|
||||
isegs
|
||||
)
|
||||
: bounded[0] && res[1]<0? undef :
|
||||
bounded[1] && res[1]>1? undef :
|
||||
let(
|
||||
proj = clockwise_polygon(project_plane(poly, p1, p2, p3)),
|
||||
pt = project_plane(res[0], p1, p2, p3)
|
||||
proj = clockwise_polygon(project_plane([p1, p2, p3], poly)),
|
||||
pt = project_plane([p1, p2, p3], res[0])
|
||||
)
|
||||
point_in_polygon(pt, proj) < 0 ? undef : res[0];
|
||||
|
||||
|
|
|
@ -173,7 +173,7 @@ function hull3d_faces(points) =
|
|||
d == len(points)
|
||||
? /* all coplanar*/
|
||||
let (
|
||||
pts2d = [ for (p = points) project_plane(p, points[a], points[b], points[c]) ],
|
||||
pts2d = project_plane([points[a], points[b], points[c]],points),
|
||||
hull2d = hull2d_path(pts2d)
|
||||
) hull2d
|
||||
: let(
|
||||
|
|
|
@ -1222,14 +1222,14 @@ module path_extrude(path, convexity=10, clipsize=100) {
|
|||
// path_spread(wedge,n=5,spacing=3) fwd(.1) rect([1,4],anchor=FRONT);
|
||||
// }
|
||||
// Example(Spin,VPD=115): 3d example, with children rotated into the plane of the path
|
||||
// tilted_circle = lift_plane(regular_ngon(n=64, or=12), [0,0,0], [5,0,5], [0,2,3]);
|
||||
// tilted_circle = lift_plane([[0,0,0], [5,0,5], [0,2,3]],regular_ngon(n=64, or=12));
|
||||
// path_sweep(regular_ngon(n=16,or=.1),tilted_circle);
|
||||
// path_spread(tilted_circle, n=15,closed=true) {
|
||||
// color("blue") cyl(h=3,r=.2, anchor=BOTTOM); // z-aligned cylinder
|
||||
// color("red") xcyl(h=10,r=.2, anchor=FRONT+LEFT); // x-aligned cylinder
|
||||
// }
|
||||
// Example(Spin,VPD=115): 3d example, with rotate_children set to false
|
||||
// tilted_circle = lift_plane(regular_ngon(n=64, or=12), [0,0,0], [5,0,5], [0,2,3]);
|
||||
// tilted_circle = lift_plane([[0,0,0], [5,0,5], [0,2,3]], regular_ngon(n=64, or=12));
|
||||
// path_sweep(regular_ngon(n=16,or=.1),tilted_circle);
|
||||
// path_spread(tilted_circle, n=25,rotate_children=false,closed=true) {
|
||||
// color("blue") cyl(h=3,r=.2, anchor=BOTTOM); // z-aligned cylinder
|
||||
|
|
|
@ -1827,7 +1827,7 @@ function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_b
|
|||
assert(len(bottom[0])==3 || is_num(height),"Must give height/length with 2d polygon input")
|
||||
let(
|
||||
// Determine which points are concave by making bottom 2d if necessary
|
||||
bot_proj = len(bottom[0])==2 ? bottom : project_plane(bottom, select(bottom,0,2)),
|
||||
bot_proj = len(bottom[0])==2 ? bottom : project_plane(select(bottom,0,2),bottom),
|
||||
bottom_sign = polygon_is_clockwise(bot_proj) ? 1 : -1,
|
||||
concave = [for(i=[0:N-1]) bottom_sign*sign(point_left_of_line2d(select(bot_proj,i+1), select(bot_proj, i-1,i)))>0],
|
||||
top = is_undef(top) ? path3d(bottom,height/2) :
|
||||
|
|
|
@ -569,11 +569,11 @@ function arc(N, r, angle, d, cp, points, width, thickness, start, wedge=false, l
|
|||
assert(!(cw || ccw), "(Counter)clockwise isn't meaningful in 3d, so `cw` and `ccw` must be false")
|
||||
assert(is_undef(cp) || is_vector(cp,3),"points are 3d so cp must be 3d")
|
||||
let(
|
||||
thirdpoint = is_def(cp) ? cp : points[2],
|
||||
center2d = is_def(cp) ? project_plane(cp,thirdpoint,points[0],points[1]) : undef,
|
||||
points2d = project_plane(points,thirdpoint,points[0],points[1])
|
||||
plane = [is_def(cp) ? cp : points[2], points[0], points[1]],
|
||||
center2d = is_def(cp) ? project_plane(plane,cp) : undef,
|
||||
points2d = project_plane(plane, points)
|
||||
)
|
||||
lift_plane(arc(N,cp=center2d,points=points2d,wedge=wedge,long=long),thirdpoint,points[0],points[1])
|
||||
lift_plane(plane,arc(N,cp=center2d,points=points2d,wedge=wedge,long=long))
|
||||
) : is_def(cp)? (
|
||||
// Arc defined by center plus two points, will have radius defined by center and points[0]
|
||||
// and extent defined by direction of point[1] from the center
|
||||
|
|
|
@ -83,15 +83,40 @@ test_xy_to_polar();
|
|||
|
||||
|
||||
module test_project_plane() {
|
||||
assert(approx(project_plane([-5,0,-5], [-10,0,-10], [0,0,0], [0,-10,-10]),[0,10*sqrt(2)/2]));
|
||||
assert(approx(project_plane([0,-5,-5], [-10,0,-10], [0,0,0], [0,-10,-10]),[6.12372, 10.6066],eps=1e-5));
|
||||
assert(approx(project_plane([[-10,0,-10], [0,0,0], [0,-10,-10]],[-5,0,-5]),[0,10*sqrt(2)/2]));
|
||||
assert(approx(project_plane([[-10,0,-10], [0,0,0], [0,-10,-10]],[0,-5,-5]),[6.12372, 10.6066],eps=1e-5));
|
||||
assert_approx(project_plane([[3,4,5],[1,3,9],[4,7,13]], [[3,4,5],[1,3,9],[5,3,2]]),[[0,0],[0,4.58257569496],[-0.911684611677,-3.27326835354]]);
|
||||
assert_approx(project_plane([[3,4,5],[1,3,9],[4,7,13]], [[3,4,5],[1,3,9],[4,7,13]]),[[0,0],[0,4.58257569496],[6.26783170528,5.89188303637]]);
|
||||
|
||||
assert_approx(project_plane([2,3,4,2], [4,2,3]),[2.33181857677,-0.502272134844]);
|
||||
assert_approx(project_plane([2,3,4,2], [[1,1,1],[0,0,0]]),[[0.430748825729,0.146123238594],[0,0]]);
|
||||
assert_approx(project_plane([2,3,4,2]),[[0.920855800833,-0.11871629875,-0.371390676354,0],[-0.11871629875,0.821925551875,-0.557086014531,-2.77555756156e-17],[0.371390676354,0.557086014531,0.742781352708,-0.371390676354],[0,0,0,1]]);
|
||||
assert_approx(project_plane([[1,1,1],[3,1,3],[1,1,4]]),[[-1/sqrt(2),1/sqrt(2),0,0],[0,0,1,-1],[1/sqrt(2),1/sqrt(2),0,-sqrt(2)],[0,0,0,1]]);
|
||||
}
|
||||
test_project_plane();
|
||||
|
||||
|
||||
module test_lift_plane() {
|
||||
assert(approx(lift_plane([0,10*sqrt(2)/2], [-10,0,-10], [0,0,0], [0,-10,-10]),[-5,0,-5]));
|
||||
assert(approx(lift_plane([6.12372, 10.6066], [-10,0,-10], [0,0,0], [0,-10,-10]),[0,-5,-5],eps=1e-5));
|
||||
assert(approx(lift_plane([[-10,0,-10], [0,0,0], [0,-10,-10]],[0,10*sqrt(2)/2]),[-5,0,-5]));
|
||||
assert(approx(lift_plane([[-10,0,-10], [0,0,0], [0,-10,-10]],[6.12372, 10.6066]),[0,-5,-5],eps=1e-5));
|
||||
|
||||
assert_approx(lift_plane([[3,4,5],[1,3,9],[4,7,13]], [[0,0],[0,4.58257569496],[6.26783170528,5.89188303637]]),[[3,4,5],[1,3,9],[4,7,13]]);
|
||||
|
||||
assert_approx(project_plane([2,3,4,2]),[[0.920855800833,-0.11871629875,-0.371390676354,0],[-0.11871629875,0.821925551875,-0.557086014531,-2.77555756156e-17],[0.371390676354,0.557086014531,0.742781352708,-0.371390676354],[0,0,0,1]]);
|
||||
assert_approx(project_plane([[1,1,1],[3,1,3],[1,1,4]]),[[-1/sqrt(2),1/sqrt(2),0,0],[0,0,1,-1],[1/sqrt(2),1/sqrt(2),0,-sqrt(2)],[0,0,0,1]]);
|
||||
|
||||
N=30;
|
||||
data2 = array_group(rands(0,10,3*N,seed=77),3);
|
||||
data3 = [for (d=data2) [d.x,d.y,d.x*3+d.y*5+2]];
|
||||
planept = select(data3,0,N-4);
|
||||
testpt = select(data3, N-3,-1);
|
||||
newdata = project_plane(planept,testpt);
|
||||
assert_approx( lift_plane(planept, newdata), testpt);
|
||||
assert_approx( lift_plane(planept, project_plane(planept, last(testpt))), last(testpt));
|
||||
assert_approx( lift_plane(planept) * project_plane(planept) , ident(4));
|
||||
assert_approx( lift_plane([1,2,3,4]) * project_plane([1,2,3,4]) , ident(4));
|
||||
assert_approx( lift_plane([[1,1,1],[3,1,3],[1,1,4]]) * project_plane([[1,1,1],[3,1,3],[1,1,4]]) , ident(4));
|
||||
|
||||
}
|
||||
test_lift_plane();
|
||||
|
||||
|
|
7
vnf.scad
7
vnf.scad
|
@ -1084,11 +1084,10 @@ function vnf_halfspace(plane, vnf, closed=true) =
|
|||
len(newpaths)<=1 ? [newvert, concat(faces_edges_vertices[0], newpaths)]
|
||||
:
|
||||
let(
|
||||
faceregion = [for(p=newpaths) project_plane(select(newvert,p), plane)],
|
||||
facevnf = region_faces(faceregion,reverse=true),
|
||||
faceverts = lift_plane(facevnf[0], plane)
|
||||
faceregion = project_plane(plane, newpaths),
|
||||
facevnf = region_faces(faceregion,reverse=true)
|
||||
)
|
||||
vnf_merge([[newvert, faces_edges_vertices[0]], [faceverts, facevnf[1]]]);
|
||||
vnf_merge([[newvert, faces_edges_vertices[0]], lift_plane(plane, facevnf)]);
|
||||
|
||||
|
||||
function _assemble_paths(vertices, edges, paths=[],i=0) =
|
||||
|
|
Loading…
Reference in a new issue