Review of geometry.scad for speed

This commit is contained in:
RonaldoCMP 2021-04-10 20:09:03 +01:00
parent bdf30a5623
commit 49a3a166eb
4 changed files with 95 additions and 52 deletions

View file

@ -42,6 +42,7 @@ function is_homogeneous(l, depth=10) =
function is_homogenous(l, depth=10) = is_homogeneous(l, depth); function is_homogenous(l, depth=10) = is_homogeneous(l, depth);
function _same_type(a,b, depth) = function _same_type(a,b, depth) =
(depth==0) || (depth==0) ||
(is_undef(a) && is_undef(b)) || (is_undef(a) && is_undef(b)) ||
@ -97,7 +98,6 @@ function select(list, start, end) =
// Function: slice() // Function: slice()
// Topics: List Handling
// Usage: // Usage:
// list = slice(list,s,e); // list = slice(list,s,e);
// Description: // Description:
@ -476,7 +476,7 @@ function reverse(x) =
// l9 = list_rotate([1,2,3,4,5],6); // Returns: [2,3,4,5,1] // l9 = list_rotate([1,2,3,4,5],6); // Returns: [2,3,4,5,1]
function list_rotate(list,n=1) = function list_rotate(list,n=1) =
assert(is_list(list)||is_string(list), "Invalid list or string.") assert(is_list(list)||is_string(list), "Invalid list or string.")
assert(is_finite(n), "Invalid number") assert(is_int(n), "The rotation number should be integer")
let ( let (
ll = len(list), ll = len(list),
n = ((n % ll) + ll) % ll, n = ((n % ll) + ll) % ll,
@ -1332,6 +1332,8 @@ function permutations(l,n=2) =
// pairs = zip(a,b); // pairs = zip(a,b);
// triples = zip(a,b,c); // triples = zip(a,b,c);
// quads = zip([LIST1,LIST2,LIST3,LIST4]); // quads = zip([LIST1,LIST2,LIST3,LIST4]);
// Topics: List Handling, Iteration
// See Also: zip_long()
// Description: // Description:
// Zips together two or more lists into a single list. For example, if you have two // Zips together two or more lists into a single list. For example, if you have two
// lists [3,4,5], and [8,7,6], and zip them together, you get [[3,8],[4,7],[5,6]]. // lists [3,4,5], and [8,7,6], and zip them together, you get [[3,8],[4,7],[5,6]].
@ -1357,6 +1359,8 @@ function zip(a,b,c) =
// pairs = zip_long(a,b); // pairs = zip_long(a,b);
// triples = zip_long(a,b,c); // triples = zip_long(a,b,c);
// quads = zip_long([LIST1,LIST2,LIST3,LIST4]); // quads = zip_long([LIST1,LIST2,LIST3,LIST4]);
// Topics: List Handling, Iteration
// See Also: zip()
// Description: // Description:
// Zips together two or more lists into a single list. For example, if you have two // Zips together two or more lists into a single list. For example, if you have two
// lists [3,4,5], and [8,7,6], and zip them together, you get [[3,8],[4,7],[5,6]]. // lists [3,4,5], and [8,7,6], and zip them together, you get [[3,8],[4,7],[5,6]].
@ -1526,7 +1530,6 @@ function subindex(M, idx) =
// [[4,2], 91, false], // [[4,2], 91, false],
// [6, [3,4], undef]]; // [6, [3,4], undef]];
// submatrix(A,[0,2],[1,2]); // Returns [[17, "test"], [[3, 4], undef]] // submatrix(A,[0,2],[1,2]); // Returns [[17, "test"], [[3, 4], undef]]
function submatrix(M,idx1,idx2) = function submatrix(M,idx1,idx2) =
[for(i=idx1) [for(j=idx2) M[i][j] ] ]; [for(i=idx1) [for(j=idx2) M[i][j] ] ];
@ -1629,7 +1632,6 @@ function block_matrix(M) =
assert(badrows==[], "Inconsistent or invalid input") assert(badrows==[], "Inconsistent or invalid input")
bigM; bigM;
// Function: diagonal_matrix() // Function: diagonal_matrix()
// Usage: // Usage:
// mat = diagonal_matrix(diag, <offdiag>); // mat = diagonal_matrix(diag, <offdiag>);
@ -1855,7 +1857,7 @@ function transpose(arr, reverse=false) =
// A = matrix to test // A = matrix to test
// eps = epsilon for comparing equality. Default: 1e-12 // eps = epsilon for comparing equality. Default: 1e-12
function is_matrix_symmetric(A,eps=1e-12) = function is_matrix_symmetric(A,eps=1e-12) =
approx(A,transpose(A)); approx(A,transpose(A), eps);
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -205,7 +205,8 @@ function is_func(x) = version_num()>20210000 && is_function(x);
// Description: // Description:
// Tests whether input is a list of entries which all have the same list structure // Tests whether input is a list of entries which all have the same list structure
// and are filled with finite numerical data. You can optionally specify a required // and are filled with finite numerical data. You can optionally specify a required
// list structure with the pattern argument. It returns `true` for the empty list. // list structure with the pattern argument.
// It returns `true` for the empty list regardless the value of the `pattern`.
// Arguments: // Arguments:
// list = list to check // list = list to check
// pattern = optional pattern required to match // pattern = optional pattern required to match
@ -293,7 +294,7 @@ function default(v,dflt=undef) = is_undef(v)? dflt : v;
// v = The list whose items are being checked. // v = The list whose items are being checked.
// recursive = If true, sublists are checked recursively for defined values. The first sublist that has a defined item is returned. // recursive = If true, sublists are checked recursively for defined values. The first sublist that has a defined item is returned.
// Examples: // Examples:
// val = first_defined([undef,7,undef,true]); // Returns: 1 // val = first_defined([undef,7,undef,true]); // Returns: 7
function first_defined(v,recursive=false,_i=0) = function first_defined(v,recursive=false,_i=0) =
_i<len(v) && ( _i<len(v) && (
is_undef(v[_i]) || ( is_undef(v[_i]) || (
@ -605,15 +606,15 @@ function segs(r) =
// Module: no_children() // Module: no_children()
// Topics: Error Checking
// Usage: // Usage:
// no_children($children); // no_children($children);
// Topics: Error Checking
// See Also: no_function(), no_module()
// Description: // Description:
// Assert that the calling module does not support children. Prints an error message to this effect and fails if children are present, // Assert that the calling module does not support children. Prints an error message to this effect and fails if children are present,
// as indicated by its argument. // as indicated by its argument.
// Arguments: // Arguments:
// $children = number of children the module has. // $children = number of children the module has.
// See Also: no_function(), no_module()
// Example: // Example:
// module foo() { // module foo() {
// no_children($children); // no_children($children);
@ -676,7 +677,7 @@ function _valstr(x) =
// expected = The value that was expected. // expected = The value that was expected.
// info = Extra info to print out to make the error clearer. // info = Extra info to print out to make the error clearer.
// Example: // Example:
// assert_approx(1/3, 0.333333333333333, str("numer=",1,", demon=",3)); // assert_approx(1/3, 0.333333333333333, str("number=",1,", demon=",3));
module assert_approx(got, expected, info) { module assert_approx(got, expected, info) {
no_children($children); no_children($children);
if (!approx(got, expected)) { if (!approx(got, expected)) {

View file

@ -888,9 +888,47 @@ function plane3pt_indexed(points, i1, i2, i3) =
// Example: // Example:
// plane_from_normal([0,0,1], [2,2,2]); // Returns the xy plane passing through the point (2,2,2) // plane_from_normal([0,0,1], [2,2,2]); // Returns the xy plane passing through the point (2,2,2)
function plane_from_normal(normal, pt=[0,0,0]) = function plane_from_normal(normal, pt=[0,0,0]) =
assert( is_matrix([normal,pt],2,3) && !approx(norm(normal),0), assert( is_matrix([normal,pt],2,3) && !approx(norm(normal),0),
"Inputs `normal` and `pt` should 3d vectors/points and `normal` cannot be zero." ) "Inputs `normal` and `pt` should be 3d vectors/points and `normal` cannot be zero." )
concat(normal, normal*pt) / norm(normal); concat(normal, normal*pt) / norm(normal);
// Eigenvalues for a 3x3 symmetrical matrix in decreasing order
// Based on: https://en.wikipedia.org/wiki/Eigenvalue_algorithm
function _eigenvals_symm_3(M) =
let( p1 = pow(M[0][1],2) + pow(M[0][2],2) + pow(M[1][2],2) )
(p1<EPSILON)
? -sort(-[ M[0][0], M[1][1], M[2][2] ]) // diagonal matrix: eigenvals in decreasing order
: let( q = (M[0][0]+M[1][1]+M[2][2])/3,
B = (M - q*ident(3)),
dB = [B[0][0], B[1][1], B[2][2]],
p2 = dB*dB + 2*p1,
p = sqrt(p2/6),
r = det3(B/p)/2,
ph = acos(constrain(r,-1,1))/3,
e1 = q + 2*p*cos(ph),
e3 = q + 2*p*cos(ph+120),
e2 = 3*q - e1 - e3 )
[ e1, e2, e3 ];
// i-th normalized eigenvector of 3x3 symmetrical matrix M from its eigenvalues
// using CayleyHamilton theorem according to:
// https://en.wikipedia.org/wiki/Eigenvalue_algorithm
function _eigenvec_symm_3(M,evals,i=0) =
let( A = (M - evals[(i+1)%3]*ident(3)) * (M - evals[(i+2)%3]*ident(3)) ,
k = max_index( [for(i=[0:2]) norm(A[i]) ])
)
norm(A[k])<EPSILON ? ident(3)[k] : A[k]/norm(A[k]);
// eigenvalues of the covariance matrix of points
function _covariance_evals(points) =
let( pm = sum(points)/len(points), // mean point
Y = [ for(i=[0:len(points)-1]) points[i] - pm ],
M = transpose(Y)*Y , // covariance matrix
evals = _eigenvals_symm_3(M) )
[pm, evals, M ];
// Function: plane_from_points() // Function: plane_from_points()
@ -899,11 +937,9 @@ function plane_from_normal(normal, pt=[0,0,0]) =
// Description: // Description:
// Given a list of 3 or more coplanar 3D points, returns the coefficients of the normalized cartesian equation of a plane, // Given a list of 3 or more coplanar 3D points, returns the coefficients of the normalized cartesian equation of a plane,
// that is [A,B,C,D] where Ax+By+Cz=D is the equation of the plane where norm([A,B,C])=1. // that is [A,B,C,D] where Ax+By+Cz=D is the equation of the plane where norm([A,B,C])=1.
// If `fast` is false and the points in the list are collinear or not coplanar, then `undef` is returned. // If the points in the list are collinear or not coplanar, then `undef` is returned.
// if `fast` is true, then the coplanarity test is skipped and a plane passing through 3 non-collinear arbitrary points is returned.
// Arguments: // Arguments:
// points = The list of points to find the plane of. // points = The list of points to find the plane of.
// fast = If true, don't verify that all points in the list are coplanar. Default: false
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) // eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
// Example(3D): // Example(3D):
// xyzpath = rot(45, v=[-0.3,1,0], p=path3d(star(n=6,id=70,d=100), 70)); // xyzpath = rot(45, v=[-0.3,1,0], p=path3d(star(n=6,id=70,d=100), 70));
@ -911,20 +947,21 @@ function plane_from_normal(normal, pt=[0,0,0]) =
// #stroke(xyzpath,closed=true); // #stroke(xyzpath,closed=true);
// cp = centroid(xyzpath); // cp = centroid(xyzpath);
// move(cp) rot(from=UP,to=plane_normal(plane)) anchor_arrow(); // move(cp) rot(from=UP,to=plane_normal(plane)) anchor_arrow();
function plane_from_points(points, fast=false, eps=EPSILON) = function plane_from_points(points,fast=false, eps=EPSILON) =
assert( is_path(points,dim=3), "Improper 3d point list." ) assert( is_path(points,dim=3), "Improper 3d point list." )
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
let( len(points) == 3
indices = noncollinear_triple(points,error=false) ? let( plane = plane3pt(points[0],points[1],points[2]) )
) plane==[] ? undef : plane
indices==[] ? undef : : let(
let( cov_evals = _covariance_evals(points),
p1 = points[indices[0]], pm = cov_evals[0],
p2 = points[indices[1]], evals = cov_evals[1],
p3 = points[indices[2]], M = cov_evals[2],
plane = plane3pt(p1,p2,p3) evec = _eigenvec_symm_3(M,evals,i=2) )
) // echo(error_points_plane= abs(max(points*evec)-pm*evec), limit=eps)
fast || points_on_plane(points,plane,eps=eps) ? plane : undef; !fast && abs(max(points*evec)-pm*evec)>eps*evals[0] ? undef :
[ each evec, pm*evec] ;
// Function: plane_from_polygon() // Function: plane_from_polygon()
@ -948,12 +985,11 @@ function plane_from_points(points, fast=false, eps=EPSILON) =
function plane_from_polygon(poly, fast=false, eps=EPSILON) = function plane_from_polygon(poly, fast=false, eps=EPSILON) =
assert( is_path(poly,dim=3), "Invalid polygon." ) assert( is_path(poly,dim=3), "Invalid polygon." )
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
let( len(poly)==3 ? plane3pt(poly[0],poly[1],poly[2]) :
poly = deduplicate(poly), let( triple = sort(noncollinear_triple(poly,error=false)) )
n = polygon_normal(poly), triple==[] ? [] :
plane = [n.x, n.y, n.z, n*poly[0]] let( plane = plane3pt(poly[triple[0]],poly[triple[1]],poly[triple[2]]))
) fast? plane: points_on_plane(poly, plane, eps=eps)? plane: [];
fast? plane: coplanar(poly,eps=eps)? plane: [];
// Function: plane_normal() // Function: plane_normal()
@ -1252,9 +1288,11 @@ function coplanar(points, eps=EPSILON) =
len(points)<=2 ? false len(points)<=2 ? false
: let( ip = noncollinear_triple(points,error=false,eps=eps) ) : let( ip = noncollinear_triple(points,error=false,eps=eps) )
ip == [] ? false : ip == [] ? false :
let( plane = plane3pt(points[ip[0]],points[ip[1]],points[ip[2]]), let(
normal = point3d(plane) ) plane = plane3pt(points[ip[0]],points[ip[1]],points[ip[2]]),
max( points*normal ) - plane[3]< eps*norm(normal); normal = point3d(plane),
pt_nrm = points*normal )
abs(max(max(pt_nrm)-plane[3], -min(pt_nrm)+plane[3])) < eps;
// Function: points_on_plane() // Function: points_on_plane()
@ -1665,7 +1703,7 @@ function noncollinear_triple(points,error=true,eps=EPSILON) =
n = (pb-pa)/nrm, n = (pb-pa)/nrm,
distlist = [for(i=[0:len(points)-1]) _dist2line(points[i]-pa, n)] distlist = [for(i=[0:len(points)-1]) _dist2line(points[i]-pa, n)]
) )
max(distlist)<eps max(distlist)<eps*nrm
? assert(!error, "Cannot find three noncollinear points in pointlist.") ? assert(!error, "Cannot find three noncollinear points in pointlist.")
[] []
: [0,b,max_index(distlist)]; : [0,b,max_index(distlist)];
@ -1746,8 +1784,8 @@ function polygon_area(poly, signed=false) =
v1 = poly[i] - poly[0], v1 = poly[i] - poly[0],
v2 = poly[i+1] - poly[0] v2 = poly[i+1] - poly[0]
) )
cross(v1,v2) * n cross(v1,v2)
])/2 ])* n/2
) )
signed ? total : abs(total); signed ? total : abs(total);
@ -1920,7 +1958,7 @@ function centroid(poly, eps=EPSILON) =
let( let(
n = len(poly[0])==2 ? 1 : n = len(poly[0])==2 ? 1 :
let( let(
plane = plane_from_points(poly, fast=true) ) plane = plane_from_points(poly) )
assert( !is_undef(plane), "The polygon must be planar." ) assert( !is_undef(plane), "The polygon must be planar." )
plane_normal(plane), plane_normal(plane),
v0 = poly[0] , v0 = poly[0] ,
@ -2008,7 +2046,7 @@ function point_in_polygon(point, poly, nonzero=true, eps=EPSILON) =
// poly = The list of 2D path points for the perimeter of the polygon. // poly = The list of 2D path points for the perimeter of the polygon.
function polygon_is_clockwise(poly) = function polygon_is_clockwise(poly) =
assert(is_path(poly,dim=2), "Input should be a 2d path") assert(is_path(poly,dim=2), "Input should be a 2d path")
polygon_area(poly, signed=true)<0; polygon_area(poly, signed=true)<-EPSILON;
// Function: clockwise_polygon() // Function: clockwise_polygon()

View file

@ -705,7 +705,7 @@ module test_plane3pt_indexed() {
module test_plane_from_points() { module test_plane_from_points() {
assert_std(plane_from_points([[0,0,20], [0,10,10], [0,0,0], [0,5,3]]), [1,0,0,0]); assert_std(plane_from_points([[0,0,20], [0,10,10], [0,0,0], [0,5,3]]), [1,0,0,0]);
assert_std(plane_from_points([[2,0,20], [2,10,10], [2,0,0], [2,3,4]]), [1,0,0,2]); assert_approx(plane_from_points([[2,0,20], [2,10,10], [2,0,0], [2,3,4]]), [1,0,0,2]);
assert_std(plane_from_points([[0,0,0], [10,0,10], [0,0,20], [5,0,7]]), [0,1,0,0]); assert_std(plane_from_points([[0,0,0], [10,0,10], [0,0,20], [5,0,7]]), [0,1,0,0]);
assert_std(plane_from_points([[0,2,0], [10,2,10], [0,2,20], [4,2,3]]), [0,1,0,2]); assert_std(plane_from_points([[0,2,0], [10,2,10], [0,2,20], [4,2,3]]), [0,1,0,2]);
assert_std(plane_from_points([[0,0,0], [10,10,0], [20,0,0], [8,3,0]]), [0,0,1,0]); assert_std(plane_from_points([[0,0,0], [10,10,0], [20,0,0], [8,3,0]]), [0,0,1,0]);
@ -836,7 +836,9 @@ module test_cleanup_path() {
module test_polygon_area() { module test_polygon_area() {
assert(approx(polygon_area([[1,1],[-1,1],[-1,-1],[1,-1]]), 4)); assert(approx(polygon_area([[1,1],[-1,1],[-1,-1],[1,-1]]), 4));
assert(approx(polygon_area(circle(r=50,$fn=1000),signed=true), -PI*50*50, eps=0.1)); assert(approx(polygon_area(circle(r=50,$fn=1000),signed=true), -PI*50*50, eps=0.1));
assert(approx(polygon_area(rot([13,27,75],p=path3d(circle(r=50,$fn=1000),fill=23)),signed=true), PI*50*50, eps=0.1)); assert(approx(polygon_area(rot([13,27,75],
p=path3d(circle(r=50,$fn=1000),fill=23)),
signed=true), -PI*50*50, eps=0.1));
} }
*test_polygon_area(); *test_polygon_area();