mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
Review of geometry.scad for speed
This commit is contained in:
parent
bdf30a5623
commit
49a3a166eb
4 changed files with 95 additions and 52 deletions
16
arrays.scad
16
arrays.scad
|
@ -41,6 +41,7 @@ function is_homogeneous(l, depth=10) =
|
|||
[] == [for(i=[1:len(l)-1]) if( ! _same_type(l[i],l0, depth+1) ) 0 ];
|
||||
|
||||
function is_homogenous(l, depth=10) = is_homogeneous(l, depth);
|
||||
|
||||
|
||||
function _same_type(a,b, depth) =
|
||||
(depth==0) ||
|
||||
|
@ -50,7 +51,7 @@ function _same_type(a,b, depth) =
|
|||
(is_string(a) && is_string(b)) ||
|
||||
(is_list(a) && is_list(b) && len(a)==len(b)
|
||||
&& []==[for(i=idx(a)) if( ! _same_type(a[i],b[i],depth-1) ) 0] );
|
||||
|
||||
|
||||
|
||||
// Function: select()
|
||||
// Topics: List Handling
|
||||
|
@ -97,7 +98,6 @@ function select(list, start, end) =
|
|||
|
||||
|
||||
// Function: slice()
|
||||
// Topics: List Handling
|
||||
// Usage:
|
||||
// list = slice(list,s,e);
|
||||
// Description:
|
||||
|
@ -476,7 +476,7 @@ function reverse(x) =
|
|||
// l9 = list_rotate([1,2,3,4,5],6); // Returns: [2,3,4,5,1]
|
||||
function list_rotate(list,n=1) =
|
||||
assert(is_list(list)||is_string(list), "Invalid list or string.")
|
||||
assert(is_finite(n), "Invalid number")
|
||||
assert(is_int(n), "The rotation number should be integer")
|
||||
let (
|
||||
ll = len(list),
|
||||
n = ((n % ll) + ll) % ll,
|
||||
|
@ -990,7 +990,7 @@ function _sort_vectors(arr, idxlist, _i=0) =
|
|||
_sort_vectors(equal, idxlist, _i+1),
|
||||
_sort_vectors(greater, idxlist, _i ) );
|
||||
|
||||
|
||||
|
||||
// sorting using compare_vals(); returns indexed list when `indexed==true`
|
||||
function _sort_general(arr, idx=undef, indexed=false) =
|
||||
(len(arr)<=1) ? arr :
|
||||
|
@ -1332,6 +1332,8 @@ function permutations(l,n=2) =
|
|||
// pairs = zip(a,b);
|
||||
// triples = zip(a,b,c);
|
||||
// quads = zip([LIST1,LIST2,LIST3,LIST4]);
|
||||
// Topics: List Handling, Iteration
|
||||
// See Also: zip_long()
|
||||
// Description:
|
||||
// Zips together two or more lists into a single list. For example, if you have two
|
||||
// lists [3,4,5], and [8,7,6], and zip them together, you get [[3,8],[4,7],[5,6]].
|
||||
|
@ -1357,6 +1359,8 @@ function zip(a,b,c) =
|
|||
// pairs = zip_long(a,b);
|
||||
// triples = zip_long(a,b,c);
|
||||
// quads = zip_long([LIST1,LIST2,LIST3,LIST4]);
|
||||
// Topics: List Handling, Iteration
|
||||
// See Also: zip()
|
||||
// Description:
|
||||
// Zips together two or more lists into a single list. For example, if you have two
|
||||
// lists [3,4,5], and [8,7,6], and zip them together, you get [[3,8],[4,7],[5,6]].
|
||||
|
@ -1526,7 +1530,6 @@ function subindex(M, idx) =
|
|||
// [[4,2], 91, false],
|
||||
// [6, [3,4], undef]];
|
||||
// submatrix(A,[0,2],[1,2]); // Returns [[17, "test"], [[3, 4], undef]]
|
||||
|
||||
function submatrix(M,idx1,idx2) =
|
||||
[for(i=idx1) [for(j=idx2) M[i][j] ] ];
|
||||
|
||||
|
@ -1629,7 +1632,6 @@ function block_matrix(M) =
|
|||
assert(badrows==[], "Inconsistent or invalid input")
|
||||
bigM;
|
||||
|
||||
|
||||
// Function: diagonal_matrix()
|
||||
// Usage:
|
||||
// mat = diagonal_matrix(diag, <offdiag>);
|
||||
|
@ -1855,7 +1857,7 @@ function transpose(arr, reverse=false) =
|
|||
// A = matrix to test
|
||||
// eps = epsilon for comparing equality. Default: 1e-12
|
||||
function is_matrix_symmetric(A,eps=1e-12) =
|
||||
approx(A,transpose(A));
|
||||
approx(A,transpose(A), eps);
|
||||
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
|
11
common.scad
11
common.scad
|
@ -205,7 +205,8 @@ function is_func(x) = version_num()>20210000 && is_function(x);
|
|||
// Description:
|
||||
// Tests whether input is a list of entries which all have the same list structure
|
||||
// and are filled with finite numerical data. You can optionally specify a required
|
||||
// list structure with the pattern argument. It returns `true` for the empty list.
|
||||
// list structure with the pattern argument.
|
||||
// It returns `true` for the empty list regardless the value of the `pattern`.
|
||||
// Arguments:
|
||||
// list = list to check
|
||||
// pattern = optional pattern required to match
|
||||
|
@ -293,7 +294,7 @@ function default(v,dflt=undef) = is_undef(v)? dflt : v;
|
|||
// v = The list whose items are being checked.
|
||||
// recursive = If true, sublists are checked recursively for defined values. The first sublist that has a defined item is returned.
|
||||
// Examples:
|
||||
// val = first_defined([undef,7,undef,true]); // Returns: 1
|
||||
// val = first_defined([undef,7,undef,true]); // Returns: 7
|
||||
function first_defined(v,recursive=false,_i=0) =
|
||||
_i<len(v) && (
|
||||
is_undef(v[_i]) || (
|
||||
|
@ -605,15 +606,15 @@ function segs(r) =
|
|||
|
||||
|
||||
// Module: no_children()
|
||||
// Topics: Error Checking
|
||||
// Usage:
|
||||
// no_children($children);
|
||||
// Topics: Error Checking
|
||||
// See Also: no_function(), no_module()
|
||||
// Description:
|
||||
// Assert that the calling module does not support children. Prints an error message to this effect and fails if children are present,
|
||||
// as indicated by its argument.
|
||||
// Arguments:
|
||||
// $children = number of children the module has.
|
||||
// See Also: no_function(), no_module()
|
||||
// Example:
|
||||
// module foo() {
|
||||
// no_children($children);
|
||||
|
@ -676,7 +677,7 @@ function _valstr(x) =
|
|||
// expected = The value that was expected.
|
||||
// info = Extra info to print out to make the error clearer.
|
||||
// Example:
|
||||
// assert_approx(1/3, 0.333333333333333, str("numer=",1,", demon=",3));
|
||||
// assert_approx(1/3, 0.333333333333333, str("number=",1,", demon=",3));
|
||||
module assert_approx(got, expected, info) {
|
||||
no_children($children);
|
||||
if (!approx(got, expected)) {
|
||||
|
|
112
geometry.scad
112
geometry.scad
|
@ -888,22 +888,58 @@ function plane3pt_indexed(points, i1, i2, i3) =
|
|||
// Example:
|
||||
// plane_from_normal([0,0,1], [2,2,2]); // Returns the xy plane passing through the point (2,2,2)
|
||||
function plane_from_normal(normal, pt=[0,0,0]) =
|
||||
assert( is_matrix([normal,pt],2,3) && !approx(norm(normal),0),
|
||||
"Inputs `normal` and `pt` should 3d vectors/points and `normal` cannot be zero." )
|
||||
concat(normal, normal*pt) / norm(normal);
|
||||
assert( is_matrix([normal,pt],2,3) && !approx(norm(normal),0),
|
||||
"Inputs `normal` and `pt` should be 3d vectors/points and `normal` cannot be zero." )
|
||||
concat(normal, normal*pt) / norm(normal);
|
||||
|
||||
|
||||
// Eigenvalues for a 3x3 symmetrical matrix in decreasing order
|
||||
// Based on: https://en.wikipedia.org/wiki/Eigenvalue_algorithm
|
||||
function _eigenvals_symm_3(M) =
|
||||
let( p1 = pow(M[0][1],2) + pow(M[0][2],2) + pow(M[1][2],2) )
|
||||
(p1<EPSILON)
|
||||
? -sort(-[ M[0][0], M[1][1], M[2][2] ]) // diagonal matrix: eigenvals in decreasing order
|
||||
: let( q = (M[0][0]+M[1][1]+M[2][2])/3,
|
||||
B = (M - q*ident(3)),
|
||||
dB = [B[0][0], B[1][1], B[2][2]],
|
||||
p2 = dB*dB + 2*p1,
|
||||
p = sqrt(p2/6),
|
||||
r = det3(B/p)/2,
|
||||
ph = acos(constrain(r,-1,1))/3,
|
||||
e1 = q + 2*p*cos(ph),
|
||||
e3 = q + 2*p*cos(ph+120),
|
||||
e2 = 3*q - e1 - e3 )
|
||||
[ e1, e2, e3 ];
|
||||
|
||||
|
||||
// i-th normalized eigenvector of 3x3 symmetrical matrix M from its eigenvalues
|
||||
// using Cayley–Hamilton theorem according to:
|
||||
// https://en.wikipedia.org/wiki/Eigenvalue_algorithm
|
||||
function _eigenvec_symm_3(M,evals,i=0) =
|
||||
let( A = (M - evals[(i+1)%3]*ident(3)) * (M - evals[(i+2)%3]*ident(3)) ,
|
||||
k = max_index( [for(i=[0:2]) norm(A[i]) ])
|
||||
)
|
||||
norm(A[k])<EPSILON ? ident(3)[k] : A[k]/norm(A[k]);
|
||||
|
||||
|
||||
// eigenvalues of the covariance matrix of points
|
||||
function _covariance_evals(points) =
|
||||
let( pm = sum(points)/len(points), // mean point
|
||||
Y = [ for(i=[0:len(points)-1]) points[i] - pm ],
|
||||
M = transpose(Y)*Y , // covariance matrix
|
||||
evals = _eigenvals_symm_3(M) )
|
||||
[pm, evals, M ];
|
||||
|
||||
|
||||
// Function: plane_from_points()
|
||||
// Usage:
|
||||
// plane_from_points(points, <fast>, <eps>);
|
||||
// Description:
|
||||
// Given a list of 3 or more coplanar 3D points, returns the coefficients of the normalized cartesian equation of a plane,
|
||||
// that is [A,B,C,D] where Ax+By+Cz=D is the equation of the plane where norm([A,B,C])=1.
|
||||
// If `fast` is false and the points in the list are collinear or not coplanar, then `undef` is returned.
|
||||
// if `fast` is true, then the coplanarity test is skipped and a plane passing through 3 non-collinear arbitrary points is returned.
|
||||
// If the points in the list are collinear or not coplanar, then `undef` is returned.
|
||||
// Arguments:
|
||||
// points = The list of points to find the plane of.
|
||||
// fast = If true, don't verify that all points in the list are coplanar. Default: false
|
||||
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
||||
// Example(3D):
|
||||
// xyzpath = rot(45, v=[-0.3,1,0], p=path3d(star(n=6,id=70,d=100), 70));
|
||||
|
@ -911,20 +947,21 @@ function plane_from_normal(normal, pt=[0,0,0]) =
|
|||
// #stroke(xyzpath,closed=true);
|
||||
// cp = centroid(xyzpath);
|
||||
// move(cp) rot(from=UP,to=plane_normal(plane)) anchor_arrow();
|
||||
function plane_from_points(points, fast=false, eps=EPSILON) =
|
||||
function plane_from_points(points,fast=false, eps=EPSILON) =
|
||||
assert( is_path(points,dim=3), "Improper 3d point list." )
|
||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||
let(
|
||||
indices = noncollinear_triple(points,error=false)
|
||||
)
|
||||
indices==[] ? undef :
|
||||
let(
|
||||
p1 = points[indices[0]],
|
||||
p2 = points[indices[1]],
|
||||
p3 = points[indices[2]],
|
||||
plane = plane3pt(p1,p2,p3)
|
||||
)
|
||||
fast || points_on_plane(points,plane,eps=eps) ? plane : undef;
|
||||
len(points) == 3
|
||||
? let( plane = plane3pt(points[0],points[1],points[2]) )
|
||||
plane==[] ? undef : plane
|
||||
: let(
|
||||
cov_evals = _covariance_evals(points),
|
||||
pm = cov_evals[0],
|
||||
evals = cov_evals[1],
|
||||
M = cov_evals[2],
|
||||
evec = _eigenvec_symm_3(M,evals,i=2) )
|
||||
// echo(error_points_plane= abs(max(points*evec)-pm*evec), limit=eps)
|
||||
!fast && abs(max(points*evec)-pm*evec)>eps*evals[0] ? undef :
|
||||
[ each evec, pm*evec] ;
|
||||
|
||||
|
||||
// Function: plane_from_polygon()
|
||||
|
@ -945,17 +982,16 @@ function plane_from_points(points, fast=false, eps=EPSILON) =
|
|||
// #stroke(xyzpath,closed=true);
|
||||
// cp = centroid(xyzpath);
|
||||
// move(cp) rot(from=UP,to=plane_normal(plane)) anchor_arrow();
|
||||
function plane_from_polygon(poly, fast=false, eps=EPSILON) =
|
||||
function plane_from_polygon(poly, fast=false, eps=EPSILON) =
|
||||
assert( is_path(poly,dim=3), "Invalid polygon." )
|
||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||
let(
|
||||
poly = deduplicate(poly),
|
||||
n = polygon_normal(poly),
|
||||
plane = [n.x, n.y, n.z, n*poly[0]]
|
||||
)
|
||||
fast? plane: coplanar(poly,eps=eps)? plane: [];
|
||||
|
||||
|
||||
len(poly)==3 ? plane3pt(poly[0],poly[1],poly[2]) :
|
||||
let( triple = sort(noncollinear_triple(poly,error=false)) )
|
||||
triple==[] ? [] :
|
||||
let( plane = plane3pt(poly[triple[0]],poly[triple[1]],poly[triple[2]]))
|
||||
fast? plane: points_on_plane(poly, plane, eps=eps)? plane: [];
|
||||
|
||||
|
||||
// Function: plane_normal()
|
||||
// Usage:
|
||||
// plane_normal(plane);
|
||||
|
@ -1252,9 +1288,11 @@ function coplanar(points, eps=EPSILON) =
|
|||
len(points)<=2 ? false
|
||||
: let( ip = noncollinear_triple(points,error=false,eps=eps) )
|
||||
ip == [] ? false :
|
||||
let( plane = plane3pt(points[ip[0]],points[ip[1]],points[ip[2]]),
|
||||
normal = point3d(plane) )
|
||||
max( points*normal ) - plane[3]< eps*norm(normal);
|
||||
let(
|
||||
plane = plane3pt(points[ip[0]],points[ip[1]],points[ip[2]]),
|
||||
normal = point3d(plane),
|
||||
pt_nrm = points*normal )
|
||||
abs(max(max(pt_nrm)-plane[3], -min(pt_nrm)+plane[3])) < eps;
|
||||
|
||||
|
||||
// Function: points_on_plane()
|
||||
|
@ -1665,11 +1703,11 @@ function noncollinear_triple(points,error=true,eps=EPSILON) =
|
|||
n = (pb-pa)/nrm,
|
||||
distlist = [for(i=[0:len(points)-1]) _dist2line(points[i]-pa, n)]
|
||||
)
|
||||
max(distlist)<eps
|
||||
max(distlist)<eps*nrm
|
||||
? assert(!error, "Cannot find three noncollinear points in pointlist.")
|
||||
[]
|
||||
: [0,b,max_index(distlist)];
|
||||
|
||||
|
||||
|
||||
// Function: pointlist_bounds()
|
||||
// Usage:
|
||||
|
@ -1746,9 +1784,9 @@ function polygon_area(poly, signed=false) =
|
|||
v1 = poly[i] - poly[0],
|
||||
v2 = poly[i+1] - poly[0]
|
||||
)
|
||||
cross(v1,v2) * n
|
||||
])/2
|
||||
)
|
||||
cross(v1,v2)
|
||||
])* n/2
|
||||
)
|
||||
signed ? total : abs(total);
|
||||
|
||||
|
||||
|
@ -1920,7 +1958,7 @@ function centroid(poly, eps=EPSILON) =
|
|||
let(
|
||||
n = len(poly[0])==2 ? 1 :
|
||||
let(
|
||||
plane = plane_from_points(poly, fast=true) )
|
||||
plane = plane_from_points(poly) )
|
||||
assert( !is_undef(plane), "The polygon must be planar." )
|
||||
plane_normal(plane),
|
||||
v0 = poly[0] ,
|
||||
|
@ -2008,7 +2046,7 @@ function point_in_polygon(point, poly, nonzero=true, eps=EPSILON) =
|
|||
// poly = The list of 2D path points for the perimeter of the polygon.
|
||||
function polygon_is_clockwise(poly) =
|
||||
assert(is_path(poly,dim=2), "Input should be a 2d path")
|
||||
polygon_area(poly, signed=true)<0;
|
||||
polygon_area(poly, signed=true)<-EPSILON;
|
||||
|
||||
|
||||
// Function: clockwise_polygon()
|
||||
|
|
|
@ -705,11 +705,11 @@ module test_plane3pt_indexed() {
|
|||
|
||||
module test_plane_from_points() {
|
||||
assert_std(plane_from_points([[0,0,20], [0,10,10], [0,0,0], [0,5,3]]), [1,0,0,0]);
|
||||
assert_std(plane_from_points([[2,0,20], [2,10,10], [2,0,0], [2,3,4]]), [1,0,0,2]);
|
||||
assert_approx(plane_from_points([[2,0,20], [2,10,10], [2,0,0], [2,3,4]]), [1,0,0,2]);
|
||||
assert_std(plane_from_points([[0,0,0], [10,0,10], [0,0,20], [5,0,7]]), [0,1,0,0]);
|
||||
assert_std(plane_from_points([[0,2,0], [10,2,10], [0,2,20], [4,2,3]]), [0,1,0,2]);
|
||||
assert_std(plane_from_points([[0,0,0], [10,10,0], [20,0,0], [8,3,0]]), [0,0,1,0]);
|
||||
assert_std(plane_from_points([[0,0,2], [10,10,2], [20,0,2], [3,4,2]]), [0,0,1,2]);
|
||||
assert_std(plane_from_points([[0,0,2], [10,10,2], [20,0,2], [3,4,2]]), [0,0,1,2]);
|
||||
}
|
||||
*test_plane_from_points();
|
||||
|
||||
|
@ -836,7 +836,9 @@ module test_cleanup_path() {
|
|||
module test_polygon_area() {
|
||||
assert(approx(polygon_area([[1,1],[-1,1],[-1,-1],[1,-1]]), 4));
|
||||
assert(approx(polygon_area(circle(r=50,$fn=1000),signed=true), -PI*50*50, eps=0.1));
|
||||
assert(approx(polygon_area(rot([13,27,75],p=path3d(circle(r=50,$fn=1000),fill=23)),signed=true), PI*50*50, eps=0.1));
|
||||
assert(approx(polygon_area(rot([13,27,75],
|
||||
p=path3d(circle(r=50,$fn=1000),fill=23)),
|
||||
signed=true), -PI*50*50, eps=0.1));
|
||||
}
|
||||
*test_polygon_area();
|
||||
|
||||
|
|
Loading…
Reference in a new issue