Merge pull request #713 from adrianVmariano/master

list_remove fix
This commit is contained in:
Revar Desmera 2021-10-29 23:17:35 -07:00 committed by GitHub
commit 49be01970a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 404 additions and 230 deletions

View file

@ -650,7 +650,7 @@ function sort(list, idx=undef) =
is_string(list)? str_join(sort([for (x = list) x],idx)) : is_string(list)? str_join(sort([for (x = list) x],idx)) :
!is_list(list) || len(list)<=1 ? list : !is_list(list) || len(list)<=1 ? list :
is_homogeneous(list,1) is_homogeneous(list,1)
? let(size = array_dim(list[0])) ? let(size = list_shape(list[0]))
size==0 ? _sort_scalars(list) size==0 ? _sort_scalars(list)
: len(size)!=1 ? _sort_general(list,idx) : len(size)!=1 ? _sort_general(list,idx)
: is_undef(idx) ? _sort_vectors(list) : is_undef(idx) ? _sort_vectors(list)
@ -692,7 +692,7 @@ function sortidx(list, idx=undef) =
!is_list(list) || len(list)<=1 ? list : !is_list(list) || len(list)<=1 ? list :
is_homogeneous(list,1) is_homogeneous(list,1)
? let( ? let(
size = array_dim(list[0]), size = list_shape(list[0]),
aug = ! (size==0 || len(size)==1) ? 0 // for general sorting aug = ! (size==0 || len(size)==1) ? 0 // for general sorting
: [for(i=[0:len(list)-1]) concat(i,list[i])], // for scalar or vector sorting : [for(i=[0:len(list)-1]) concat(i,list[i])], // for scalar or vector sorting
lidx = size==0? [1] : // scalar sorting lidx = size==0? [1] : // scalar sorting

View file

@ -1860,6 +1860,7 @@ function ccw_polygon(poly) =
// Arguments: // Arguments:
// poly = The list of the path points for the perimeter of the polygon. // poly = The list of the path points for the perimeter of the polygon.
function reverse_polygon(poly) = function reverse_polygon(poly) =
let(poly=force_path(poly,"poly"))
assert(is_path(poly), "Input should be a polygon") assert(is_path(poly), "Input should be a polygon")
[ poly[0], for(i=[len(poly)-1:-1:1]) poly[i] ]; [ poly[0], for(i=[len(poly)-1:-1:1]) poly[i] ];
@ -1878,6 +1879,7 @@ function reverse_polygon(poly) =
// Example: // Example:
// polygon_shift([[3,4], [8,2], [0,2], [-4,0]], 2); // Returns [[0,2], [-4,0], [3,4], [8,2]] // polygon_shift([[3,4], [8,2], [0,2], [-4,0]], 2); // Returns [[0,2], [-4,0], [3,4], [8,2]]
function polygon_shift(poly, i) = function polygon_shift(poly, i) =
let(poly=force_path(poly,"poly"))
assert(is_path(poly), "Invalid polygon." ) assert(is_path(poly), "Invalid polygon." )
list_rotate(cleanup_path(poly), i); list_rotate(cleanup_path(poly), i);
@ -1895,7 +1897,7 @@ function polygon_shift(poly, i) =
// makes the total sum over all pairs as small as possible. Returns the reindexed polygon. Note // makes the total sum over all pairs as small as possible. Returns the reindexed polygon. Note
// that the geometry of the polygon is not changed by this operation, just the labeling of its // that the geometry of the polygon is not changed by this operation, just the labeling of its
// vertices. If the input polygon is 2d and is oriented opposite the reference then its point order is // vertices. If the input polygon is 2d and is oriented opposite the reference then its point order is
// flipped. // reversed.
// Arguments: // Arguments:
// reference = reference polygon path // reference = reference polygon path
// poly = input polygon to reindex // poly = input polygon to reindex
@ -1913,7 +1915,9 @@ function polygon_shift(poly, i) =
// move_copies(concat(circ,pent)) circle(r=.1,$fn=32); // move_copies(concat(circ,pent)) circle(r=.1,$fn=32);
// color("red") move_copies([pent[0],circ[0]]) circle(r=.1,$fn=32); // color("red") move_copies([pent[0],circ[0]]) circle(r=.1,$fn=32);
// color("blue") translate(reindexed[0])circle(r=.1,$fn=32); // color("blue") translate(reindexed[0])circle(r=.1,$fn=32);
function reindex_polygon(reference, poly, return_error=false) = function reindex_polygon(reference, poly, return_error=false) =
let(reference=force_path(reference,"reference"),
poly=force_path(poly,"poly"))
assert(is_path(reference) && is_path(poly,dim=len(reference[0])), assert(is_path(reference) && is_path(poly,dim=len(reference[0])),
"Invalid polygon(s) or incompatible dimensions. " ) "Invalid polygon(s) or incompatible dimensions. " )
assert(len(reference)==len(poly), "The polygons must have the same length.") assert(len(reference)==len(poly), "The polygons must have the same length.")
@ -1971,6 +1975,8 @@ function polygon_shift(poly, i) =
// stroke(ellipse, width=.5, closed=true); // stroke(ellipse, width=.5, closed=true);
// color("blue")stroke(aligned,width=.5,closed=true); // color("blue")stroke(aligned,width=.5,closed=true);
function align_polygon(reference, poly, angles, cp, trans, return_ind=false) = function align_polygon(reference, poly, angles, cp, trans, return_ind=false) =
let(reference=force_path(reference,"reference"),
poly=force_path(poly,"poly"))
assert(is_undef(trans) || (is_undef(angles) && is_undef(cp)), "Cannot give both angles/cp and trans as input") assert(is_undef(trans) || (is_undef(angles) && is_undef(cp)), "Cannot give both angles/cp and trans as input")
let( let(
trans = is_def(trans) ? trans : trans = is_def(trans) ? trans :
@ -1978,8 +1984,8 @@ function align_polygon(reference, poly, angles, cp, trans, return_ind=false) =
"The `angle` parameter must be a range or a non void list of numbers.") "The `angle` parameter must be a range or a non void list of numbers.")
[for(angle=angles) zrot(angle,cp=cp)] [for(angle=angles) zrot(angle,cp=cp)]
) )
assert(is_path(reference,dim=2) && is_path(poly,dim=2), assert(is_path(reference,dim=2), "reference must be a 2D polygon")
"Invalid polygon(s). " ) assert(is_path(poly,dim=2), "poly must be a 2D polygon")
assert(len(reference)==len(poly), "The polygons must have the same length.") assert(len(reference)==len(poly), "The polygons must have the same length.")
let( // alignments is a vector of entries of the form: [polygon, error] let( // alignments is a vector of entries of the form: [polygon, error]
alignments = [ alignments = [

View file

@ -84,6 +84,59 @@ function max_length(array) =
// Internal. Not exposed.
function _list_shape_recurse(v) =
!is_list(v[0])
? len( [for(entry=v) if(!is_list(entry)) 0] ) == 0 ? [] : [undef]
: let(
firstlen = is_list(v[0]) ? len(v[0]): undef,
first = len( [for(entry = v) if(! is_list(entry) || (len(entry) != firstlen)) 0 ] ) == 0 ? firstlen : undef,
leveldown = flatten(v)
)
is_list(leveldown[0])
? concat([first],_list_shape_recurse(leveldown))
: [first];
function _list_shape_recurse(v) =
let( alen = [for(vi=v) is_list(vi) ? len(vi): -1] )
v==[] || max(alen)==-1 ? [] :
let( add = max(alen)!=min(alen) ? undef : alen[0] )
concat( add, _list_shape_recurse(flatten(v)));
// Function: list_shape()
// Usage:
// dims = list_shape(v, [depth]);
// Topics: Matrices, Array Handling
// Description:
// Returns the size of a multi-dimensional array, a list of the lengths at each depth.
// If the returned value has `dims[i] = j` then it means the ith index ranges of j items.
// The return `dims[0]` is equal to the length of v. Then `dims[1]` is equal to the
// length of the lists in v, and in general, `dims[i]` is equal to the length of the items
// nested to depth i in the list v. If the length of items at that depth is inconsistent, then
// `undef` is returned. If no items exist at that depth then `0` is returned. Note that
// for simple vectors or matrices it is faster to compute `len(v)` and `len(v[0])`.
// Arguments:
// v = list to get shape of
// depth = depth to compute the size of. If not given, returns a list of sizes at all depths.
// Example:
// a = list_shape([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]); // Returns [2,2,3]
// b = list_shape([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 0); // Returns 2
// c = list_shape([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 2); // Returns 3
// d = list_shape([[[1,2,3],[4,5,6]],[[7,8,9]]]); // Returns [2,undef,3]
function list_shape(v, depth=undef) =
assert( is_undef(depth) || ( is_finite(depth) && depth>=0 ), "Invalid depth.")
! is_list(v) ? 0 :
(depth == undef)
? concat([len(v)], _list_shape_recurse(v))
: (depth == 0)
? len(v)
: let( dimlist = _list_shape_recurse(v))
(depth > len(dimlist))? 0 : dimlist[depth-1] ;
// Function: in_list() // Function: in_list()
// Usage: // Usage:
// bool = in_list(val, list, [idx]); // bool = in_list(val, list, [idx]);
@ -98,13 +151,25 @@ function max_length(array) =
// a = in_list("bar", ["foo", "bar", "baz"]); // Returns true. // a = in_list("bar", ["foo", "bar", "baz"]); // Returns true.
// b = in_list("bee", ["foo", "bar", "baz"]); // Returns false. // b = in_list("bee", ["foo", "bar", "baz"]); // Returns false.
// c = in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1); // Returns true. // c = in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1); // Returns true.
// Note that a huge complication occurs because OpenSCAD's search() finds
// index i as a hits if the val equals list[i] but also if val equals list[i][0].
// This means every hit needs to be checked to see if it's actually a hit,
// and if the first hit is a mismatch we have to keep searching.
// We assume that the normal case doesn't have mixed data, and try first
// with just one hit, but if this finds a mismatch then we try again
// with all hits, which could be slow for long lists.
function in_list(val,list,idx) = function in_list(val,list,idx) =
assert( is_list(list) && (is_undef(idx) || is_finite(idx)), assert(is_list(list),"Input is not a list")
"Invalid input." ) assert(is_undef(idx) || is_finite(idx), "Invalid idx value.")
let( s = search([val], list, num_returns_per_match=1, index_col_num=idx)[0] ) let( firsthit = search([val], list, num_returns_per_match=1, index_col_num=idx)[0] )
s==[] || s==[[]] ? false firsthit==[] ? false
: is_undef(idx) ? val==list[s] : is_undef(idx) && val==list[firsthit] ? true
: val==list[s][idx]; : is_def(idx) && val==list[firsthit][idx] ? true
// first hit was found but didn't match, so try again with all hits
: let ( allhits = search([val], list, 0, idx)[0])
is_undef(idx) ? [for(hit=allhits) if (list[hit]==val) 1] != []
: [for(hit=allhits) if (list[hit][idx]==val) 1] != [];
// Function: add_scalar() // Function: add_scalar()
@ -641,32 +706,45 @@ function list_insert(list, indices, values) =
// Function: list_remove() // Function: list_remove()
// Usage: // Usage:
// list = list_remove(list, indices); // list = list_remove(list, ind);
// Topics: List Handling // Topics: List Handling
// See Also: list_set(), list_insert(), list_remove_values() // See Also: list_set(), list_insert(), list_remove_values()
// Description: // Description:
// Remove all items from `list` whose indexes are in `indices`. // If `ind` is a number remove `list[ind]` from the list. If `ind` is a list of indices
// remove from the list the item all items whose indices appear in `ind`. If you give
// indices that are not in the list they are ignored.
// Arguments: // Arguments:
// list = The list to remove items from. // list = The list to remove items from.
// indices = The list of indexes of items to remove. // ind = index or list of indices of items to remove.
// Example: // Example:
// a = list_insert([3,6,9,12],1); // Returns: [3,9,12] // a = list_remove([3,6,9,12],1); // Returns: [3,9,12]
// b = list_insert([3,6,9,12],[1,3]); // Returns: [3,9] // b = list_remove([3,6,9,12],[1,3]); // Returns: [3,9]
function list_remove(list, indices) = // c = list_remove([3,6],3); // Returns: [3,6]
assert(is_list(list)) function list_remove(list, ind) =
is_finite(indices) ? assert(is_list(list), "Invalid list in list_remove")
is_finite(ind) ?
(
(ind<0 || ind>=len(list)) ? list
:
[
for (i=[0:1:ind-1]) list[i],
for (i=[ind+1:1:len(list)-1]) list[i]
]
)
: ind==[] ? list
: assert( is_vector(ind), "Invalid index list in list_remove")
let(sres = search(count(list),ind,1))
[ [
for (i=[0:1:min(indices, len(list)-1)-1]) list[i], for(i=idx(list))
for (i=[min(indices, len(list)-1)+1:1:len(list)-1]) list[i] if (sres[i] == [])
] list[i]
: indices==[] ? list
: assert( is_vector(indices), "Invalid list `indices`." )
[
for(i=[0:len(list)-1])
if ( []==search(i,indices,1) )
list[i]
]; ];
// This method is faster for long lists with few values to remove
// let( rem = list_set([], indices, repeat(1,len(indices)), minlen=len(list)))
// [for(i=idx(list)) if (rem[i]==0) list[i]];
// Function: list_remove_values() // Function: list_remove_values()
// Usage: // Usage:
@ -675,13 +753,22 @@ function list_remove(list, indices) =
// Topics: List Handling // Topics: List Handling
// See Also: list_set(), list_insert(), list_remove() // See Also: list_set(), list_insert(), list_remove()
// Description: // Description:
// Removes the first, or all instances of the given `values` from the `list`. // Removes the first, or all instances of the given value or list of values from the list.
// Returns the modified list. // If you specify `all=false` and list a value twice then the first two instances will be removed.
// Note that if you want to remove a list value such as `[3,4]` then you must give it as
// a singleton list, or it will be interpreted as a list of two scalars to remove.
// Arguments: // Arguments:
// list = The list to modify. // list = The list to modify.
// values = The values to remove from the list. // values = The value or list of values to remove from the list.
// all = If true, remove all instances of the value `value` from the list `list`. If false, remove only the first. Default: false // all = If true, remove all instances of the value `value` from the list `list`. If false, remove only the first. Default: false
// Example: // Example:
// test = [3,4,[5,6],7,5,[5,6],4,[6,5],7,[4,4]];
// a=list_remove_values(test,4); // Returns: [3, [5, 6], 7, 5, [5, 6], 4, [6, 5], 7, [4, 4]]
// b=list_remove_values(test,[4,4]); // Returns: [3, [5, 6], 7, 5, [5, 6], [6, 5], 7, [4, 4]]
// c=list_remove_values(test,[4,7]); // Returns: [3, [5, 6], 5, [5, 6], 4, [6, 5], 7, [4, 4]]
// d=list_remove_values(test,[5,6]); // Returns: [3, 4, [5, 6], 7, [5, 6], 4, [6, 5], 7, [4, 4]]
// e=list_remove_values(test,[[5,6]]); // Returns: [3,4,7,5,[5,6],4,[6,5],7,[4,4]]
// f=list_remove_values(test,[[5,6]],all=true); // Returns: [3,4,7,5,4,[6,5],7,[4,4]]
// animals = ["bat", "cat", "rat", "dog", "bat", "rat"]; // animals = ["bat", "cat", "rat", "dog", "bat", "rat"];
// animals2 = list_remove_values(animals, "rat"); // Returns: ["bat","cat","dog","bat","rat"] // animals2 = list_remove_values(animals, "rat"); // Returns: ["bat","cat","dog","bat","rat"]
// nonflying = list_remove_values(animals, "bat", all=true); // Returns: ["cat","rat","dog","rat"] // nonflying = list_remove_values(animals, "bat", all=true); // Returns: ["cat","rat","dog","rat"]
@ -689,13 +776,39 @@ function list_remove(list, indices) =
// domestic = list_remove_values(animals, ["bat","rat"], all=true); // Returns: ["cat","dog"] // domestic = list_remove_values(animals, ["bat","rat"], all=true); // Returns: ["cat","dog"]
// animals4 = list_remove_values(animals, ["tucan","rat"], all=true); // Returns: ["bat","cat","dog","bat"] // animals4 = list_remove_values(animals, ["tucan","rat"], all=true); // Returns: ["bat","cat","dog","bat"]
function list_remove_values(list,values=[],all=false) = function list_remove_values(list,values=[],all=false) =
assert(is_list(list))
!is_list(values)? list_remove_values(list, values=[values], all=all) : !is_list(values)? list_remove_values(list, values=[values], all=all) :
let( assert(is_list(list), "Invalid list")
idxs = all? flatten(search(values,list,0)) : search(values,list,1), len(values)==0 ? list :
uidxs = unique(idxs) len(values)==1 ?
) list_remove(list,uidxs); (
!all ?
(
let(firsthit = search(values,list,1)[0])
firsthit==[] ? list
: list[firsthit]==values[0] ? list_remove(list,firsthit)
: let(allhits = search(values,list,0)[0],
allind = [for(i=allhits) if (list[i]==values[0]) i]
)
allind==[] ? list : list_remove(list,min(allind))
)
:
(
let(allhits = search(values,list,0)[0],
allind = [for(i=allhits) if (list[i]==values[0]) i]
)
allind==[] ? list : list_remove(list,allind)
)
)
:!all ? list_remove_values(list_remove_values(list, values[0],all=all), list_tail(values),all=all)
:
[
for(i=idx(list))
let(hit=search([list[i]],values,0)[0])
if (hit==[]) list[i]
else
let(check = [for(j=hit) if (values[j]==list[i]) 1])
if (check==[]) list[i]
];
// Section: List Length Manipulation // Section: List Length Manipulation
@ -931,54 +1044,6 @@ function permutations(l,n=2) =
// Section: Changing list structure // Section: Changing list structure
// Internal. Not exposed.
function _array_dim_recurse(v) =
!is_list(v[0])
? len( [for(entry=v) if(!is_list(entry)) 0] ) == 0 ? [] : [undef]
: let(
firstlen = is_list(v[0]) ? len(v[0]): undef,
first = len( [for(entry = v) if(! is_list(entry) || (len(entry) != firstlen)) 0 ] ) == 0 ? firstlen : undef,
leveldown = flatten(v)
)
is_list(leveldown[0])
? concat([first],_array_dim_recurse(leveldown))
: [first];
function _array_dim_recurse(v) =
let( alen = [for(vi=v) is_list(vi) ? len(vi): -1] )
v==[] || max(alen)==-1 ? [] :
let( add = max(alen)!=min(alen) ? undef : alen[0] )
concat( add, _array_dim_recurse(flatten(v)));
// Function: array_dim()
// Usage:
// dims = array_dim(v, [depth]);
// Topics: Matrices, Array Handling
// Description:
// Returns the size of a multi-dimensional array. Returns a list of dimension lengths. The length
// of `v` is the dimension `0`. The length of the items in `v` is dimension `1`. The length of the
// items in the items in `v` is dimension `2`, etc. For each dimension, if the length of items at
// that depth is inconsistent, `undef` will be returned. If no items of that dimension depth exist,
// `0` is returned. Otherwise, the consistent length of items in that dimensional depth is
// returned.
// Arguments:
// v = Array to get dimensions of.
// depth = Dimension to get size of. If not given, returns a list of dimension lengths.
// Example:
// a = array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]); // Returns [2,2,3]
// b = array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 0); // Returns 2
// c = array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 2); // Returns 3
// d = array_dim([[[1,2,3],[4,5,6]],[[7,8,9]]]); // Returns [2,undef,3]
function array_dim(v, depth=undef) =
assert( is_undef(depth) || ( is_finite(depth) && depth>=0 ), "Invalid depth.")
! is_list(v) ? 0 :
(depth == undef)
? concat([len(v)], _array_dim_recurse(v))
: (depth == 0)
? len(v)
: let( dimlist = _array_dim_recurse(v))
(depth > len(dimlist))? 0 : dimlist[depth-1] ;
// Function: list_to_matrix() // Function: list_to_matrix()

View file

@ -45,6 +45,39 @@ function is_path(list, dim=[2,3], fast=false) =
&& len(list[0])>0 && len(list[0])>0
&& (is_undef(dim) || in_list(len(list[0]), force_list(dim))); && (is_undef(dim) || in_list(len(list[0]), force_list(dim)));
// Function: is_path_region()
// Usage:
// bool = is_path_region(path, [name])
// Description:
// If `path` is a region with one component then return true. If path is a region with more components
// then display an error message about the parameter `name` requiring a path or a single component region. If the input
// is not a region then return false. This function helps accept singleton regions in functions that
// operate on a path.
// Arguments:
// path = input to process
// name = name of parameter to use in error message. Default: "path"
function is_path_region(path, name="path") =
!is_region(path)? false
:assert(len(path)==1,str("Parameter \"",name,"\" must be a path or singleton region, but is a multicomponent region"))
true;
// Function: force_path()
// Usage:
// outpath = force_path(path, [name])
// Description:
// If `path` is a region with one component then return that component as a path. If path is a region with more components
// then display an error message about the parameter `name` requiring a path or a single component region. If the input
// is not a region then return the input without any checks. This function helps accept singleton regions in functions that
// operate on a path.
// Arguments:
// path = input to process
// name = name of parameter to use in error message. Default: "path"
function force_path(path, name="path") =
is_region(path) ?
assert(len(path)==1, str("Parameter \"",name,"\" must be a path or singleton region, but is a multicomponent region"))
path[0]
: path;
// Function: is_closed_path() // Function: is_closed_path()
// Usage: // Usage:
@ -102,6 +135,7 @@ function _path_select(path, s1, u1, s2, u2, closed=false) =
) pathout; ) pathout;
// Function: path_merge_collinear() // Function: path_merge_collinear()
// Description: // Description:
// Takes a path and removes unnecessary sequential collinear points. // Takes a path and removes unnecessary sequential collinear points.
@ -111,8 +145,11 @@ function _path_select(path, s1, u1, s2, u2, closed=false) =
// path = A list of path points of any dimension. // path = A list of path points of any dimension.
// closed = treat as closed polygon. Default: false // closed = treat as closed polygon. Default: false
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9) // eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
function path_merge_collinear(path, closed=false, eps=EPSILON) = function path_merge_collinear(path, closed, eps=EPSILON) =
assert( is_path(path), "Invalid path." ) is_path_region(path) ? path_merge_collinear(path[0], default(closed,true), eps) :
let(closed=default(closed,false))
assert(is_bool(closed))
assert( is_path(path), "Invalid path in path_merge_collinear." )
assert( is_undef(eps) || (is_finite(eps) && (eps>=0) ), "Invalid tolerance." ) assert( is_undef(eps) || (is_finite(eps) && (eps>=0) ), "Invalid tolerance." )
len(path)<=2 ? path : len(path)<=2 ? path :
let( let(
@ -140,7 +177,11 @@ function path_merge_collinear(path, closed=false, eps=EPSILON) =
// Example: // Example:
// path = [[0,0], [5,35], [60,-25], [80,0]]; // path = [[0,0], [5,35], [60,-25], [80,0]];
// echo(path_length(path)); // echo(path_length(path));
function path_length(path,closed=false) = function path_length(path,closed) =
is_path_region(path) ? path_length(path[0], default(closed,true)) :
assert(is_path(path), "Invalid path in path_length")
let(closed=default(closed,false))
assert(is_bool(closed))
len(path)<2? 0 : len(path)<2? 0 :
sum([for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i])])+(closed?norm(path[len(path)-1]-path[0]):0); sum([for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i])])+(closed?norm(path[len(path)-1]-path[0]):0);
@ -153,7 +194,11 @@ function path_length(path,closed=false) =
// Arguments: // Arguments:
// path = path to measure // path = path to measure
// closed = true if the path is closed. Default: false // closed = true if the path is closed. Default: false
function path_segment_lengths(path, closed=false) = function path_segment_lengths(path, closed) =
is_path_region(path) ? path_segment_lengths(path[0], default(closed,true)) :
let(closed=default(closed,false))
assert(is_path(path),"Invalid path in path_segment_lengths.")
assert(is_bool(closed))
[ [
for (i=[0:1:len(path)-2]) norm(path[i+1]-path[i]), for (i=[0:1:len(path)-2]) norm(path[i+1]-path[i]),
if (closed) norm(path[0]-last(path)) if (closed) norm(path[0]-last(path))
@ -171,7 +216,9 @@ function path_segment_lengths(path, closed=false) =
// Arguments: // Arguments:
// path = path to operate on // path = path to operate on
// closed = set to true if path is closed. Default: false // closed = set to true if path is closed. Default: false
function path_length_fractions(path, closed=false) = function path_length_fractions(path, closed) =
is_path_region(path) ? path_length_fractions(path[0], default(closed,true)):
let(closed=default(closed, false))
assert(is_path(path)) assert(is_path(path))
assert(is_bool(closed)) assert(is_bool(closed))
let( let(
@ -327,6 +374,7 @@ function _sum_preserving_round(data, index=0) =
// mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12); // mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12);
// move_copies(mypath)sphere(r=.1,$fn=32); // move_copies(mypath)sphere(r=.1,$fn=32);
function subdivide_path(path, N, refine, closed=true, exact=true, method="length") = function subdivide_path(path, N, refine, closed=true, exact=true, method="length") =
let(path = force_path(path))
assert(is_path(path)) assert(is_path(path))
assert(method=="length" || method=="segment") assert(method=="length" || method=="segment")
assert(num_defined([N,refine]),"Must give exactly one of N and refine") assert(num_defined([N,refine]),"Must give exactly one of N and refine")
@ -385,7 +433,8 @@ function subdivide_path(path, N, refine, closed=true, exact=true, method="length
// stroke(path,width=2,closed=true); // stroke(path,width=2,closed=true);
// color("red") move_copies(path) circle(d=9,$fn=12); // color("red") move_copies(path) circle(d=9,$fn=12);
// color("blue") move_copies(spath) circle(d=5,$fn=12); // color("blue") move_copies(spath) circle(d=5,$fn=12);
function subdivide_long_segments(path, maxlen, closed=false) = function subdivide_long_segments(path, maxlen, closed=true) =
let(path=force_path(path))
assert(is_path(path)) assert(is_path(path))
assert(is_finite(maxlen)) assert(is_finite(maxlen))
assert(is_bool(closed)) assert(is_bool(closed))
@ -413,8 +462,9 @@ function subdivide_long_segments(path, maxlen, closed=false) =
// path = path to resample // path = path to resample
// N = Number of points in output // N = Number of points in output
// spacing = Approximate spacing desired // spacing = Approximate spacing desired
// closed = set to true if path is closed. Default: false // closed = set to true if path is closed. Default: true
function resample_path(path, N, spacing, closed=false) = function resample_path(path, N, spacing, closed=true) =
let(path = force_path(path))
assert(is_path(path)) assert(is_path(path))
assert(num_defined([N,spacing])==1,"Must define exactly one of N and spacing") assert(num_defined([N,spacing])==1,"Must define exactly one of N and spacing")
assert(is_bool(closed)) assert(is_bool(closed))
@ -432,9 +482,6 @@ function resample_path(path, N, spacing, closed=false) =
]; ];
// Section: Path Geometry // Section: Path Geometry
// Function: is_path_simple() // Function: is_path_simple()
@ -449,8 +496,11 @@ function resample_path(path, N, spacing, closed=false) =
// path = path to check // path = path to check
// closed = set to true to treat path as a polygon. Default: false // closed = set to true to treat path as a polygon. Default: false
// eps = Epsilon error value used for determine if points coincide. Default: `EPSILON` (1e-9) // eps = Epsilon error value used for determine if points coincide. Default: `EPSILON` (1e-9)
function is_path_simple(path, closed=false, eps=EPSILON) = function is_path_simple(path, closed, eps=EPSILON) =
is_path_region(path) ? is_path_simple(path[0], default(closed,true), eps) :
let(closed=default(closed,false))
assert(is_path(path, 2),"Must give a 2D path") assert(is_path(path, 2),"Must give a 2D path")
assert(is_bool(closed))
[for(i=[0:1:len(path)-(closed?2:3)]) [for(i=[0:1:len(path)-(closed?2:3)])
let(v1=path[i+1]-path[i], let(v1=path[i+1]-path[i],
v2=select(path,i+2)-path[i+1], v2=select(path,i+2)-path[i+1],
@ -471,6 +521,7 @@ function is_path_simple(path, closed=false, eps=EPSILON) =
// Arguments: // Arguments:
// path = The path to find the closest point on. // path = The path to find the closest point on.
// pt = the point to find the closest point to. // pt = the point to find the closest point to.
// closed =
// Example(2D): // Example(2D):
// path = circle(d=100,$fn=6); // path = circle(d=100,$fn=6);
// pt = [20,10]; // pt = [20,10];
@ -478,9 +529,13 @@ function is_path_simple(path, closed=false, eps=EPSILON) =
// stroke(path, closed=true); // stroke(path, closed=true);
// color("blue") translate(pt) circle(d=3, $fn=12); // color("blue") translate(pt) circle(d=3, $fn=12);
// color("red") translate(closest[1]) circle(d=3, $fn=12); // color("red") translate(closest[1]) circle(d=3, $fn=12);
function path_closest_point(path, pt) = function path_closest_point(path, pt, closed=true) =
let(path = force_path(path))
assert(is_path(path,[2,3]), "Must give 2D or 3D path.")
assert(is_vector(pt, len(path[0])), "Input pt must be a compatible vector")
assert(is_bool(closed))
let( let(
pts = [for (seg=idx(path)) line_closest_point(select(path,seg,seg+1),pt,SEGMENT)], pts = [for (seg=[0:1:len(path)-(closed?1:2)]) line_closest_point(select(path,seg,seg+1),pt,SEGMENT)],
dists = [for (p=pts) norm(p-pt)], dists = [for (p=pts) norm(p-pt)],
min_seg = min_index(dists) min_seg = min_index(dists)
) [min_seg, pts[min_seg]]; ) [min_seg, pts[min_seg]];
@ -513,7 +568,10 @@ function path_closest_point(path, pt) =
// color("purple") // color("purple")
// for(i=[0:len(tangents)-1]) // for(i=[0:len(tangents)-1])
// stroke([rect[i]-tangents[i], rect[i]+tangents[i]],width=.25, endcap2="arrow2"); // stroke([rect[i]-tangents[i], rect[i]+tangents[i]],width=.25, endcap2="arrow2");
function path_tangents(path, closed=false, uniform=true) = function path_tangents(path, closed, uniform=true) =
is_path_region(path) ? path_tangents(path[0], default(closed,true), uniform) :
let(closed=default(closed,false))
assert(is_bool(closed))
assert(is_path(path)) assert(is_path(path))
!uniform ? [for(t=deriv(path,closed=closed, h=path_segment_lengths(path,closed))) unit(t)] !uniform ? [for(t=deriv(path,closed=closed, h=path_segment_lengths(path,closed))) unit(t)]
: [for(t=deriv(path,closed=closed)) unit(t)]; : [for(t=deriv(path,closed=closed)) unit(t)];
@ -533,7 +591,13 @@ function path_tangents(path, closed=false, uniform=true) =
// normal is not uniquely defined. In this case the function issues an error. // normal is not uniquely defined. In this case the function issues an error.
// For 2d paths the plane is always defined so the normal fails to exist only // For 2d paths the plane is always defined so the normal fails to exist only
// when the derivative is zero (in the case of repeated points). // when the derivative is zero (in the case of repeated points).
function path_normals(path, tangents, closed=false) = // Arguments:
// path = path to compute the normals to
// tangents = path tangents optionally supplied
// closed = if true path is treated as a polygon. Default: false
function path_normals(path, tangents, closed) =
is_path_region(path) ? path_normals(path[0], tangents, default(closed,true)) :
let(closed=default(closed,false))
assert(is_path(path,[2,3])) assert(is_path(path,[2,3]))
assert(is_bool(closed)) assert(is_bool(closed))
let( let(
@ -560,7 +624,11 @@ function path_normals(path, tangents, closed=false) =
// curvs = path_curvature(path, [closed]); // curvs = path_curvature(path, [closed]);
// Description: // Description:
// Numerically estimate the curvature of the path (in any dimension). // Numerically estimate the curvature of the path (in any dimension).
function path_curvature(path, closed=false) = function path_curvature(path, closed) =
is_path_region(path) ? path_curvature(path[0], default(closed,true)) :
let(closed=default(closed,false))
assert(is_bool(closed))
assert(is_path(path))
let( let(
d1 = deriv(path, closed=closed), d1 = deriv(path, closed=closed),
d2 = deriv2(path, closed=closed) d2 = deriv2(path, closed=closed)
@ -579,6 +647,8 @@ function path_curvature(path, closed=false) =
// Description: // Description:
// Numerically estimate the torsion of a 3d path. // Numerically estimate the torsion of a 3d path.
function path_torsion(path, closed=false) = function path_torsion(path, closed=false) =
assert(is_path(path,3), "Input path must be a 3d path")
assert(is_bool(closed))
let( let(
d1 = deriv(path,closed=closed), d1 = deriv(path,closed=closed),
d2 = deriv2(path,closed=closed), d2 = deriv2(path,closed=closed),
@ -883,13 +953,16 @@ function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) =
// Arguments: // Arguments:
// path = The original path to split. // path = The original path to split.
// cutdist = Distance or list of distances where path is cut // cutdist = Distance or list of distances where path is cut
// closed = If true, treat the path as a closed polygon. // closed = If true, treat the path as a closed polygon. Default: false
// Example(2D,NoAxes): // Example(2D,NoAxes):
// path = circle(d=100); // path = circle(d=100);
// segs = path_cut(path, [50, 200], closed=true); // segs = path_cut(path, [50, 200], closed=true);
// rainbow(segs) stroke($item, endcaps="butt", width=3); // rainbow(segs) stroke($item, endcaps="butt", width=3);
function path_cut(path,cutdist,closed) = function path_cut(path,cutdist,closed) =
is_num(cutdist) ? path_cut(path,[cutdist],closed) : is_num(cutdist) ? path_cut(path,[cutdist],closed) :
is_path_region(path) ? path_cut(path[0], cutdist, default(closed,true)):
let(closed=default(closed,false))
assert(is_bool(closed))
assert(is_vector(cutdist)) assert(is_vector(cutdist))
assert(last(cutdist)<path_length(path,closed=closed),"Cut distances must be smaller than the path length") assert(last(cutdist)<path_length(path,closed=closed),"Cut distances must be smaller than the path length")
assert(cutdist[0]>0, "Cut distances must be strictly positive") assert(cutdist[0]>0, "Cut distances must be strictly positive")
@ -955,6 +1028,9 @@ function _cut_to_seg_u_form(pathcut, path, closed) =
// paths = split_path_at_self_crossings(path); // paths = split_path_at_self_crossings(path);
// rainbow(paths) stroke($item, closed=false, width=3); // rainbow(paths) stroke($item, closed=false, width=3);
function split_path_at_self_crossings(path, closed=true, eps=EPSILON) = function split_path_at_self_crossings(path, closed=true, eps=EPSILON) =
let(path = force_path(path))
assert(is_path(path,2), "Must give a 2D path")
assert(is_bool(closed))
let( let(
path = cleanup_path(path, eps=eps), path = cleanup_path(path, eps=eps),
isects = deduplicate( isects = deduplicate(
@ -1063,6 +1139,9 @@ function _tag_self_crossing_subpaths(path, nonzero, closed=true, eps=EPSILON) =
// right(27)rainbow(polygon_parts(path)) polygon($item); // right(27)rainbow(polygon_parts(path)) polygon($item);
// move([16,-14])rainbow(polygon_parts(path,nonzero=true)) polygon($item); // move([16,-14])rainbow(polygon_parts(path,nonzero=true)) polygon($item);
function polygon_parts(path, nonzero=false, eps=EPSILON) = function polygon_parts(path, nonzero=false, eps=EPSILON) =
let(path = force_path(path))
assert(is_path(path,2), "Must give 2D path")
assert(is_bool(nonzero))
let( let(
path = cleanup_path(path, eps=eps), path = cleanup_path(path, eps=eps),
tagged = _tag_self_crossing_subpaths(path, nonzero=nonzero, closed=true, eps=eps), tagged = _tag_self_crossing_subpaths(path, nonzero=nonzero, closed=true, eps=eps),

View file

@ -43,42 +43,6 @@ function is_region(x) = is_list(x) && is_path(x.x);
function force_region(path) = is_path(path) ? [path] : path; function force_region(path) = is_path(path) ? [path] : path;
// Function: check_and_fix_path()
// Usage:
// check_and_fix_path(path, [valid_dim], [closed], [name])
// Description:
// Checks that the input is a path. If it is a region with one component, converts it to a path.
// Note that arbitrary paths must have at least two points, but closed paths need at least 3 points.
// valid_dim specfies the allowed dimension of the points in the path.
// If the path is closed, removes duplicate endpoint if present.
// Arguments:
// path = path to process
// valid_dim = list of allowed dimensions for the points in the path, e.g. [2,3] to require 2 or 3 dimensional input. If left undefined do not perform this check. Default: undef
// closed = set to true if the path is closed, which enables a check for endpoint duplication
// name = parameter name to use for reporting errors. Default: "path"
function check_and_fix_path(path, valid_dim=undef, closed=false, name="path") =
let(
path =
is_region(path)?
assert(len(path)==1,str("Region ",name," supplied as path does not have exactly one component"))
path[0]
:
assert(is_path(path), str("Input ",name," is not a path"))
path
)
assert(len(path)>(closed?2:1),closed?str("Closed path ",name," must have at least 3 points")
:str("Path ",name," must have at least 2 points"))
let(valid=is_undef(valid_dim) || in_list(len(path[0]),force_list(valid_dim)))
assert(
valid, str(
"Input ",name," must has dimension ", len(path[0])," but dimension must be ",
is_list(valid_dim) ? str("one of ",valid_dim) : valid_dim
)
)
closed && approx(path[0], last(path))? list_head(path) : path;
// Function: sanitize_region() // Function: sanitize_region()
// Usage: // Usage:
// r_fixed = sanitize_region(r, [nonzero], [eps]); // r_fixed = sanitize_region(r, [nonzero], [eps]);
@ -150,6 +114,20 @@ function point_in_region(point, region, eps=EPSILON, _i=0, _cnt=0) =
: point_in_region(point, region, eps=eps, _i=_i+1, _cnt = _cnt + (pip>0? 1 : 0)); : point_in_region(point, region, eps=eps, _i=_i+1, _cnt = _cnt + (pip>0? 1 : 0));
// Function: region_area()
// Usage:
// area=region_area(region);
// Description:
// Computes the area of the specified valid region. (If the region is invalid and has self intersections
// the result is meaningless.)
function region_area(region) =
assert(is_region(region), "Input must be a region")
let(
parts = region_parts(region)
)
-sum([for(R=parts, poly=R) polygon_area(poly,signed=true)]);
// Function: is_region_simple() // Function: is_region_simple()
// Usage: // Usage:
// bool = is_region_simple(region, [eps]); // bool = is_region_simple(region, [eps]);
@ -840,40 +818,51 @@ function offset(
/// "S" - the subpath is on the 2nd region's border and the two regions interiors are on the same side of the subpath /// "S" - the subpath is on the 2nd region's border and the two regions interiors are on the same side of the subpath
/// "U" - the subpath is on the 2nd region's border and the two regions meet at the subpath from opposite sides /// "U" - the subpath is on the 2nd region's border and the two regions meet at the subpath from opposite sides
/// You specify which type of subpaths to keep with a string of the desired types such as "OS". /// You specify which type of subpaths to keep with a string of the desired types such as "OS".
function _filter_region_parts(region1, region2, keep1, keep2, eps=EPSILON) = function _filter_region_parts(region1, region2, keep, eps=EPSILON) =
// We have to compute common vertices between paths in the region because // We have to compute common vertices between paths in the region because
// they can be places where the path must be cut, even though they aren't // they can be places where the path must be cut, even though they aren't
// found my the split_path function. // found my the split_path function.
let( let(
keep = [keep1,keep2],
subpaths = split_region_at_region_crossings(region1,region2,eps=eps), subpaths = split_region_at_region_crossings(region1,region2,eps=eps),
regions=[region1,region2] regions=[force_region(region1),
force_region(region2)]
) )
_assemble_path_fragments( _assemble_path_fragments(
[for(i=[0:1]) [for(i=[0:1])
let( let(
keepS = search("S",keep[i])!=[], keepS = search("S",keep[i])!=[],
keepU = search("U",keep[i])!=[], keepU = search("U",keep[i])!=[],
keepoutside = search("O",keep[i]) !=[], keepoutside = search("O",keep[i]) !=[],
keepinside = search("I",keep[i]) !=[], keepinside = search("I",keep[i]) !=[],
all_subpaths = flatten(subpaths[i]) all_subpaths = flatten(subpaths[i])
) )
for (subpath = all_subpaths) for (subpath = all_subpaths)
let( let(
midpt = mean([subpath[0], subpath[1]]), midpt = mean([subpath[0], subpath[1]]),
rel = point_in_region(midpt,regions[1-i],eps=eps), rel = point_in_region(midpt,regions[1-i],eps=eps),
keepthis = rel<0 ? keepoutside keepthis = rel<0 ? keepoutside
: rel>0 ? keepinside : rel>0 ? keepinside
: !(keepS || keepU) ? false : !(keepS || keepU) ? false
: let( : let(
sidept = midpt + 0.01*line_normal(subpath[0],subpath[1]), sidept = midpt + 0.01*line_normal(subpath[0],subpath[1]),
rel1 = point_in_region(sidept,region1,eps=eps)>0, rel1 = point_in_region(sidept,regions[0],eps=eps)>0,
rel2 = point_in_region(sidept,region2,eps=eps)>0 rel2 = point_in_region(sidept,regions[1],eps=eps)>0
) )
rel1==rel2 ? keepS : keepU rel1==rel2 ? keepS : keepU
) )
if (keepthis) subpath if (keepthis) subpath
]); ]
);
function _list_three(a,b,c) =
is_undef(b) ? a :
[
a,
if (is_def(b)) b,
if (is_def(c)) c
];
// Function&Module: union() // Function&Module: union()
@ -894,12 +883,12 @@ function _filter_region_parts(region1, region2, keep1, keep2, eps=EPSILON) =
// color("green") region(union(shape1,shape2)); // color("green") region(union(shape1,shape2));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
function union(regions=[],b=undef,c=undef,eps=EPSILON) = function union(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? union(concat([regions],[b],c==undef?[]:[c]), eps=eps) : let(regions=_list_three(regions,b,c))
len(regions)==0? [] : len(regions)==0? [] :
len(regions)==1? regions[0] : len(regions)==1? regions[0] :
let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)]) let(regions=[for (r=regions) is_path(r)? [r] : r])
union([ union([
_filter_region_parts(regions[0],regions[1],"OS", "O", eps=eps), _filter_region_parts(regions[0],regions[1],["OS", "O"], eps=eps),
for (i=[2:1:len(regions)-1]) regions[i] for (i=[2:1:len(regions)-1]) regions[i]
], ],
eps=eps eps=eps
@ -925,17 +914,17 @@ function union(regions=[],b=undef,c=undef,eps=EPSILON) =
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(difference(shape1,shape2)); // color("green") region(difference(shape1,shape2));
function difference(regions=[],b=undef,c=undef,eps=EPSILON) = function difference(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? difference(concat([regions],[b],c==undef?[]:[c]), eps=eps) : let(regions = _list_three(regions,b,c))
len(regions)==0? [] : len(regions)==0? []
len(regions)==1? regions[0] : : len(regions)==1? regions[0]
regions[0]==[] ? [] : : regions[0]==[] ? []
let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)]) : let(regions=[for (r=regions) is_path(r)? [r] : r])
difference([ difference([
_filter_region_parts(regions[0],regions[1],"OU", "I", eps=eps), _filter_region_parts(regions[0],regions[1],["OU", "I"], eps=eps),
for (i=[2:1:len(regions)-1]) regions[i] for (i=[2:1:len(regions)-1]) regions[i]
], ],
eps=eps eps=eps
); );
// Function&Module: intersection() // Function&Module: intersection()
@ -956,17 +945,16 @@ function difference(regions=[],b=undef,c=undef,eps=EPSILON) =
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(intersection(shape1,shape2)); // color("green") region(intersection(shape1,shape2));
function intersection(regions=[],b=undef,c=undef,eps=EPSILON) = function intersection(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? intersection(concat([regions],[b],c==undef?[]:[c]),eps=eps) let(regions = _list_three(regions,b,c))
: len(regions)==0 ? [] len(regions)==0 ? []
: len(regions)==1? regions[0] : len(regions)==1? regions[0]
: regions[0]==[] || regions[1]==[] ? [] : regions[0]==[] || regions[1]==[] ? []
: let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)]) : intersection([
intersection([ _filter_region_parts(regions[0],regions[1],["IS","I"],eps=eps),
_filter_region_parts(regions[0],regions[1],"IS","I",eps=eps), for (i=[2:1:len(regions)-1]) regions[i]
for (i=[2:1:len(regions)-1]) regions[i] ],
], eps=eps
eps=eps );
);
@ -995,16 +983,17 @@ function intersection(regions=[],b=undef,c=undef,eps=EPSILON) =
// circle(d=40); // circle(d=40);
// } // }
function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) = function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? exclusive_or([regions, b, if(is_def(c)) c],eps=eps) : let(regions = _list_three(regions,b,c))
len(regions)==0? [] : len(regions)==0? []
len(regions)==1? regions[0] : : len(regions)==1? regions[0]
let(regions=[for (r=regions) is_path(r)? [r] : r]) : regions[0]==[] ? exclusive_or(list_tail(regions))
exclusive_or([ : regions[1]==[] ? exclusive_or(list_remove(regions,1))
_filter_region_parts(regions[0],regions[1],"IO","IO",eps=eps), : exclusive_or([
for (i=[2:1:len(regions)-1]) regions[i] _filter_region_parts(regions[0],regions[1],["IO","IO"],eps=eps),
], for (i=[2:1:len(regions)-1]) regions[i]
eps=eps ],
); eps=eps
);
module exclusive_or() { module exclusive_or() {

View file

@ -227,9 +227,7 @@ function round_corners(path, method="circle", radius, cut, joint, k, closed=true
let( let(
default_k = 0.5, default_k = 0.5,
size=one_defined([radius, cut, joint], "radius,cut,joint"), size=one_defined([radius, cut, joint], "radius,cut,joint"),
path = is_region(path)? path = force_path(path),
assert(len(path)==1, "Region supplied as path does not have exactly one component")
path[0] : path,
size_ok = is_num(size) || len(size)==len(path) || (!closed && len(size)==len(path)-2), size_ok = is_num(size) || len(size)==len(path) || (!closed && len(size)==len(path)-2),
k_ok = is_undef(k) || (method=="smooth" && (is_num(k) || len(k)==len(path) || (!closed && len(k)==len(path)-2))), k_ok = is_undef(k) || (method=="smooth" && (is_num(k) || len(k)==len(path) || (!closed && len(k)==len(path)-2))),
measure = is_def(radius) ? "radius" : measure = is_def(radius) ? "radius" :
@ -611,6 +609,7 @@ module path_join(paths,joint=0,k=0.5,relocate=true,closed=false) { no_module();}
function path_join(paths,joint=0,k=0.5,relocate=true,closed=false)= function path_join(paths,joint=0,k=0.5,relocate=true,closed=false)=
assert(is_list(paths),"Input paths must be a list of paths") assert(is_list(paths),"Input paths must be a list of paths")
let( let(
paths = [for(i=idx(paths)) force_path(paths[i],str("paths[",i,"]"))],
badpath = [for(j=idx(paths)) if (!is_path(paths[j])) j] badpath = [for(j=idx(paths)) if (!is_path(paths[j])) j]
) )
assert(badpath==[], str("Entries in paths are not valid paths: ",badpath)) assert(badpath==[], str("Entries in paths are not valid paths: ",badpath))
@ -963,7 +962,10 @@ function offset_sweep(
["k", k], ["k", k],
["points", []], ["points", []],
], ],
path = check_and_fix_path(path, [2], closed=true), path = force_path(path)
)
assert(is_path(path,2), "Input path must be a 2D path")
let(
clockwise = is_polygon_clockwise(path), clockwise = is_polygon_clockwise(path),
dummy1 = _struct_valid(top,"offset_sweep","top"), dummy1 = _struct_valid(top,"offset_sweep","top"),
dummy2 = _struct_valid(bottom,"offset_sweep","bottom"), dummy2 = _struct_valid(bottom,"offset_sweep","bottom"),
@ -1456,6 +1458,7 @@ function _remove_undefined_vals(list) =
// right(12) // right(12)
// offset_stroke(path, width=1, closed=true); // offset_stroke(path, width=1, closed=true);
function offset_stroke(path, width=1, rounded=true, start="flat", end="flat", check_valid=true, quality=1, chamfer=false, closed=false) = function offset_stroke(path, width=1, rounded=true, start="flat", end="flat", check_valid=true, quality=1, chamfer=false, closed=false) =
let(path = force_path(path))
assert(is_path(path,2),"path is not a 2d path") assert(is_path(path,2),"path is not a 2d path")
let(closedok = !closed || (is_undef(start) && is_undef(end))) let(closedok = !closed || (is_undef(start) && is_undef(end)))
assert(closedok, "Parameters `start` and `end` not allowed with closed path") assert(closedok, "Parameters `start` and `end` not allowed with closed path")
@ -1832,7 +1835,11 @@ module rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_bot
function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_bot, k_top, k_sides, k=0.5, splinesteps=16, function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_bot, k_top, k_sides, k=0.5, splinesteps=16,
h, length, l, height, debug=false) = h, length, l, height, debug=false) =
assert(is_path(bottom) && len(bottom)>=3) let(
bottom = force_path(bottom,"bottom"),
top = force_path(top,"top")
)
assert(is_path(bottom,[2,3]) && len(bottom)>=3, "bottom must be a 2D or 3D path")
assert(is_num(k) && k>=0 && k<=1, "Curvature parameter k must be in interval [0,1]") assert(is_num(k) && k>=0 && k<=1, "Curvature parameter k must be in interval [0,1]")
let( let(
N=len(bottom), N=len(bottom),
@ -2155,21 +2162,22 @@ module bent_cutout_mask(r, thickness, path, radius, convexity=10)
{ {
no_children($children); no_children($children);
r = get_radius(r1=r, r2=radius); r = get_radius(r1=r, r2=radius);
dummy=assert(is_def(r) && r>0,"Radius of the cylinder to bend around must be positive"); dummy1=assert(is_def(r) && r>0,"Radius of the cylinder to bend around must be positive");
assert(is_path(path,2),"Input path must be a 2d path"); path2 = force_path(path);
dummy2=assert(is_path(path2,2),"Input path must be a 2D path");
assert(r-thickness>0, "Thickness too large for radius"); assert(r-thickness>0, "Thickness too large for radius");
assert(thickness>0, "Thickness must be positive"); assert(thickness>0, "Thickness must be positive");
path = clockwise_polygon(path); fixpath = clockwise_polygon(path2);
curvepoints = arc(d=thickness, angle = [-180,0]); curvepoints = arc(d=thickness, angle = [-180,0]);
profiles = [for(pt=curvepoints) _cyl_hole(r+pt.x,apply(xscale((r+pt.x)/r), offset(path,delta=thickness/2+pt.y,check_valid=false,closed=true)))]; profiles = [for(pt=curvepoints) _cyl_hole(r+pt.x,apply(xscale((r+pt.x)/r), offset(fixpath,delta=thickness/2+pt.y,check_valid=false,closed=true)))];
pathx = column(path,0); pathx = column(fixpath,0);
minangle = (min(pathx)-thickness/2)*360/(2*PI*r); minangle = (min(pathx)-thickness/2)*360/(2*PI*r);
maxangle = (max(pathx)+thickness/2)*360/(2*PI*r); maxangle = (max(pathx)+thickness/2)*360/(2*PI*r);
mindist = (r+thickness/2)/cos((maxangle-minangle)/2); mindist = (r+thickness/2)/cos((maxangle-minangle)/2);
assert(maxangle-minangle<180,"Cutout angle span is too large. Must be smaller than 180."); assert(maxangle-minangle<180,"Cutout angle span is too large. Must be smaller than 180.");
zmean = mean(column(path,1)); zmean = mean(column(fixpath,1));
innerzero = repeat([0,0,zmean], len(path)); innerzero = repeat([0,0,zmean], len(fixpath));
outerpt = repeat( [1.5*mindist*cos((maxangle+minangle)/2),1.5*mindist*sin((maxangle+minangle)/2),zmean], len(path)); outerpt = repeat( [1.5*mindist*cos((maxangle+minangle)/2),1.5*mindist*sin((maxangle+minangle)/2),zmean], len(fixpath));
vnf_polyhedron(vnf_vertex_array([innerzero, each profiles, outerpt],col_wrap=true),convexity=convexity); vnf_polyhedron(vnf_vertex_array([innerzero, each profiles, outerpt],col_wrap=true),convexity=convexity);
} }

View file

@ -436,7 +436,7 @@ function skin(profiles, slices, refine=1, method="direct", sampling, caps, close
assert(capsOK, "caps must be boolean or a list of two booleans") assert(capsOK, "caps must be boolean or a list of two booleans")
assert(!closed || !caps, "Cannot make closed shape with caps") assert(!closed || !caps, "Cannot make closed shape with caps")
let( let(
profile_dim=array_dim(profiles,2), profile_dim=list_shape(profiles,2),
profiles_zcheck = (profile_dim != 2) || (profile_dim==2 && is_list(z) && len(z)==len(profiles)), profiles_zcheck = (profile_dim != 2) || (profile_dim==2 && is_list(z) && len(z)==len(profiles)),
profiles_ok = (profile_dim==2 && is_list(z) && len(z)==len(profiles)) || profile_dim==3 profiles_ok = (profile_dim==2 && is_list(z) && len(z)==len(profiles)) || profile_dim==3
) )
@ -829,8 +829,8 @@ function path_sweep(shape, path, method="incremental", normal, closed=false, twi
assert(!closed || twist % (360/symmetry)==0, str("For a closed sweep, twist must be a multiple of 360/symmetry = ",360/symmetry)) assert(!closed || twist % (360/symmetry)==0, str("For a closed sweep, twist must be a multiple of 360/symmetry = ",360/symmetry))
assert(closed || symmetry==1, "symmetry must be 1 when closed is false") assert(closed || symmetry==1, "symmetry must be 1 when closed is false")
assert(is_integer(symmetry) && symmetry>0, "symmetry must be a positive integer") assert(is_integer(symmetry) && symmetry>0, "symmetry must be a positive integer")
// let(shape = check_and_fix_path(shape,valid_dim=2,closed=true,name="shape")) let(path = force_path(path))
assert(is_path(path), "input path is not a path") assert(is_path(path,[2,3]), "input path is not a 2D or 3D path")
assert(!closed || !approx(path[0],last(path)), "Closed path includes start point at the end") assert(!closed || !approx(path[0],last(path)), "Closed path includes start point at the end")
let( let(
path = path3d(path), path = path3d(path),
@ -973,8 +973,11 @@ function path_sweep2d(shape, path, closed=false, caps, quality=1, style="min_edg
: closed ? false : true, : closed ? false : true,
capsOK = is_bool(caps) || is_bool_list(caps,2), capsOK = is_bool(caps) || is_bool_list(caps,2),
fullcaps = is_bool(caps) ? [caps,caps] : caps, fullcaps = is_bool(caps) ? [caps,caps] : caps,
shape = check_and_fix_path(shape,valid_dim=2,closed=true,name="shape") shape = force_path(shape,"shape"),
path = force_path(path)
) )
assert(is_path(shape,2), "shape must be a 2D path")
assert(is_path(path,2), "path must be a 2D path")
assert(capsOK, "caps must be boolean or a list of two booleans") assert(capsOK, "caps must be boolean or a list of two booleans")
assert(!closed || !caps, "Cannot make closed shape with caps") assert(!closed || !caps, "Cannot make closed shape with caps")
let( let(
@ -1222,6 +1225,7 @@ function _smooth(data,len,closed=false,angle=false) =
) )
result; result;
// Function: rot_resample() // Function: rot_resample()
// Usage: // Usage:
// rlist = rot_resample(rotlist, N, [method], [twist], [scale], [smoothlen], [long], [turns], [closed]) // rlist = rot_resample(rotlist, N, [method], [twist], [scale], [smoothlen], [long], [turns], [closed])

View file

@ -156,9 +156,14 @@ test_list_set();
module test_list_remove() { module test_list_remove() {
assert(list_remove([3,6,9,12],1) == [3,9,12]); assert(list_remove([3,6,9,12],1) == [3,9,12]);
assert(list_remove([3,6,9,12],[1]) == [3,9,12]);
assert(list_remove([3,6,9,12],[1,3]) == [3,9]); assert(list_remove([3,6,9,12],[1,3]) == [3,9]);
assert(list_remove([3,6,9],[]) == [3,6,9]); assert(list_remove([3,6,9],[]) == [3,6,9]);
assert(list_remove([],[]) == []); assert(list_remove([],[]) == []);
assert(list_remove([1,2,3], -1)==[1,2,3]);
assert(list_remove([1,2,3], 3)==[1,2,3]);
assert(list_remove([1,2,3], [-1,3])==[1,2,3]);
assert(list_remove([1,2,3], [-1,1,3])==[1,3]);
} }
test_list_remove(); test_list_remove();
@ -169,6 +174,23 @@ module test_list_remove_values() {
assert(list_remove_values(animals, ["bat","rat"]) == ["cat","dog","bat","rat"]); assert(list_remove_values(animals, ["bat","rat"]) == ["cat","dog","bat","rat"]);
assert(list_remove_values(animals, ["bat","rat"], all=true) == ["cat","dog"]); assert(list_remove_values(animals, ["bat","rat"], all=true) == ["cat","dog"]);
assert(list_remove_values(animals, ["tucan","rat"], all=true) == ["bat","cat","dog","bat"]); assert(list_remove_values(animals, ["tucan","rat"], all=true) == ["bat","cat","dog","bat"]);
test = [3,4,[5,6],7,5,[5,6],4,[6,5],7,[4,4]];
assert_equal(list_remove_values(test,4), [3, [5, 6], 7, 5, [5, 6], 4, [6, 5], 7, [4, 4]]);
assert_equal(list_remove_values(test,[4,4]), [3, [5, 6], 7, 5, [5, 6], [6, 5], 7, [4, 4]]);
assert_equal(list_remove_values(test,[4,7]), [3, [5, 6], 5, [5, 6], 4, [6, 5], 7, [4, 4]]);
assert_equal(list_remove_values(test,[5,6]), [3, 4, [5, 6], 7, [5, 6], 4, [6, 5], 7, [4, 4]]);
assert_equal(list_remove_values(test,[[5,6]]), [3,4,7,5,[5,6],4,[6,5],7,[4,4]]);
assert_equal(list_remove_values(test,[[5,6]],all=true), [3,4,7,5,4,[6,5],7,[4,4]]);
assert_equal(list_remove_values(test,4,all=true), [3, [5, 6], 7, 5, [5, 6], [6, 5],7, [4, 4]]);
assert_equal(list_remove_values(test,[4,7],all=true), [3, [5, 6], 5, [5, 6], [6, 5], [4, 4]]);
assert_equal(list_remove_values(test,[]),test);
assert_equal(list_remove_values(test,[],all=true),test);
assert_equal(list_remove_values(test,99), test);
assert_equal(list_remove_values(test,99,all=true), test);
assert_equal(list_remove_values(test,[99,100],all=true), test);
assert_equal(list_remove_values(test,[99,100]), test);
} }
test_list_remove_values(); test_list_remove_values();
@ -402,19 +424,19 @@ module test_full_flatten() {
test_full_flatten(); test_full_flatten();
module test_array_dim() { module test_list_shape() {
assert(array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]) == [2,2,3]); assert(list_shape([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]) == [2,2,3]);
assert(array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 0) == 2); assert(list_shape([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 0) == 2);
assert(array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 2) == 3); assert(list_shape([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 2) == 3);
assert(array_dim([[[1,2,3],[4,5,6]],[[7,8,9]]]) == [2,undef,3]); assert(list_shape([[[1,2,3],[4,5,6]],[[7,8,9]]]) == [2,undef,3]);
assert(array_dim([1,2,3,4,5,6,7,8,9]) == [9]); assert(list_shape([1,2,3,4,5,6,7,8,9]) == [9]);
assert(array_dim([[1],[2],[3],[4],[5],[6],[7],[8],[9]]) == [9,1]); assert(list_shape([[1],[2],[3],[4],[5],[6],[7],[8],[9]]) == [9,1]);
assert(array_dim([]) == [0]); assert(list_shape([]) == [0]);
assert(array_dim([[]]) == [1,0]); assert(list_shape([[]]) == [1,0]);
assert(array_dim([[],[]]) == [2,0]); assert(list_shape([[],[]]) == [2,0]);
assert(array_dim([[],[1]]) == [2,undef]); assert(list_shape([[],[1]]) == [2,undef]);
} }
test_array_dim(); test_list_shape();
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -39,6 +39,7 @@ test_cleanup_path();
module test_path_merge_collinear() { module test_path_merge_collinear() {
path = [[-20,-20], [-10,-20], [0,-10], [10,0], [20,10], [20,20], [15,30]]; path = [[-20,-20], [-10,-20], [0,-10], [10,0], [20,10], [20,20], [15,30]];
assert(path_merge_collinear(path) == [[-20,-20], [-10,-20], [20,10], [20,20], [15,30]]); assert(path_merge_collinear(path) == [[-20,-20], [-10,-20], [20,10], [20,20], [15,30]]);
assert(path_merge_collinear([path]) == [[-20,-20], [-10,-20], [20,10], [20,20], [15,30]]);
} }
test_path_merge_collinear(); test_path_merge_collinear();