mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-28 15:29:37 +00:00
Fix bug in skin, add some complex stuff to math and tests
This commit is contained in:
parent
d8f1581149
commit
4dc2d4cfe5
4 changed files with 177 additions and 27 deletions
13
arrays.scad
13
arrays.scad
|
@ -1682,4 +1682,17 @@ function transpose(arr, reverse=false) =
|
|||
arr;
|
||||
|
||||
|
||||
// Function: is_matrix_symmetric()
|
||||
// Usage:
|
||||
// b = is_matrix_symmetric(A,<eps>)
|
||||
// Description:
|
||||
// Returns true if the input matrix is symmetric, meaning it equals its transpose.
|
||||
// Matrix should have numerical entries.
|
||||
// Arguments:
|
||||
// A = matrix to test
|
||||
// eps = epsilon for comparing equality. Default: 1e-12
|
||||
function is_matrix_symmetric(A,eps=1e-12) =
|
||||
approx(A,transpose(A));
|
||||
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
|
114
math.scad
114
math.scad
|
@ -1465,19 +1465,52 @@ function deriv3(data, h=1, closed=false) =
|
|||
|
||||
// Section: Complex Numbers
|
||||
|
||||
|
||||
// Function: complex()
|
||||
// Usage:
|
||||
// z = complex(list)
|
||||
// Description:
|
||||
// Converts a real valued number, vector or matrix into its complex analog
|
||||
// by replacing all entries with a 2-vector that has zero imaginary part.
|
||||
function complex(list) =
|
||||
is_num(list) ? [list,0] :
|
||||
[for(entry=list) is_num(entry) ? [entry,0] : complex(entry)];
|
||||
|
||||
|
||||
// Function: c_mul()
|
||||
// Usage:
|
||||
// c = c_mul(z1,z2)
|
||||
// Description:
|
||||
// Multiplies two complex numbers represented by 2D vectors.
|
||||
// Returns a complex number as a 2D vector [REAL, IMAGINARY].
|
||||
// Multiplies two complex numbers, vectors or matrices, where complex numbers
|
||||
// or entries are represented as vectors: [REAL, IMAGINARY]. Note that all
|
||||
// entries in both arguments must be complex.
|
||||
// Arguments:
|
||||
// z1 = First complex number, given as a 2D vector [REAL, IMAGINARY]
|
||||
// z2 = Second complex number, given as a 2D vector [REAL, IMAGINARY]
|
||||
function c_mul(z1,z2) =
|
||||
assert( is_matrix([z1,z2],2,2), "Complex numbers should be represented by 2D vectors" )
|
||||
// z1 = First complex number, vector or matrix
|
||||
// z2 = Second complex number, vector or matrix
|
||||
|
||||
function _split_complex(data) =
|
||||
is_vector(data,2) ? data
|
||||
: is_num(data[0][0]) ? [data*[1,0], data*[0,1]]
|
||||
: [
|
||||
[for(vec=data) vec * [1,0]],
|
||||
[for(vec=data) vec * [0,1]]
|
||||
];
|
||||
|
||||
function _combine_complex(data) =
|
||||
is_vector(data,2) ? data
|
||||
: is_num(data[0][0]) ? [for(i=[0:len(data[0])-1]) [data[0][i],data[1][i]]]
|
||||
: [for(i=[0:1:len(data[0])-1])
|
||||
[for(j=[0:1:len(data[0][0])-1])
|
||||
[data[0][i][j], data[1][i][j]]]];
|
||||
|
||||
function _c_mul(z1,z2) =
|
||||
[ z1.x*z2.x - z1.y*z2.y, z1.x*z2.y + z1.y*z2.x ];
|
||||
|
||||
function c_mul(z1,z2) =
|
||||
is_matrix([z1,z2],2,2) ? _c_mul(z1,z2) :
|
||||
_combine_complex(_c_mul(_split_complex(z1), _split_complex(z2)));
|
||||
|
||||
|
||||
// Function: c_div()
|
||||
// Usage:
|
||||
// x = c_div(z1,z2)
|
||||
|
@ -1493,7 +1526,52 @@ function c_div(z1,z2) =
|
|||
let(den = z2.x*z2.x + z2.y*z2.y)
|
||||
[(z1.x*z2.x + z1.y*z2.y)/den, (z1.y*z2.x - z1.x*z2.y)/den];
|
||||
|
||||
// For the sake of consistence with Q_mul and vmul, c_mul should be called C_mul
|
||||
|
||||
// Function: c_conj()
|
||||
// Usage:
|
||||
// w = c_conj(z)
|
||||
// Description:
|
||||
// Computes the complex conjugate of the input, which can be a complex number,
|
||||
// complex vector or complex matrix.
|
||||
function c_conj(z) =
|
||||
is_vector(z,2) ? [z.x,-z.y] :
|
||||
[for(entry=z) c_conj(entry)];
|
||||
|
||||
// Function: c_real()
|
||||
// Usage:
|
||||
// x = c_real(z)
|
||||
// Description:
|
||||
// Returns real part of a complex number, vector or matrix.
|
||||
function c_real(z) =
|
||||
is_vector(z,2) ? z.x
|
||||
: is_num(z[0][0]) ? z*[1,0]
|
||||
: [for(vec=z) vec * [1,0]];
|
||||
|
||||
// Function: c_imag()
|
||||
// Usage:
|
||||
// x = c_imag(z)
|
||||
// Description:
|
||||
// Returns imaginary part of a complex number, vector or matrix.
|
||||
function c_imag(z) =
|
||||
is_vector(z,2) ? z.y
|
||||
: is_num(z[0][0]) ? z*[0,1]
|
||||
: [for(vec=z) vec * [0,1]];
|
||||
|
||||
|
||||
// Function: c_ident()
|
||||
// Usage:
|
||||
// I = c_ident(n)
|
||||
// Description:
|
||||
// Produce an n by n complex identity matrix
|
||||
function c_ident(n) = [for (i = [0:1:n-1]) [for (j = [0:1:n-1]) (i==j)?[1,0]:[0,0]]];
|
||||
|
||||
// Function: c_norm()
|
||||
// Usage:
|
||||
// n = c_norm(z)
|
||||
// Description:
|
||||
// Compute the norm of a complex number or vector.
|
||||
function c_norm(z) = norm_fro(z);
|
||||
|
||||
|
||||
// Section: Polynomials
|
||||
|
||||
|
@ -1539,12 +1617,12 @@ function quadratic_roots(a,b,c,real=false) =
|
|||
// where a_n is the z^n coefficient. Polynomial coefficients are real.
|
||||
// The result is a number if `z` is a number and a complex number otherwise.
|
||||
function polynomial(p,z,k,total) =
|
||||
is_undef(k)
|
||||
? assert( is_vector(p) , "Input polynomial coefficients must be a vector." )
|
||||
assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." )
|
||||
polynomial( _poly_trim(p), z, 0, is_num(z) ? 0 : [0,0])
|
||||
: k==len(p) ? total
|
||||
: polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : c_mul(total,z)+[p[k],0]);
|
||||
is_undef(k)
|
||||
? assert( is_vector(p) , "Input polynomial coefficients must be a vector." )
|
||||
assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." )
|
||||
polynomial( _poly_trim(p), z, 0, is_num(z) ? 0 : [0,0])
|
||||
: k==len(p) ? total
|
||||
: polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : c_mul(total,z)+[p[k],0]);
|
||||
|
||||
// Function: poly_mult()
|
||||
// Usage:
|
||||
|
@ -1554,12 +1632,12 @@ function polynomial(p,z,k,total) =
|
|||
// Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first,
|
||||
// computes the coefficient list of the product polynomial.
|
||||
function poly_mult(p,q) =
|
||||
is_undef(q) ?
|
||||
len(p)==2
|
||||
is_undef(q) ?
|
||||
len(p)==2
|
||||
? poly_mult(p[0],p[1])
|
||||
: poly_mult(p[0], poly_mult(select(p,1,-1)))
|
||||
:
|
||||
assert( is_vector(p) && is_vector(q),"Invalid arguments to poly_mult")
|
||||
: poly_mult(p[0], poly_mult(select(p,1,-1)))
|
||||
:
|
||||
assert( is_vector(p) && is_vector(q),"Invalid arguments to poly_mult")
|
||||
p*p==0 || q*q==0
|
||||
? [0]
|
||||
: _poly_trim(convolve(p,q));
|
||||
|
|
|
@ -407,7 +407,7 @@ function skin(profiles, slices, refine=1, method="direct", sampling, caps, close
|
|||
assert(methodlistok==[], str("method list contains invalid method at ",methodlistok))
|
||||
assert(len(method) == profcount,"Method list is the wrong length")
|
||||
assert(in_list(sampling,["length","segment"]), "sampling must be set to \"length\" or \"segment\"")
|
||||
assert(sampling=="segment" || (!in_list("distance",method) && !in_list("fast_distance") && !in_list("tangent",method)), "sampling is set to \"length\" which is only allowed with methods \"direct\" and \"reindex\"")
|
||||
assert(sampling=="segment" || (!in_list("distance",method) && !in_list("fast_distance",method) && !in_list("tangent",method)), "sampling is set to \"length\" which is only allowed with methods \"direct\" and \"reindex\"")
|
||||
assert(capsOK, "caps must be boolean or a list of two booleans")
|
||||
assert(!closed || !caps, "Cannot make closed shape with caps")
|
||||
let(
|
||||
|
|
|
@ -824,19 +824,78 @@ module test_lcm() {
|
|||
test_lcm();
|
||||
|
||||
|
||||
module test_C_times() {
|
||||
assert_equal(C_times([4,5],[9,-4]), [56,29]);
|
||||
assert_equal(C_times([-7,2],[24,3]), [-174, 27]);
|
||||
module test_c_mul() {
|
||||
assert_equal(c_mul([4,5],[9,-4]), [56,29]);
|
||||
assert_equal(c_mul([-7,2],[24,3]), [-174, 27]);
|
||||
assert_equal(c_mul([3,4], [[3,-7], [4,9], [4,8]]), [[37,-9],[-24,43], [-20,40]]);
|
||||
assert_equal(c_mul([[3,-7], [4,9], [4,8]], [[1,1],[3,4],[-3,4]]), [-58,31]);
|
||||
M = [
|
||||
[ [3,4], [9,-1], [4,3] ],
|
||||
[ [2,9], [4,9], [3,-1] ]
|
||||
];
|
||||
assert_equal(c_mul(M, [ [3,4], [4,4],[5,5]]), [[38,91], [-30, 97]]);
|
||||
assert_equal(c_mul([[4,4],[9,1]], M), [[5,111],[67,117], [32,22]]);
|
||||
assert_equal(c_mul(M,transpose(M)), [ [[80,30], [30, 117]], [[30,117], [-134, 102]]]);
|
||||
assert_equal(c_mul(transpose(M),M), [ [[-84,60],[-42,87],[15,50]], [[-42,87],[15,54],[60,46]], [[15,50],[60,46],[15,18]]]);
|
||||
}
|
||||
test_C_times();
|
||||
test_c_mul();
|
||||
|
||||
|
||||
module test_C_div() {
|
||||
assert_equal(C_div([56,29],[9,-4]), [4,5]);
|
||||
assert_equal(C_div([-174,27],[-7,2]), [24,3]);
|
||||
module test_c_div() {
|
||||
assert_equal(c_div([56,29],[9,-4]), [4,5]);
|
||||
assert_equal(c_div([-174,27],[-7,2]), [24,3]);
|
||||
}
|
||||
test_C_div();
|
||||
test_c_div();
|
||||
|
||||
module test_c_conj(){
|
||||
assert_equal(c_conj([3,4]), [3,-4]);
|
||||
assert_equal(c_conj( [ [2,9], [4,9], [3,-1] ]), [ [2,-9], [4,-9], [3,1] ]);
|
||||
M = [
|
||||
[ [3,4], [9,-1], [4,3] ],
|
||||
[ [2,9], [4,9], [3,-1] ]
|
||||
];
|
||||
Mc = [
|
||||
[ [3,-4], [9,1], [4,-3] ],
|
||||
[ [2,-9], [4,-9], [3,1] ]
|
||||
];
|
||||
assert_equal(c_conj(M), Mc);
|
||||
}
|
||||
test_c_conj();
|
||||
|
||||
module test_c_real(){
|
||||
M = [
|
||||
[ [3,4], [9,-1], [4,3] ],
|
||||
[ [2,9], [4,9], [3,-1] ]
|
||||
];
|
||||
assert_equal(c_real(M), [[3,9,4],[2,4,3]]);
|
||||
assert_equal(c_real( [ [3,4], [9,-1], [4,3] ]), [3,9,4]);
|
||||
assert_equal(c_real([3,4]),3);
|
||||
}
|
||||
test_c_real();
|
||||
|
||||
|
||||
module test_c_imag(){
|
||||
M = [
|
||||
[ [3,4], [9,-1], [4,3] ],
|
||||
[ [2,9], [4,9], [3,-1] ]
|
||||
];
|
||||
assert_equal(c_imag(M), [[4,-1,3],[9,9,-1]]);
|
||||
assert_equal(c_imag( [ [3,4], [9,-1], [4,3] ]), [4,-1,3]);
|
||||
assert_equal(c_imag([3,4]),4);
|
||||
}
|
||||
test_c_imag();
|
||||
|
||||
|
||||
module test_c_ident(){
|
||||
assert_equal(c_ident(3), [[[1, 0], [0, 0], [0, 0]], [[0, 0], [1, 0], [0, 0]], [[0, 0], [0, 0], [1, 0]]]);
|
||||
}
|
||||
test_c_ident();
|
||||
|
||||
module test_c_norm(){
|
||||
assert_equal(c_norm([3,4]), 5);
|
||||
assert_approx(c_norm([[3,4],[5,6]]), 9.273618495495704);
|
||||
}
|
||||
test_c_norm();
|
||||
|
||||
module test_back_substitute(){
|
||||
R = [[12,4,3,2],
|
||||
|
|
Loading…
Reference in a new issue