mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
Add end anchors to path_sweep
This commit is contained in:
parent
a246027a68
commit
5034c6667a
2 changed files with 106 additions and 42 deletions
|
@ -2774,6 +2774,41 @@ function reorient(
|
||||||
function named_anchor(name, pos, orient=UP, spin=0) = [name, pos, orient, spin];
|
function named_anchor(name, pos, orient=UP, spin=0) = [name, pos, orient, spin];
|
||||||
|
|
||||||
|
|
||||||
|
function _force_rot(T) =
|
||||||
|
[for(i=[0:3])
|
||||||
|
[for(j=[0:3]) j<3 ? T[i][j] :
|
||||||
|
i==3 ? 1
|
||||||
|
: 0]];
|
||||||
|
|
||||||
|
// Function: transform_anchor()
|
||||||
|
// Synopsis: Creates an anchor data structure from a transformation matrix
|
||||||
|
// Topics: Attachments
|
||||||
|
// See Also: reorient(), attachable()
|
||||||
|
// Usage:
|
||||||
|
// a = transform_anchor(name, transform, [flip]);
|
||||||
|
// Description:
|
||||||
|
// Creates an anchor data structure from a transformation matrix. For a step-by-step explanation of attachments,
|
||||||
|
// see the [Attachments Tutorial](Tutorial-Attachments).
|
||||||
|
// Arguments:
|
||||||
|
// name = The string name of the anchor. Lowercase. Words separated by single dashes. No spaces.
|
||||||
|
// transform = A rotation matrix (which may include translation)
|
||||||
|
// flip = If true, flip the anchor the opposite direction. Default: false
|
||||||
|
|
||||||
|
function transform_anchor(name, transform, flip=false) =
|
||||||
|
let(
|
||||||
|
pos = apply(transform,CTR),
|
||||||
|
rotpart = _force_rot(transform),
|
||||||
|
dir = flip ? apply(rotpart,DOWN)
|
||||||
|
: apply(rotpart,UP),
|
||||||
|
transform = flip? affine3d_rot_by_axis(apply(rotpart,BACK),180)*transform
|
||||||
|
: transform,
|
||||||
|
decode=rot_decode(rot(to=UP,from=dir)*_force_rot(transform)),
|
||||||
|
spin = decode[0]*sign(decode[1].z)
|
||||||
|
)
|
||||||
|
[name, pos,dir,spin];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: attach_geom()
|
// Function: attach_geom()
|
||||||
// Synopsis: Returns the internal geometry description of an attachable object.
|
// Synopsis: Returns the internal geometry description of an attachable object.
|
||||||
// Topics: Attachments
|
// Topics: Attachments
|
||||||
|
@ -3201,7 +3236,6 @@ function _attach_transform(anchor, spin, orient, geom, p) =
|
||||||
assert(is_undef(orient) || is_vector(orient,3), str("Got: ",orient))
|
assert(is_undef(orient) || is_vector(orient,3), str("Got: ",orient))
|
||||||
let(
|
let(
|
||||||
anchor = default(anchor, CENTER),
|
anchor = default(anchor, CENTER),
|
||||||
|
|
||||||
spin = default(spin, 0),
|
spin = default(spin, 0),
|
||||||
orient = default(orient, UP),
|
orient = default(orient, UP),
|
||||||
two_d = _attach_geom_2d(geom),
|
two_d = _attach_geom_2d(geom),
|
||||||
|
@ -3209,12 +3243,13 @@ function _attach_transform(anchor, spin, orient, geom, p) =
|
||||||
let(
|
let(
|
||||||
anch = _find_anchor($attach_to, geom),
|
anch = _find_anchor($attach_to, geom),
|
||||||
pos = anch[1]
|
pos = anch[1]
|
||||||
) two_d? (
|
)
|
||||||
assert(two_d && is_num(spin))
|
two_d?
|
||||||
affine3d_zrot(spin) *
|
assert(is_num(spin))
|
||||||
rot(to=FWD, from=point3d(anch[2])) *
|
affine3d_zrot(spin)
|
||||||
affine3d_translate(point3d(-pos))
|
* rot(to=FWD, from=point3d(anch[2]))
|
||||||
) : (
|
* affine3d_translate(point3d(-pos))
|
||||||
|
:
|
||||||
assert(is_num(spin) || is_vector(spin,3))
|
assert(is_num(spin) || is_vector(spin,3))
|
||||||
let(
|
let(
|
||||||
ang = vector_angle(anch[2], DOWN),
|
ang = vector_angle(anch[2], DOWN),
|
||||||
|
@ -3222,40 +3257,33 @@ function _attach_transform(anchor, spin, orient, geom, p) =
|
||||||
ang2 = (anch[2]==UP || anch[2]==DOWN)? 0 : 180-anch[3],
|
ang2 = (anch[2]==UP || anch[2]==DOWN)? 0 : 180-anch[3],
|
||||||
axis2 = rot(p=axis,[0,0,ang2])
|
axis2 = rot(p=axis,[0,0,ang2])
|
||||||
)
|
)
|
||||||
affine3d_rot_by_axis(axis2,ang) * (
|
affine3d_rot_by_axis(axis2,ang)
|
||||||
is_num(spin)? affine3d_zrot(ang2+spin) : (
|
* (is_num(spin)? affine3d_zrot(ang2+spin)
|
||||||
affine3d_zrot(spin.z) *
|
: affine3d_zrot(spin.z) * affine3d_yrot(spin.y) * affine3d_xrot(spin.x)
|
||||||
affine3d_yrot(spin.y) *
|
* affine3d_zrot(ang2))
|
||||||
affine3d_xrot(spin.x) *
|
* affine3d_translate(point3d(-pos))
|
||||||
affine3d_zrot(ang2)
|
|
||||||
)
|
|
||||||
) * affine3d_translate(point3d(-pos))
|
|
||||||
)
|
|
||||||
) : (
|
) : (
|
||||||
let(
|
let(
|
||||||
pos = _find_anchor(anchor, geom)[1]
|
pos = _find_anchor(anchor, geom)[1]
|
||||||
) two_d? (
|
)
|
||||||
assert(two_d && is_num(spin))
|
two_d?
|
||||||
affine3d_zrot(spin) *
|
assert(is_num(spin))
|
||||||
affine3d_translate(point3d(-pos))
|
affine3d_zrot(spin) * affine3d_translate(point3d(-pos))
|
||||||
) : (
|
:
|
||||||
assert(is_num(spin) || is_vector(spin,3))
|
assert(is_num(spin) || is_vector(spin,3))
|
||||||
let(
|
let(
|
||||||
axis = vector_axis(UP,orient),
|
axis = vector_axis(UP,orient),
|
||||||
ang = vector_angle(UP,orient)
|
ang = vector_angle(UP,orient)
|
||||||
)
|
)
|
||||||
affine3d_rot_by_axis(axis,ang) * (
|
affine3d_rot_by_axis(axis,ang)
|
||||||
is_num(spin)? affine3d_zrot(spin) : (
|
* ( is_num(spin)? affine3d_zrot(spin)
|
||||||
affine3d_zrot(spin.z) *
|
: affine3d_zrot(spin.z) * affine3d_yrot(spin.y) * affine3d_xrot(spin.x))
|
||||||
affine3d_yrot(spin.y) *
|
* affine3d_translate(point3d(-pos))
|
||||||
affine3d_xrot(spin.x)
|
|
||||||
)
|
|
||||||
) * affine3d_translate(point3d(-pos))
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
) is_undef(p)? m :
|
)
|
||||||
is_vnf(p)? [(p==EMPTY_VNF? p : apply(m, p[0])), p[1]] :
|
is_undef(p)? m
|
||||||
apply(m, p);
|
: is_vnf(p) && p==EMPTY_VNF? p
|
||||||
|
: apply(m, p);
|
||||||
|
|
||||||
|
|
||||||
function _get_cp(geom) =
|
function _get_cp(geom) =
|
||||||
|
|
56
skin.scad
56
skin.scad
|
@ -1481,6 +1481,11 @@ module spiral_sweep(poly, h, r, turns=1, taper, r1, r2, d, d1, d2, internal=fals
|
||||||
// Anchor Types:
|
// Anchor Types:
|
||||||
// "hull" = Anchors to the virtual convex hull of the shape.
|
// "hull" = Anchors to the virtual convex hull of the shape.
|
||||||
// "intersect" = Anchors to the surface of the shape.
|
// "intersect" = Anchors to the surface of the shape.
|
||||||
|
// Extra Anchors:
|
||||||
|
// start = When `closed==false`, the origin point of the shape, on the starting face of the object
|
||||||
|
// end = When `closed==false`, the origin point of the shape, on the ending face of the object
|
||||||
|
// start-centroid = When `closed==false`, the centroid of the shape, on the starting face of the object
|
||||||
|
// end-centroid = When `closed==false`, the centroid of the shape, on the ending face of the object
|
||||||
// Example(NoScales): A simple sweep of a square along a sine wave:
|
// Example(NoScales): A simple sweep of a square along a sine wave:
|
||||||
// path = [for(theta=[-180:5:180]) [theta/10, 10*sin(theta)]];
|
// path = [for(theta=[-180:5:180]) [theta/10, 10*sin(theta)]];
|
||||||
// sq = square(6,center=true);
|
// sq = square(6,center=true);
|
||||||
|
@ -1755,29 +1760,60 @@ module spiral_sweep(poly, h, r, turns=1, taper, r1, r2, d, d1, d2, internal=fals
|
||||||
// path_sweep(left(.05,square([1.1,1])), curve, closed=true,
|
// path_sweep(left(.05,square([1.1,1])), curve, closed=true,
|
||||||
// method="manual", normal=UP);
|
// method="manual", normal=UP);
|
||||||
// }
|
// }
|
||||||
|
// Example(Med,NoScales,VPR=[78.1,0,43.2],VPT=[2.18042,-0.485127,1.90371],VPD=74.4017): The "start" and "end" anchors are located at the origin point of the swept shape.
|
||||||
|
// shape = back_half(right_half(star(n=5,id=5,od=10)),y=-1);
|
||||||
|
// path = arc(angle=[0,180],d=30);
|
||||||
|
// path_sweep(shape,path,method="natural"){
|
||||||
|
// attach(["start","end"]) anchor_arrow(s=5);
|
||||||
|
// }
|
||||||
|
// Example(Med,NoScales,VPR=[78.1,0,43.2],VPT=[2.18042,-0.485127,1.90371],VPD=74.4017): The "start" and "end" anchors are located at the origin point of the swept shape.
|
||||||
|
// shape = back_half(right_half(star(n=5,id=5,od=10)),y=-1);
|
||||||
|
// path = arc(angle=[0,180],d=30);
|
||||||
|
// path_sweep(shape,path,method="natural"){
|
||||||
|
// attach(["start-centroid","end-centroid"]) anchor_arrow(s=5);
|
||||||
|
// }
|
||||||
|
// Example(Med,NoScales,VPR=[78.1,0,43.2],VPT=[2.18042,-0.485127,1.90371],VPD=74.4017): Note that the "start" anchors are backwards compared to the direction of the sweep, so you have to attach the TOP to align the shape with its ends.
|
||||||
|
// shape = back_half(right_half(star(n=5,id=5,od=10)),y=-1);
|
||||||
|
// path = arc(angle=[0,180],d=30);
|
||||||
|
// path_sweep(shape,path,method="natural")
|
||||||
|
// recolor("red"){
|
||||||
|
// attach("start",TOP) stroke([path3d(shape[0])],width=.5);
|
||||||
|
// attach("end") stroke([path3d(last(shape))],width=.5);
|
||||||
|
// }
|
||||||
|
|
||||||
|
|
||||||
module path_sweep(shape, path, method="incremental", normal, closed, twist=0, twist_by_length=true, scale=1, scale_by_length=true,
|
module path_sweep(shape, path, method="incremental", normal, closed, twist=0, twist_by_length=true, scale=1, scale_by_length=true,
|
||||||
symmetry=1, last_normal, tangent, uniform=true, relaxed=false, caps, style="min_edge", convexity=10,
|
symmetry=1, last_normal, tangent, uniform=true, relaxed=false, caps, style="min_edge", convexity=10,
|
||||||
anchor="origin",cp="centroid",spin=0, orient=UP, atype="hull",profiles=false,width=1)
|
anchor="origin",cp="centroid",spin=0, orient=UP, atype="hull",profiles=false,width=1)
|
||||||
{
|
{
|
||||||
dummy = assert(is_region(shape) || is_path(shape,2), "shape must be a 2D path or region");
|
dummy = assert(is_region(shape) || is_path(shape,2), "shape must be a 2D path or region")
|
||||||
vnf = path_sweep(shape, path, method, normal, closed, twist, twist_by_length, scale, scale_by_length,
|
assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\"");
|
||||||
symmetry, last_normal, tangent, uniform, relaxed, caps, style);
|
transforms = path_sweep(shape, path, method, normal, closed, twist, twist_by_length, scale, scale_by_length,
|
||||||
|
symmetry, last_normal, tangent, uniform, relaxed, caps, style, transforms=true);
|
||||||
|
vnf = sweep(is_path(shape)?clockwise_polygon(shape):shape, transforms, closed=false, caps=caps,style=style);
|
||||||
|
shapecent = point3d(centroid(shape));
|
||||||
|
$transforms = transforms;
|
||||||
|
anchors = closed ? []
|
||||||
|
:
|
||||||
|
[
|
||||||
|
transform_anchor("start", transforms[0], invert=true),
|
||||||
|
transform_anchor("end", last(transforms)),
|
||||||
|
transform_anchor("start-centroid", transforms[0]*move(shapecent), invert=true),
|
||||||
|
transform_anchor("end-centroid", last(transforms)*move(shapecent))
|
||||||
|
];
|
||||||
if (profiles){
|
if (profiles){
|
||||||
assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\"");
|
|
||||||
tran = path_sweep(shape, path, method, normal, closed, twist, twist_by_length, scale, scale_by_length,
|
|
||||||
symmetry, last_normal, tangent, uniform, relaxed,transforms=true);
|
|
||||||
rshape = is_path(shape) ? [path3d(shape)]
|
rshape = is_path(shape) ? [path3d(shape)]
|
||||||
: [for(s=shape) path3d(s)];
|
: [for(s=shape) path3d(s)];
|
||||||
attachable(anchor,spin,orient, vnf=vnf, extent=atype=="hull", cp=cp) {
|
attachable(anchor,spin,orient, vnf=vnf, extent=atype=="hull", cp=cp, anchors=anchors) {
|
||||||
for(T=tran) stroke([for(part=rshape)apply(T,part)],width=width);
|
for(T=transforms) stroke([for(part=rshape)apply(T,part)],width=width);
|
||||||
children();
|
children();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
vnf_polyhedron(vnf,convexity=convexity,anchor=anchor, spin=spin, orient=orient, atype=atype, cp=cp)
|
attachable(anchor,spin,orient,vnf=vnf,extent=atype=="hull", cp=cp,anchors=anchors){
|
||||||
|
vnf_polyhedron(vnf,convexity=convexity);
|
||||||
children();
|
children();
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue