Added shapes2d.scad

This commit is contained in:
Revar Desmera 2019-05-12 03:32:56 -07:00
parent f8ee274049
commit 51403aee33
3 changed files with 529 additions and 1 deletions

View file

@ -74,7 +74,8 @@ The library files are as follows:
- [`transforms.scad`](https://github.com/revarbat/BOSL2/wiki/transforms.scad): The most commonly used transformations, manipulations, and shortcuts are in this file.
- [`attachments.scad`](https://github.com/revarbat/BOSL2/wiki/attachments.scad): Modules and functions to enable attaching parts together.
- [`primitives.scad`](https://github.com/revarbat/BOSL2/wiki/primitives.scad): Enhanced replacements for `cube()`, `cylinder()`, and `sphere()`.
- [`shapes.scad`](https://github.com/revarbat/BOSL2/wiki/shapes.scad): Common useful shapes and structured objects.
- [`shapes.scad`](https://github.com/revarbat/BOSL2/wiki/shapes.scad): Common useful 3D shapes and structured objects.
- [`shapes2d.scad`](https://github.com/revarbat/BOSL2/wiki/shapes2d.scad): Common useful 2D shapes and drawing helpers.
- [`masks.scad`](https://github.com/revarbat/BOSL2/wiki/masks.scad): Shapes that are useful for masking with `difference()` and `intersect()`.
- [`threading.scad`](https://github.com/revarbat/BOSL2/wiki/threading.scad): Modules to make triangular and trapezoidal threaded rods and nuts.
- [`paths.scad`](https://github.com/revarbat/BOSL2/wiki/paths.scad): Functions and modules to work with arbitrary 3D paths.

526
shapes2d.scad Normal file
View file

@ -0,0 +1,526 @@
//////////////////////////////////////////////////////////////////////
// LibFile: shapes2d.scad
// Common useful 2D shapes.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: 2D Drawing Helpers
// Module: stroke()
// Usage:
// stroke(path, width, [endcap], [close]);
// Description:
// Draws a 2D line path with a given line thickness.
// Arguments:
// path = The 2D path to draw along.
// width = The width of the line to draw.
// endcaps = If true, draw round endcaps at the ends of the line.
// close = If true, draw an additional line from the end of the path to the start.
// Example(2D):
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
// stroke(path, width=10, endcaps=false);
// Example(2D):
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
// stroke(path, width=20, endcaps=true);
// Example(2D):
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
// stroke(path, width=20, endcaps=true, close=true);
module stroke(path, width=1, endcaps=true, close=false)
{
$fn = quantup(segs(width/2),4);
path = close? concat(path,[path[0]]) : path;
segments = pair(path);
segpairs = pair(segments);
// Line segments
for (seg = segments) {
delt = seg[1] - seg[0];
translate(seg[0])
rot(from=BACK,to=delt)
left(width/2)
square([width, norm(delt)], center=false);
}
// Joints
for (segpair = segpairs) {
seg1 = segpair[0];
seg2 = segpair[1];
delt1 = seg1[1] - seg1[0];
delt2 = seg2[1] - seg2[0];
hull() {
translate(seg1[1])
rot(from=BACK,to=delt1)
circle(d=width);
translate(seg2[0])
rot(from=BACK,to=delt2)
circle(d=width);
}
}
// Endcaps
if (endcaps) {
seg1 = segments[0];
delt1 = seg1[1] - seg1[0];
translate(seg1[0])
rot(from=BACK, to=delt1)
circle(d=width);
seg2 = select(segments,-1);
delt2 = seg2[1] - seg2[0];
translate(seg2[1])
rot(from=BACK, to=delt2)
circle(d=width);
}
}
// Section: 2D Shapes
// Function: pie_slice2d()
// Usage:
// pie_slice2d(r|d, ang);
// Description:
// Returns the 2D path for a "pie" slice of a circle.
// Arguments:
// r = The radius of the circle to get a slice of.
// d = The diameter of the circle to get a slice of.
// ang = The angle of the arc of the pie slice.
// Examples(2D):
// stroke(close=true, pie_slice2d(r=50,ang=30));
// stroke(close=true, pie_slice2d(d=100,ang=45));
// stroke(close=true, pie_slice2d(d=40,ang=120));
// stroke(close=true, pie_slice2d(d=40,ang=240));
function pie_slice2d(r=undef, d=undef, ang=30) =
let(
r = get_radius(r=r, d=d, dflt=10),
sides = ceil(segs(r)*ang/360)
) concat(
[[0,0]],
[for (i=[0:sides]) let(a=i*ang/sides) r*[cos(a),sin(a)]]
);
// Module: pie_slice2d()
// Usage:
// pie_slice2d(r|d, ang);
// Description:
// Creates a 2D "pie" slice of a circle.
// Arguments:
// r = The radius of the circle to get a slice of.
// d = The diameter of the circle to get a slice of.
// ang = The angle of the arc of the pie slice.
// Examples(2D):
// pie_slice2d(r=50,arc=30);
// pie_slice2d(d=100,arc=45);
// pie_slice2d(d=40,arc=120);
// pie_slice2d(d=40,arc=240);
module pie_slice2d(r=undef, d=undef, ang=30) {
pts = pie_slice2d(r=r, d=d, ang=ang);
polygon(pts);
}
// Function: trapezoid()
// Usage:
// trapezoid(h, w1, w2);
// Description:
// Returns a 2D path for a trapezoid with parallel front and back sides.
// Arguments:
// h = The Y axis height of the trapezoid.
// w1 = The X axis width of the front end of the trapezoid.
// w2 = The X axis width of the back end of the trapezoid.
// Examples(2D):
// stroke(close=true, trapezoid(h=30, w1=40, w2=20));
// stroke(close=true, trapezoid(h=30, w1=20, w2=30));
// stroke(close=true, trapezoid(h=30, w1=30, w2=0));
function trapezoid(h, w1, w2) =
[[-w1/2,-h/2], [-w2/2,h/2], [w2/2,h/2], [w1/2,-h/2]];
// Module: trapezoid()
// Usage:
// trapezoid(h, w1, w2);
// Description:
// Returns a 2D trapezoid with parallel front and back sides.
// Arguments:
// h = The Y axis height of the trapezoid.
// w1 = The X axis width of the front end of the trapezoid.
// w2 = The X axis width of the back end of the trapezoid.
// Examples(2D):
// trapezoid(h=30, w1=40, w2=20);
// trapezoid(h=25, w1=20, w2=35);
// trapezoid(h=20, w1=40, w2=0);
module trapezoid(h, w1, w2)
polygon(trapezoid(h=h, w1=w1, w2=w2));
// Function: regular_ngon();
// Usage:
// regular_ngon(n, or|od, [realign]);
// regular_ngon(n, ir|id, [realign]);
// regular_ngon(n, side, [realign]);
// Description:
// Returns a 2D path for a regular N-sided polygon.
// Arguments:
// n = The number of sides.
// or = Outside radius, at points.
// od = Outside diameter, at points.
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
// Example(2D): Hexagons by Outer Size
// stroke(close=true, regular_ngon(n=6, or=30));
// stroke(close=true, regular_ngon(n=6, od=60));
// Example(2D): Pentagon by Inner Size
// stroke(close=true, regular_ngon(n=5, ir=30));
// stroke(close=true, regular_ngon(n=5, id=60));
// Examples(2D): Octagon by Side Length
// stroke(close=true, regular_ngon(n=8, side=20));
function regular_ngon(n=6, or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) =
let(
sc = 1/cos(180/n),
r = get_radius(r1=ir*sc, r=or, d1=id*sc, d=od, dflt=side/2/sin(180/n)),
offset = 90 + (realign? (180/n) : 0)
) [for (a=[0:360/n:360-EPSILON]) r*[cos(a+offset),sin(a+offset)]];
// Module: regular_ngon();
// Usage:
// regular_ngon(n, or|od, [realign]);
// regular_ngon(n, ir|id, [realign]);
// regular_ngon(n, side, [realign]);
// Description:
// Created a 2D regular N-sided polygon.
// Arguments:
// n = The number of sides.
// or = Outside radius, at points.
// od = Outside diameter, at points.
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
// Example(2D): Hexagons by Outer Size
// regular_ngon(n=6, or=30);
// regular_ngon(n=6, od=60);
// Example(2D): Pentagon by Inner Size
// regular_ngon(n=5, ir=30);
// regular_ngon(n=5, id=60);
// Examples(2D): Octagon by Side Length
// regular_ngon(n=8, side=20);
module regular_ngon(n=6, or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false)
polygon(regular_ngon(n=n,or=or,od=od,ir=ir,id=id,side=side,realign=realign));
// Function: pentagon();
// Usage:
// pentagon(or|od, [realign]);
// pentagon(ir|id, [realign];
// pentagon(side, [realign];
// Description:
// Returns a 2D path for a regular pentagon.
// Arguments:
// or = Outside radius, at points.
// od = Outside diameter, at points.
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
// Example(2D): By Outer Size
// stroke(close=true, pentagon(or=30));
// stroke(close=true, pentagon(od=60));
// Example(2D): By Inner Size
// stroke(close=true, pentagon(ir=30));
// stroke(close=true, pentagon(id=60));
// Examples(2D): Pentagon by Side Length
// stroke(close=true, pentagon(side=20));
function pentagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) =
regular_ngon(n=5, or=or, od=od, ir=ir, id=id, side=side, realign=realign);
// Module: pentagon();
// Usage:
// pentagon(or, od, ir, id, side);
// Description:
// Creates a 2D regular pentagon.
// Arguments:
// or = Outside radius, at points.
// od = Outside diameter, at points.
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
// Example(2D): By Outer Size
// pentagon(or=30);
// pentagon(od=60);
// Example(2D): By Inner Size
// pentagon(ir=30);
// pentagon(id=60);
// Examples(2D): Pentagon by Side Length
// pentagon(side=20);
module pentagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false)
polygon(pentagon(or=or, od=od, ir=ir, id=id, side=side, realign=realign));
// Function: hexagon();
// Usage:
// hexagon(or, od, ir, id, side);
// Description:
// Returns a 2D path for a regular hexagon.
// Arguments:
// or = Outside radius, at points.
// od = Outside diameter, at points.
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
// Example(2D): By Outer Size
// stroke(close=true, hexagon(or=30));
// stroke(close=true, hexagon(od=60));
// Example(2D): By Inner Size
// stroke(close=true, hexagon(ir=30));
// stroke(close=true, hexagon(id=60));
// Examples(2D): Pentagon by Side Length
// stroke(close=true, hexagon(side=20));
function hexagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) =
regular_ngon(n=6, or=or, od=od, ir=ir, id=id, side=side, realign=realign);
// Module: hexagon();
// Usage:
// hexagon(or, od, ir, id, side);
// Description:
// Creates a regular 2D hexagon.
// Arguments:
// or = Outside radius, at points.
// od = Outside diameter, at points.
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
// Example(2D): By Outer Size
// hexagon(or=30);
// hexagon(od=60);
// Example(2D): By Inner Size
// hexagon(ir=30);
// hexagon(id=60);
// Examples(2D): Pentagon by Side Length
// hexagon(side=20);
module hexagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false)
polygon(hexagon(or=or, od=od, ir=ir, id=id, side=side, realign=realign));
// Function: octagon();
// Usage:
// octagon(or, od, ir, id, side);
// Description:
// Returns a 2D path for a regular octagon.
// Arguments:
// or = Outside radius, at points.
// od = Outside diameter, at points.
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
// Example(2D): By Outer Size
// stroke(close=true, octagon(or=30));
// stroke(close=true, octagon(od=60));
// Example(2D): By Inner Size
// stroke(close=true, octagon(ir=30));
// stroke(close=true, octagon(id=60));
// Examples(2D): Pentagon by Side Length
// stroke(close=true, octagon(side=20));
function octagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) =
regular_ngon(n=8, or=or, od=od, ir=ir, id=id, side=side, realign=realign);
// Module: octagon();
// Usage:
// octagon(or, od, ir, id, side);
// Description:
// Creates a 2D regular octagon.
// Arguments:
// or = Outside radius, at points.
// od = Outside diameter, at points.
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
// Example(2D): By Outer Size
// octagon(or=30);
// octagon(od=60);
// Example(2D): By Inner Size
// octagon(ir=30);
// octagon(id=60);
// Examples(2D): By Side Length
// octagon(side=20);
// Examples(2D): Realigned
// octagon(side=20, realign=false);
module octagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false)
polygon(octagon(or=or, od=od, ir=ir, id=id, side=side, realign=realign));
// Function: glued_circles()
// Usage:
// glued_circles(r|d, spread, tangent);
// Description:
// Returns a 2D path forming a shape of two circles joined by curved waist.
// Arguments:
// r = The radius of the end circles.
// d = The diameter of the end circles.
// spread = The distance between the centers of the end circles.
// tangent = The angle in degrees of the tangent point for the joining arcs, measured away from the Y axis.
// Examples(2D):
// stroke(close=true, glued_circles(r=15, spread=40, tangent=45));
// stroke(close=true, glued_circles(d=30, spread=30, tangent=30));
// stroke(close=true, glued_circles(d=30, spread=30, tangent=15));
// stroke(close=true, glued_circles(d=30, spread=30, tangent=-30));
function glued_circles(r=undef, d=undef, spread=10, tangent=30) =
let(
r = get_radius(r=r, d=d, dflt=10),
r2 = (spread/2 / sin(tangent)) - r,
cp1 = [spread/2, 0],
cp2 = [0, (r+r2)*cos(tangent)],
sa1 = 90-tangent,
ea1 = 270+tangent,
lobearc = ea1-sa1,
lobesegs = floor(segs(r)*lobearc/360),
lobestep = lobearc / lobesegs,
sa2 = 270-tangent,
ea2 = 270+tangent,
subarc = ea2-sa2,
arcsegs = ceil(segs(r2)*abs(subarc)/360),
arcstep = subarc / arcsegs
) concat(
[for (i=[0:lobesegs]) let(a=sa1+i*lobestep) r * [cos(a),sin(a)] - cp1],
tangent==0? [] : [for (i=[0:arcsegs]) let(a=ea2-i*arcstep+180) r2 * [cos(a),sin(a)] - cp2],
[for (i=[0:lobesegs]) let(a=sa1+i*lobestep+180) r * [cos(a),sin(a)] + cp1],
tangent==0? [] : [for (i=[0:arcsegs]) let(a=ea2-i*arcstep) r2 * [cos(a),sin(a)] + cp2]
);
// Module: glued_circles()
// Usage:
// glued_circles(r|d, spread, tangent);
// Description:
// Creates a 2D shape of two circles joined by curved waist.
// Arguments:
// r = The radius of the end circles.
// d = The diameter of the end circles.
// spread = The distance between the centers of the end circles.
// tangent = The angle in degrees of the tangent point for the joining arcs, measured away from the Y axis.
// Examples(2D):
// glued_circles(r=15, spread=40, tangent=45);
// glued_circles(d=30, spread=30, tangent=30);
// glued_circles(d=30, spread=30, tangent=15);
// glued_circles(d=30, spread=30, tangent=-30);
module glued_circles(r=undef, d=undef, spread=10, tangent=30)
polygon(glued_circles(r=r, d=d, spread=spread, tangent=tangent));
// Function: star()
// Usage:
// star(n, r|d, ir|id|step, [realign]);
// Description:
// Returns the path needed to create a star polygon with N points.
// Arguments:
// n = The number of stellate tips on the star.
// r = The radius to the tips of the star.
// d = The diameter to the tips of the star.
// ir = The radius to the inner corners of the star.
// id = The diameter to the inner corners of the star.
// step = Calculates the radius of the inner star corners by virtually drawing a straight line `step` tips around the star. 2 <= step < n/2
// realign = If false, a tip is aligned with the Y+ axis. If true, an inner corner is aligned with the Y+ axis. Default: false
// Examples(2D):
// stroke(close=true, star(n=5, r=50, ir=25));
// stroke(close=true, star(n=5, r=50, step=2));
// stroke(close=true, star(n=7, r=50, step=2));
// stroke(close=true, star(n=7, r=50, step=3));
function star(n, r, d, ir, id, step, realign=false) =
let(
r = get_radius(r=r, d=d),
count = len(remove_undefs([ir,id,step])),
stepOK = is_undef(step) || (step>1 && step<n/2)
)
assert(count==1, "Must specify exactly one of ir, id, step")
assert(stepOK, str("Parameter 'step' must be between 2 and ",floor(n/2)," for ",n," point star"))
let(
stepr = is_undef(step)? r : r*cos(180*step/n)/cos(180*(step-1)/n),
ir = get_radius(r=ir, d=id, dflt=stepr),
offset = 90+(realign? 180/n : 0)
)
[for(i=[0:2*n-1]) let(theta=180*i/n+offset, radius=(i%2)?ir:r) radius*[cos(theta), sin(theta)]];
// Module: star()
// Usage:
// star(n, r|d, ir|id|step, [realign]);
// Description:
// Creates a star polygon with N points.
// Arguments:
// n = The number of stellate tips on the star.
// r = The radius to the tips of the star.
// d = The diameter to the tips of the star.
// ir = The radius to the inner corners of the star.
// id = The diameter to the inner corners of the star.
// step = Calculates the radius of the inner star corners by virtually drawing a straight line `step` tips around the star. 2 <= step < n/2
// realign = If false, a tip is aligned with the Y+ axis. If true, an inner corner is aligned with the Y+ axis. Default: false
// Examples(2D):
// star(n=5, r=50, ir=25);
// star(n=5, r=50, step=2);
// star(n=7, r=50, step=2);
// star(n=7, r=50, step=3);
module star(n, r, d, ir, id, step, realign=false)
polygon(star(n=n, r=r, d=d, ir=ir, id=id, step=step, realign=realign));
function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) =
pow(pow(abs(cos(m1*theta/4)/a),n2)+pow(abs(sin(m2*theta/4)/b),n3),-1/n1);
// Function: superformula_shape()
// Usage:
// superformula_shape(step,m1,m2,n1,n2,n3,[a],[b]);
// Description:
// Returns a 2D path for the outline of the [Superformula](https://en.wikipedia.org/wiki/Superformula) shape.
// Arguments:
// step = The angle step size for sampling the superformula shape. Smaller steps are slower but more accurate.
// scale = The scaling multiplier for the size of the shape.
// m1 = The m1 argument for the superformula.
// m2 = The m2 argument for the superformula.
// n1 = The n1 argument for the superformula.
// n2 = The n2 argument for the superformula.
// n3 = The n3 argument for the superformula.
// a = The a argument for the superformula.
// b = The b argument for the superformula.
// Example(2D):
// stroke(close=true, superformula_shape(step=0.5,scale=100,m1=16,m2=16,n1=0.5,n2=0.5,n3=16));
function superformula_shape(step=0.5,scale=1,m1,m2,n1,n2=1,n3=1,a=1,b=1) =
[for (a=[0:step:360]) let(r=scale*_superformula(theta=a,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3)) r*[cos(a),sin(a)]];
// Module: superformula_shape()
// Usage:
// superformula_shape(step,m1,m2,n1,n2,n3,[a],[b]);
// Description:
// Creates a 2D object for the [Superformula](https://en.wikipedia.org/wiki/Superformula) shape.
// Arguments:
// step = The angle step size for sampling the superformula shape. Smaller steps are slower but more accurate.
// scale = The scaling multiplier for the size of the shape.
// m1 = The m1 argument for the superformula.
// m2 = The m2 argument for the superformula.
// n1 = The n1 argument for the superformula.
// n2 = The n2 argument for the superformula.
// n3 = The n3 argument for the superformula.
// a = The a argument for the superformula.
// b = The b argument for the superformula.
// Example(2D):
// superformula_shape(step=0.5,scale=100,m1=16,m2=16,n1=0.5,n2=0.5,n3=16);
module superformula_shape(step=0.5,scale=1,m1,m2,n1,n2=1,n3=1,a=1,b=1)
polygon(superformula_shape(step=step,scale=scale,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b));
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -22,6 +22,7 @@ include <attachments.scad>
include <transforms.scad>
include <primitives.scad>
include <shapes.scad>
include <shapes2d.scad>
include <masks.scad>