Added Qrot_copies(), enabled range for Q_Slerp(). Improved example images.

This commit is contained in:
Revar Desmera 2020-02-15 16:49:02 -08:00
parent 393f9e2639
commit 51e7f514a4
2 changed files with 42 additions and 11 deletions

View file

@ -183,16 +183,29 @@ function Q_Dist(q1, q2) = norm(q2-q1);
// q1 = The first quaternion. (u=0) // q1 = The first quaternion. (u=0)
// q2 = The second quaternion. (u=1) // q2 = The second quaternion. (u=1)
// u = The proportional value, from 0 to 1, of what part of the interpolation to return. // u = The proportional value, from 0 to 1, of what part of the interpolation to return.
// Example(3D): // Example(3D): Giving `u` as a Scalar
// a = QuatY(15); // a = QuatY(-135);
// b = QuatY(75); // b = QuatXYZ([0,-30,30]);
// color("blue",0.25) Qrot(a) cylinder(d=1, h=80); // for (u=[0:0.1:1])
// color("red",0.25) Qrot(b) cylinder(d=1, h=80); // Qrot(Q_Slerp(a, b, u))
// Qrot(Q_Slerp(a, b, 0.6)) cylinder(d=1, h=80); // right(80) cube([10,10,1]);
function Q_Slerp(q1, q2, u) = let( // #sphere(r=80);
// Example(3D): Giving `u` as a Range
// a = QuatZ(-135);
// b = QuatXYZ([90,0,-45]);
// for (q = Q_Slerp(a, b, [0:0.1:1]))
// Qrot(q) right(80) cube([10,10,1]);
// #sphere(r=80);
function Q_Slerp(q1, q2, u) =
assert(is_num(u) || is_num(u[0]))
!is_num(u)? [for (uu=u) Q_Slerp(q1,q2,uu)] :
let(
q1 = Q_Normalize(q1), q1 = Q_Normalize(q1),
q2 = Q_Normalize(q2), q2 = Q_Normalize(q2),
dot = Q_Dot(q1, q2) dot = Q_Dot(q1, q2)
) let(
q2 = dot<0? Q_Neg(q2) : q2,
dot = dot<0? -dot : dot
) (dot>0.9995)? Q_Normalize(q1 + (u * (q2-q1))) : ) (dot>0.9995)? Q_Normalize(q1 + (u * (q2-q1))) :
let( let(
dot = constrain(dot,-1,1), dot = constrain(dot,-1,1),
@ -254,9 +267,10 @@ function Q_Angle(q) = 2 * acos(q[3]);
// When called as a function with a `p` argument, rotates the point or list of points in `p` by the rotation stored in quaternion `q`. // When called as a function with a `p` argument, rotates the point or list of points in `p` by the rotation stored in quaternion `q`.
// When called as a function without a `p` argument, returns the affine3d rotation matrix for the rotation stored in quaternion `q`. // When called as a function without a `p` argument, returns the affine3d rotation matrix for the rotation stored in quaternion `q`.
// Example(FlatSpin): // Example(FlatSpin):
// q = QuatXYZ([45,35,10]); // module shape() translate([80,0,0]) cube([10,10,1]);
// color("red",0.25) cylinder(d=1,h=80); // q = QuatXYZ([90,-15,-45]);
// Qrot(q) cylinder(d=1,h=80); // Qrot(q) shape();
// #shape();
// Example(NORENDER): // Example(NORENDER):
// q = QuatXYZ([45,35,10]); // q = QuatXYZ([45,35,10]);
// mat4x4 = Qrot(q); // mat4x4 = Qrot(q);
@ -278,4 +292,21 @@ function Qrot(q,p) =
affine3d_apply(p,[Q_Matrix4(q)]); affine3d_apply(p,[Q_Matrix4(q)]);
// Module: Qrot_copies()
// Usage:
// Qrot_copies(quats) ...
// Description:
// For each quaternion given in the list `quats`, rotates to that orientation and creates a copy
// of all children. This is equivalent to `for (q=quats) Qrot(q) ...`.
// Arguments:
// quats = A list containing all quaternions to rotate to and create copies of all children for.
// Example:
// a = QuatZ(-135);
// b = QuatXYZ([0,-30,30]);
// Qrot_copies(Q_Slerp(a, b, [0:0.1:1]))
// right(80) cube([10,10,1]);
// #sphere(r=80);
module Qrot_copies(quats) for (q=quats) Qrot(q) children();
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -8,7 +8,7 @@
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
BOSL_VERSION = [2,0,127]; BOSL_VERSION = [2,0,128];
// Section: BOSL Library Version Functions // Section: BOSL Library Version Functions