fix anchor bug for non-orthogonal spins

change regular_prism side face anchors to point UP
This commit is contained in:
Adrian Mariano 2024-08-31 13:19:10 -04:00
parent 9ac540e03d
commit 51fbe696b1
3 changed files with 57 additions and 50 deletions

View file

@ -3180,12 +3180,12 @@ function attach_geom(
assert(is_list(anchors)) assert(is_list(anchors))
assert(is_bool(two_d)) assert(is_bool(two_d))
assert(is_vector(axis)) assert(is_vector(axis))
!is_undef(size)? (
let( let(
over_f = is_undef(override) ? function(anchor) [undef,undef,undef] over_f = is_undef(override) ? function(anchor) [undef,undef,undef]
: is_func(override) ? override : is_func(override) ? override
: function(anchor) _local_struct_val(override,anchor) : function(anchor) _local_struct_val(override,anchor)
) )
!is_undef(size)? (
two_d? ( two_d? (
let( let(
size2 = default(size2, size.x), size2 = default(size2, size.x),
@ -3208,8 +3208,8 @@ function attach_geom(
) : !is_undef(vnf)? ( ) : !is_undef(vnf)? (
assert(is_vnf(vnf)) assert(is_vnf(vnf))
assert(two_d == false) assert(two_d == false)
extent? ["vnf_extent", vnf, cp, offset, anchors] : extent? ["vnf_extent", vnf, over_f, cp, offset, anchors]
["vnf_isect", vnf, cp, offset, anchors] : ["vnf_isect", vnf, over_f, cp, offset, anchors]
) : !is_undef(region)? ( ) : !is_undef(region)? (
assert(is_region(region),2) assert(is_region(region),2)
let( l = default(l, h) ) let( l = default(l, h) )
@ -3467,8 +3467,9 @@ function _attach_transform(anchor, spin, orient, geom, p) =
spin = default(spin, 0), spin = default(spin, 0),
orient = default(orient, UP), orient = default(orient, UP),
two_d = _attach_geom_2d(geom), two_d = _attach_geom_2d(geom),
m = ($attach_to != undef)? ( // $attach_to is the attachment point on this object m = ($attach_to != undef) ? // $attach_to is the attachment point on this object
let( // which will attach to the parent ( // which will attach to the parent
let(
anch = _find_anchor($attach_to, geom), anch = _find_anchor($attach_to, geom),
// if $anchor_override is set it defines the object position anchor (but note not direction or spin). // if $anchor_override is set it defines the object position anchor (but note not direction or spin).
// Otherwise we use the provided anchor for the object. // Otherwise we use the provided anchor for the object.
@ -3477,22 +3478,21 @@ function _attach_transform(anchor, spin, orient, geom, p) =
) )
two_d? two_d?
assert(is_num(spin)) assert(is_num(spin))
/*affine3d_zrot(spin) * */ affine3d_zrot(spin)
rot(to=FWD, from=point3d(anch[2])) * rot(to=FWD, from=point3d(anch[2]))
* affine3d_translate(point3d(-pos)) * affine3d_translate(point3d(-pos))
: :
let( let(
ang = vector_angle(anch[2], DOWN), // anch[2] is the anchor direction vector spinT = is_num(spin) ? affine3d_zrot(-anch[3]-spin)
axis = vector_axis(anch[2], DOWN), : affine3d_zrot(-spin.z) * affine3d_yrot(-spin.y) * affine3d_xrot(-spin.x)
ang2 = (anch[2]==UP || anch[2]==DOWN)? 0 : 180-anch[3], * affine3d_zrot(-anch[3])
axis2 = rot(p=axis,[0,0,ang2])
) )
affine3d_rot_by_axis(axis2,ang) affine3d_yrot(180)
* (is_num(spin)? affine3d_zrot(ang2+spin) * spinT
: affine3d_zrot(spin.z) * affine3d_yrot(spin.y) * affine3d_xrot(spin.x) * rot(from=anch[2],to=UP)
* affine3d_zrot(ang2))
* affine3d_translate(point3d(-pos)) * affine3d_translate(point3d(-pos))
) : ( )
:
let( let(
anchor = is_undef($attach_alignment) ? anchor anchor = is_undef($attach_alignment) ? anchor
: two_d? _make_anchor_legal(zrot(-spin,$attach_alignment),geom) : two_d? _make_anchor_legal(zrot(-spin,$attach_alignment),geom)
@ -3503,7 +3503,6 @@ function _attach_transform(anchor, spin, orient, geom, p) =
assert(is_num(spin)) assert(is_num(spin))
affine3d_zrot(spin) * affine3d_translate(point3d(-pos)) affine3d_zrot(spin) * affine3d_translate(point3d(-pos))
: :
assert(is_num(spin) || is_vector(spin,3))
let( let(
axis = vector_axis(UP,orient), // Returns BACK if orient is UP axis = vector_axis(UP,orient), // Returns BACK if orient is UP
ang = vector_angle(UP,orient) ang = vector_angle(UP,orient)
@ -3513,7 +3512,6 @@ function _attach_transform(anchor, spin, orient, geom, p) =
: affine3d_zrot(spin.z) * affine3d_yrot(spin.y) * affine3d_xrot(spin.x)) : affine3d_zrot(spin.z) * affine3d_yrot(spin.y) * affine3d_xrot(spin.x))
* affine3d_translate(point3d(-pos)) * affine3d_translate(point3d(-pos))
) )
)
is_undef(p)? m is_undef(p)? m
: is_vnf(p) && p==EMPTY_VNF? p : is_vnf(p) && p==EMPTY_VNF? p
: apply(m, p); : apply(m, p);
@ -3681,8 +3679,11 @@ function _find_anchor(anchor, geom) =
vec = unit(v_mul(r,anchor),UP) vec = unit(v_mul(r,anchor),UP)
) [anchor, pos, vec, oang] ) [anchor, pos, vec, oang]
) : type == "vnf_isect"? ( //vnf ) : type == "vnf_isect"? ( //vnf
let( vnf=geom[1] ) let(
approx(anchor,CTR)? [anchor, cp, UP, 0] : // CENTER anchors anchor on cp, "origin" anchors on [0,0] vnf=geom[1],
override = geom[2](anchor)
) // CENTER anchors anchor on cp, "origin" anchors on [0,0]
approx(anchor,CTR)? [anchor, default(override[0],cp),default(override[1],UP),default(override[2], 0)] :
vnf==EMPTY_VNF? [anchor, [0,0,0], unit(anchor), 0] : vnf==EMPTY_VNF? [anchor, [0,0,0], unit(anchor), 0] :
let( let(
eps = 1/2048, eps = 1/2048,
@ -3729,10 +3730,13 @@ function _find_anchor(anchor, geom) =
n = unit(sum(unorms)), n = unit(sum(unorms)),
oang = approx(point2d(n), [0,0])? 0 : atan2(n.y, n.x) + 90 oang = approx(point2d(n), [0,0])? 0 : atan2(n.y, n.x) + 90
) )
[anchor, pos, n, oang] [anchor, default(override[0],pos),default(override[1], n),default(override[2], oang)]
) : type == "vnf_extent"? ( //vnf ) : type == "vnf_extent"? ( //vnf
let( vnf=geom[1] ) let(
approx(anchor,CTR)? [anchor, cp, UP, 0] : // CENTER anchors anchor on cp, "origin" anchors on [0,0] vnf=geom[1],
override = geom[2](anchor)
) // CENTER anchors anchor on cp, "origin" anchors on [0,0]
approx(anchor,CTR)? [anchor, default(override[0],cp),default(override[1],UP),default(override[2], 0)] :
vnf==EMPTY_VNF? [anchor, [0,0,0], unit(anchor,UP), 0] : vnf==EMPTY_VNF? [anchor, [0,0,0], unit(anchor,UP), 0] :
let( let(
rpts = apply(rot(from=anchor, to=RIGHT) * move(point3d(-cp)), vnf[0]), rpts = apply(rot(from=anchor, to=RIGHT) * move(point3d(-cp)), vnf[0]),
@ -3741,7 +3745,7 @@ function _find_anchor(anchor, geom) =
avep = sum(select(rpts,idxs))/len(idxs), avep = sum(select(rpts,idxs))/len(idxs),
mpt = approx(point2d(anchor),[0,0])? [maxx,0,0] : avep, mpt = approx(point2d(anchor),[0,0])? [maxx,0,0] : avep,
pos = point3d(cp) + rot(from=RIGHT, to=anchor, p=mpt) pos = point3d(cp) + rot(from=RIGHT, to=anchor, p=mpt)
) [anchor, pos, anchor, oang] ) [anchor, default(override[0],pos),default(override[1],anchor),default(override[2],oang)]
) : type == "trapezoid"? ( //size, size2, shift, override ) : type == "trapezoid"? ( //size, size2, shift, override
let(all_comps_good = [for (c=anchor) if (c!=sign(c)) 1]==[]) let(all_comps_good = [for (c=anchor) if (c!=sign(c)) 1]==[])
assert(all_comps_good, "All components of an anchor for a rectangle/trapezoid must be -1, 0, or 1") assert(all_comps_good, "All components of an anchor for a rectangle/trapezoid must be -1, 0, or 1")

View file

@ -873,12 +873,12 @@ function octahedron(size=1, anchor=CENTER, spin=0, orient=UP) =
// different `$fn` than the number of prism faces, you can apply texture to the flat faces without forcing a high facet count, // different `$fn` than the number of prism faces, you can apply texture to the flat faces without forcing a high facet count,
// anchors are located on the true object instead of the ideal cylinder and you can anchor to the edges and faces. // anchors are located on the true object instead of the ideal cylinder and you can anchor to the edges and faces.
// Named Anchors: // Named Anchors:
// "edge0", "edge1", etc. = Center of each side edge // "edge0", "edge1", etc. = Center of each side edge, spin pointing up along the edge
// "face0", "face1", etc. = Center of each side face // "face0", "face1", etc. = Center of each side face, spin pointing up
// "topedge0", "topedge1", etc = Center of each top edge, pointing in direction of associated side face // "topedge0", "topedge1", etc = Center of each top edge, pointing in direction of associated side face, spin up
// "botedge0", "botedge1", etc = Center of each bottom edge, pointing in direction of associated side face // "botedge0", "botedge1", etc = Center of each bottom edge, pointing in direction of associated side face, spin up
// "topcorner0", "topcorner1", etc = Top corner, pointing in direction of associated edge anchor // "topcorner0", "topcorner1", etc = Top corner, pointing in direction of associated edge anchor, spin up along associated edge
// "botcorner0", "botcorner1", etc = Bottom corner, pointing in direction of associated edge anchor // "botcorner0", "botcorner1", etc = Bottom corner, pointing in direction of associated edge anchor, spin up along associated edge
// Arguments: // Arguments:
// l / h / length / height = Length of prism // l / h / length / height = Length of prism
// r = Outer radius of prism. // r = Outer radius of prism.
@ -1162,7 +1162,8 @@ function regular_prism(n,
Mface = skmat*zrot(-(i+1/2)*360/n), Mface = skmat*zrot(-(i+1/2)*360/n),
faceedge = faces[i][1], faceedge = faces[i][1],
facenormal = faces[i][0], facenormal = faces[i][0],
facespin = _compute_spin(facenormal, faceedge), //facespin = _compute_spin(facenormal, faceedge), // spin along centerline of face instea of pointing up---seems to be wrong choice
facespin = _compute_spin(facenormal, UP),
edgenormal = unit(vector_bisect(facenormal,select(faces,i-1)[0])), edgenormal = unit(vector_bisect(facenormal,select(faces,i-1)[0])),
Medge = skmat*zrot(-i*360/n), Medge = skmat*zrot(-i*360/n),
edge = faces[i][2], edge = faces[i][2],
@ -1182,6 +1183,8 @@ function regular_prism(n,
[reorient(anchor,spin,orient, vnf=ovnf, p=ovnf,anchors=anchors, override=override),anchors,override]; [reorient(anchor,spin,orient, vnf=ovnf, p=ovnf,anchors=anchors, override=override),anchors,override];
// Module: rect_tube() // Module: rect_tube()
// Synopsis: Creates a rectangular tube. // Synopsis: Creates a rectangular tube.
// SynTags: Geom // SynTags: Geom

View file

@ -1055,7 +1055,7 @@ function _slice_3dpolygons(polys, dir, cuts) =
// Arguments: // Arguments:
// vnf = A VNF structure, or list of VNF structures. // vnf = A VNF structure, or list of VNF structures.
// convexity = Max number of times a line could intersect a wall of the shape. // convexity = Max number of times a line could intersect a wall of the shape.
// cp = Centerpoint for determining intersection anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid" // cp = Centerpoint for determining intersection anchors or centering the shape. Determines the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid"
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `"origin"` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `"origin"`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`