mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-19 19:09:36 +00:00
Merge pull request #297 from revarbat/revarbat_dev
Fixed bevel_gear() so that complementary gears will mesh.
This commit is contained in:
commit
54c59989ed
3 changed files with 232 additions and 182 deletions
|
@ -472,6 +472,73 @@ function line_from_points(points, fast=false, eps=EPSILON) =
|
|||
|
||||
// Section: 2D Triangles
|
||||
|
||||
|
||||
// Function: law_of_cosines()
|
||||
// Usage:
|
||||
// C = law_of_cosines(a, b, c);
|
||||
// c = law_of_cosines(a, b, C);
|
||||
// Description:
|
||||
// Applies the Law of Cosines for an arbitrary triangle.
|
||||
// Given three side lengths, returns the angle in degrees for the corner opposite of the third side.
|
||||
// Given two side lengths, and the angle between them, returns the length of the third side.
|
||||
// Figure(2D):
|
||||
// stroke([[-50,0], [10,60], [50,0]], closed=true);
|
||||
// color("black") {
|
||||
// translate([ 33,35]) text(text="a", size=8, halign="center", valign="center");
|
||||
// translate([ 0,-6]) text(text="b", size=8, halign="center", valign="center");
|
||||
// translate([-22,35]) text(text="c", size=8, halign="center", valign="center");
|
||||
// }
|
||||
// color("blue") {
|
||||
// translate([-37, 6]) text(text="A", size=8, halign="center", valign="center");
|
||||
// translate([ 9,51]) text(text="B", size=8, halign="center", valign="center");
|
||||
// translate([ 38, 6]) text(text="C", size=8, halign="center", valign="center");
|
||||
// }
|
||||
// Arguments:
|
||||
// a = The length of the first side.
|
||||
// b = The length of the second side.
|
||||
// c = The length of the third side.
|
||||
// C = The angle in degrees of the corner opposite of the third side.
|
||||
function law_of_cosines(a, b, c, C) =
|
||||
// Triangle Law of Cosines:
|
||||
// c^2 = a^2 + b^2 - 2*a*b*cos(C)
|
||||
assert(num_defined([c,C]) == 1, "Must give exactly one of c= or C=.")
|
||||
is_undef(c) ? sqrt(a*a + b*b - 2*a*b*cos(C)) :
|
||||
acos(constrain((a*a + b*b - c*c) / (2*a*b), -1, 1));
|
||||
|
||||
|
||||
// Function: law_of_sines()
|
||||
// Usage:
|
||||
// B = law_of_sines(a, A, b);
|
||||
// b = law_of_sines(a, A, B);
|
||||
// Description:
|
||||
// Applies the Law of Sines for an arbitrary triangle.
|
||||
// Given two triangle side lengths and the angle between them, returns the angle of the corner opposite of the second side.
|
||||
// Given a side length, the opposing angle, and a second angle, returns the length of the side opposite of the second angle.
|
||||
// Figure(2D):
|
||||
// stroke([[-50,0], [10,60], [50,0]], closed=true);
|
||||
// color("black") {
|
||||
// translate([ 33,35]) text(text="a", size=8, halign="center", valign="center");
|
||||
// translate([ 0,-6]) text(text="b", size=8, halign="center", valign="center");
|
||||
// translate([-22,35]) text(text="c", size=8, halign="center", valign="center");
|
||||
// }
|
||||
// color("blue") {
|
||||
// translate([-37, 6]) text(text="A", size=8, halign="center", valign="center");
|
||||
// translate([ 9,51]) text(text="B", size=8, halign="center", valign="center");
|
||||
// translate([ 38, 6]) text(text="C", size=8, halign="center", valign="center");
|
||||
// }
|
||||
// Arguments:
|
||||
// a = The length of the first side.
|
||||
// A = The angle in degrees of the corner opposite of the first side.
|
||||
// b = The length of the second side.
|
||||
// B = The angle in degrees of the corner opposite of the second side.
|
||||
function law_of_sines(a, A, b, B) =
|
||||
// Triangle Law of Sines:
|
||||
// a/sin(A) = b/sin(B) = c/sin(C)
|
||||
assert(num_defined([b,B]) == 1, "Must give exactly one of b= or B=.")
|
||||
let( r = a/sin(A) )
|
||||
is_undef(b) ? r*sin(B) : asin(constrain(b/r, -1, 1));
|
||||
|
||||
|
||||
// Function: tri_calc()
|
||||
// Usage:
|
||||
// tri_calc(ang,ang2,adj,opp,hyp);
|
||||
|
@ -816,7 +883,7 @@ function plane3pt_indexed(points, i1, i2, i3) =
|
|||
function plane_from_normal(normal, pt=[0,0,0]) =
|
||||
assert( is_matrix([normal,pt],2,3) && !approx(norm(normal),0),
|
||||
"Inputs `normal` and `pt` should 3d vectors/points and `normal` cannot be zero." )
|
||||
concat(normal, normal*pt)/norm(normal);
|
||||
concat(normal, normal*pt) / norm(normal);
|
||||
|
||||
|
||||
// Function: plane_from_points()
|
||||
|
|
|
@ -130,12 +130,12 @@ function base_radius(pitch=5, teeth=11, PA=28) =
|
|||
// Usage:
|
||||
// x = bevel_pitch_angle(teeth, mate_teeth, [drive_angle]);
|
||||
// Description:
|
||||
// Returns the correct pitch angle (bevelang) for a bevel gear with a given number of tooth, that is
|
||||
// Returns the correct pitch angle for a bevel gear with a given number of tooth, that is
|
||||
// matched to another bevel gear with a (possibly different) number of teeth.
|
||||
// Arguments:
|
||||
// teeth = Number of teeth that this gear has.
|
||||
// mate_teeth = Number of teeth that the matching gear has.
|
||||
// drive_angle = Angle between the drive shafts of each gear. Usually 90º.
|
||||
// drive_angle = Angle between the drive shafts of each gear. Default: 90º.
|
||||
function bevel_pitch_angle(teeth, mate_teeth, drive_angle=90) =
|
||||
atan(sin(drive_angle)/((mate_teeth/teeth)+cos(drive_angle)));
|
||||
|
||||
|
@ -160,15 +160,18 @@ function _gear_q7(f,r,b,r2,t,s) = _gear_q6(b,s,t,(1-f)*max(b,r)+f*r2); //
|
|||
// Arguments:
|
||||
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
|
||||
// teeth = Total number of teeth along the rack
|
||||
// PA = Controls how straight or bulged the tooth sides are. In degrees.
|
||||
// PA = Pressure Angle. Controls how straight or bulged the tooth sides are. In degrees.
|
||||
// clearance = Gap between top of a tooth on one gear and bottom of valley on a meshing gear (in millimeters)
|
||||
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle
|
||||
// interior = If true, create a mask for difference()ing from something else.
|
||||
// valleys = If true, add the valley bottoms on either side of the tooth.
|
||||
// valleys = If true, add the valley bottoms on either side of the tooth. Default: true
|
||||
// center = If true, centers the pitch circle of the tooth profile at the origin. Default: false.
|
||||
// Example(2D):
|
||||
// gear_tooth_profile(pitch=5, teeth=20, PA=20);
|
||||
// Example(2D):
|
||||
// gear_tooth_profile(pitch=5, teeth=20, PA=20, valleys=true);
|
||||
// gear_tooth_profile(pitch=5, teeth=20, PA=20, valleys=false);
|
||||
// Example(2D): As a function
|
||||
// stroke(gear_tooth_profile(pitch=5, teeth=20, PA=20, valleys=false));
|
||||
function gear_tooth_profile(
|
||||
pitch = 3,
|
||||
teeth = 11,
|
||||
|
@ -176,7 +179,8 @@ function gear_tooth_profile(
|
|||
clearance = undef,
|
||||
backlash = 0.0,
|
||||
interior = false,
|
||||
valleys = true
|
||||
valleys = true,
|
||||
center = false
|
||||
) = let(
|
||||
p = pitch_radius(pitch, teeth),
|
||||
c = outer_radius(pitch, teeth, clearance, interior),
|
||||
|
@ -186,23 +190,22 @@ function gear_tooth_profile(
|
|||
k = -_gear_iang(b, p) - t/2/p/PI*180, //angle to where involute meets base circle on each side of tooth
|
||||
kk = r<b? k : -180/teeth,
|
||||
isteps = 5,
|
||||
pts = concat(
|
||||
valleys? [
|
||||
_gear_polar(r-1, -180.1/teeth),
|
||||
_gear_polar(r, -180.1/teeth),
|
||||
] : [
|
||||
],
|
||||
[_gear_polar(r, kk)],
|
||||
[for (i=[0: 1:isteps]) _gear_q7(i/isteps,r,b,c,k, 1)],
|
||||
[for (i=[isteps:-1:0]) _gear_q7(i/isteps,r,b,c,k,-1)],
|
||||
[_gear_polar(r, -kk)],
|
||||
valleys? [
|
||||
_gear_polar(r, 180.1/teeth),
|
||||
pts = [
|
||||
if (valleys) each [
|
||||
_gear_polar(r-1, 180.1/teeth),
|
||||
] : [
|
||||
_gear_polar(r, 180.1/teeth),
|
||||
],
|
||||
_gear_polar(r, -kk),
|
||||
for (i=[0: 1:isteps]) _gear_q7(i/isteps,r,b,c,k,-1),
|
||||
for (i=[isteps:-1:0]) _gear_q7(i/isteps,r,b,c,k, 1),
|
||||
_gear_polar(r, kk),
|
||||
if (valleys) each [
|
||||
_gear_polar(r, -180.1/teeth),
|
||||
_gear_polar(r-1, -180.1/teeth),
|
||||
]
|
||||
)
|
||||
) reverse(pts);
|
||||
],
|
||||
pts2 = center? fwd(p, p=pts) : pts
|
||||
) pts2;
|
||||
|
||||
|
||||
module gear_tooth_profile(
|
||||
|
@ -212,7 +215,8 @@ module gear_tooth_profile(
|
|||
backlash = 0.0,
|
||||
clearance = undef,
|
||||
interior = false,
|
||||
valleys = true
|
||||
valleys = true,
|
||||
center = false
|
||||
) {
|
||||
r = root_radius(pitch, teeth, clearance, interior);
|
||||
translate([0,-r,0])
|
||||
|
@ -224,7 +228,8 @@ module gear_tooth_profile(
|
|||
backlash = backlash,
|
||||
clearance = clearance,
|
||||
interior = interior,
|
||||
valleys = valleys
|
||||
valleys = valleys,
|
||||
center = center
|
||||
)
|
||||
);
|
||||
}
|
||||
|
@ -359,7 +364,7 @@ module gear2d(
|
|||
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
||||
// Example: Spur Gear
|
||||
// gear(pitch=5, teeth=20, thickness=8, shaft_diam=5);
|
||||
// Example: Beveled Gear
|
||||
// Example: Helical Gear
|
||||
// gear(pitch=5, teeth=20, thickness=10, shaft_diam=5, helical=-30, slices=12, $fa=1, $fs=1);
|
||||
// Example: Assembly of Gears
|
||||
// n1 = 11; //red gear number of teeth
|
||||
|
@ -426,38 +431,28 @@ module gear(
|
|||
|
||||
// Module: bevel_gear()
|
||||
// Usage:
|
||||
// bevel_gear(pitch, teeth, face_width, bevelang, <shaft_diam>, <hide>, <PA>, <clearance>, <backlash>, <spiral_rad>, <spiral_ang>, <slices>, <interior>);
|
||||
// bevel_gear(pitch, teeth, face_width, pitch_angle, <shaft_diam>, <hide>, <PA>, <clearance>, <backlash>, <cutter_radius>, <spiral_angle>, <slices>, <interior>);
|
||||
// Description:
|
||||
// Creates a (potentially spiral) bevel gear.
|
||||
// The module `bevel_gear()` gives an bevel gear, with reasonable
|
||||
// defaults for all the parameters. Normally, you should just choose
|
||||
// the first 4 parameters, and let the rest be default values. The
|
||||
// module `bevel_gear()` gives a gear in the XY plane, centered on the origin,
|
||||
// with one tooth centered on the positive Y axis. The various functions
|
||||
// below it take the same parameters, and return various measurements
|
||||
// for the gear. The most important is `pitch_radius()`, which tells
|
||||
// how far apart to space gears that are meshing, and `outer_radius()`,
|
||||
// which gives the size of the region filled by the gear. A gear has
|
||||
// a "pitch circle", which is an invisible circle that cuts through
|
||||
// the middle of each tooth (though not the exact center). In order
|
||||
// for two gears to mesh, their pitch circles should just touch. So
|
||||
// the distance between their centers should be `pitch_radius()` for
|
||||
// one, plus `pitch_radius()` for the other, which gives the radii of
|
||||
// their pitch circles.
|
||||
// In order for two gears to mesh, they must have the same `pitch`
|
||||
// and `PA` parameters. `pitch` gives the number
|
||||
// of millimeters of arc around the pitch circle covered by one tooth
|
||||
// and one space between teeth. The `PA` controls how flat or
|
||||
// bulged the sides of the teeth are. Common values include 14.5
|
||||
// degrees and 20 degrees, and occasionally 25. Though I've seen 28
|
||||
// recommended for plastic gears. Larger numbers bulge out more, giving
|
||||
// stronger teeth, so 28 degrees is the default here.
|
||||
// The ratio of `teeth` for two meshing gears gives how many
|
||||
// times one will make a full revolution when the the other makes one
|
||||
// full revolution. If the two numbers are coprime (i.e. are not
|
||||
// both divisible by the same number greater than 1), then every tooth
|
||||
// on one gear will meet every tooth on the other, for more even wear.
|
||||
// So coprime numbers of teeth are good.
|
||||
// Creates a (potentially spiral) bevel gear. The module `bevel_gear()` gives a bevel gear, with
|
||||
// reasonable defaults for all the parameters. Normally, you should just choose the first 4
|
||||
// parameters, and let the rest be default values. The module `bevel_gear()` gives a gear in the XY
|
||||
// plane, centered on the origin, with one tooth centered on the positive Y axis. The various
|
||||
// functions below it take the same parameters, and return various measurements for the gear. The
|
||||
// most important is `pitch_radius()`, which tells how far apart to space gears that are meshing,
|
||||
// and `outer_radius()`, which gives the size of the region filled by the gear. A gear has a "pitch
|
||||
// circle", which is an invisible circle that cuts through the middle of each tooth (though not the
|
||||
// exact center). In order for two gears to mesh, their pitch circles should just touch. So the
|
||||
// distance between their centers should be `pitch_radius()` for one, plus `pitch_radius()` for the
|
||||
// other, which gives the radii of their pitch circles. In order for two gears to mesh, they must
|
||||
// have the same `pitch` and `PA` parameters. `pitch` gives the number of millimeters of arc around
|
||||
// the pitch circle covered by one tooth and one space between teeth. The `PA` controls how flat or
|
||||
// bulged the sides of the teeth are. Common values include 14.5 degrees and 20 degrees, and
|
||||
// occasionally 25. Though I've seen 28 recommended for plastic gears. Larger numbers bulge out
|
||||
// more, giving stronger teeth, so 28 degrees is the default here. The ratio of `teeth` for two
|
||||
// meshing gears gives how many times one will make a full revolution when the the other makes one
|
||||
// full revolution. If the two numbers are coprime (i.e. are not both divisible by the same number
|
||||
// greater than 1), then every tooth on one gear will meet every tooth on the other, for more even
|
||||
// wear. So coprime numbers of teeth are good.
|
||||
// Arguments:
|
||||
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
|
||||
// teeth = Total number of teeth around the entire perimeter
|
||||
|
@ -467,140 +462,128 @@ module gear(
|
|||
// PA = Controls how straight or bulged the tooth sides are. In degrees.
|
||||
// clearance = Clearance gap at the bottom of the inter-tooth valleys.
|
||||
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle
|
||||
// bevelang = Angle of beveled gear face.
|
||||
// spiral_rad = Radius of spiral arc for teeth. If 0, then gear will not be spiral. Default: 0
|
||||
// spiral_ang = The base angle for spiral teeth. Default: 0
|
||||
// slices = Number of vertical layers to divide gear into. Useful for refining gears with `spiral`.
|
||||
// scale = Scale of top of gear compared to bottom. Useful for making crown gears.
|
||||
// pitch_angle = Angle of beveled gear face.
|
||||
// cutter_radius = Radius of spiral arc for teeth. If 0, then gear will not be spiral. Default: 0
|
||||
// spiral_angle = The base angle for spiral teeth. Default: 0
|
||||
// slices = Number of vertical layers to divide gear into. Useful for refining gears with `spiral`. Default: 1
|
||||
// interior = If true, create a mask for difference()ing from something else.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
||||
// Extra Anchors:
|
||||
// "pitchbase" = At the natural height of the pitch radius of the beveled gear.
|
||||
// "flattop" = At the top of the flat top of the bevel gear.
|
||||
// Example: Beveled Gear
|
||||
// bevel_gear(pitch=5, teeth=36, face_width=10, shaft_diam=5, spiral_rad=-20, spiral_ang=35, bevelang=45, slices=12, $fa=1, $fs=1);
|
||||
// bevel_gear(pitch=5, teeth=36, face_width=10, shaft_diam=5, pitch_angle=45, spiral_angle=0);
|
||||
// Example: Spiral Beveled Gear and Pinion
|
||||
// t1 = 14;
|
||||
// t2 = 32;
|
||||
// a1 = atan(t1/t2);
|
||||
// a2 = atan(t2/t1);
|
||||
// down(pitch_radius(5, t1))
|
||||
// zrot(180/t2) bevel_gear(pitch=5, teeth=t2, face_width=10, shaft_diam=6, pitch_angle=a2, left_handed=true, slices=8, orient=UP);
|
||||
// back(pitch_radius(5, t2))
|
||||
// bevel_gear(pitch=5, teeth=t1, face_width=10, shaft_diam=6, pitch_angle=a1, slices=8, orient=FWD);
|
||||
module bevel_gear(
|
||||
pitch = 3,
|
||||
teeth = 11,
|
||||
face_width = 6,
|
||||
bevelang = 45,
|
||||
pitch_angle = 45,
|
||||
shaft_diam = 3,
|
||||
hide = 0,
|
||||
PA = 20,
|
||||
clearance = undef,
|
||||
backlash = 0.0,
|
||||
spiral_rad = 0,
|
||||
spiral_ang = 0,
|
||||
slices = 2,
|
||||
cutter_radius = 30,
|
||||
spiral_angle = 35,
|
||||
left_handed = false,
|
||||
slices = 1,
|
||||
interior = false,
|
||||
anchor = CENTER,
|
||||
anchor = "pitchbase",
|
||||
spin = 0,
|
||||
orient = UP
|
||||
) {
|
||||
thickness = face_width * cos(bevelang);
|
||||
slices = spiral_rad==0? 1 : slices;
|
||||
spiral_rad = spiral_rad==0? 10000 : spiral_rad;
|
||||
p1 = pitch_radius(pitch, teeth);
|
||||
r1 = root_radius(pitch, teeth, clearance, interior);
|
||||
c1 = outer_radius(pitch, teeth, clearance, interior);
|
||||
dx = thickness * tan(bevelang);
|
||||
dy = (p1-r1) * sin(bevelang);
|
||||
scl = (p1-dx)/p1;
|
||||
p2 = pitch_radius(pitch*scl, teeth);
|
||||
r2 = root_radius(pitch*scl, teeth, clearance, interior);
|
||||
c2 = outer_radius(pitch*scl, teeth, clearance, interior);
|
||||
slice_u = 1/slices;
|
||||
Rm = (p1+p2)/2;
|
||||
H = spiral_rad * cos(spiral_ang);
|
||||
V = Rm - abs(spiral_rad) * sin(spiral_ang);
|
||||
spiral_cp = [H,V,0];
|
||||
S = norm(spiral_cp);
|
||||
theta_r = acos((S*S+spiral_rad*spiral_rad-p1*p1)/(2*S*spiral_rad)) - acos((S*S+spiral_rad*spiral_rad-p2*p2)/(2*S*spiral_rad));
|
||||
theta_ro = acos((S*S+spiral_rad*spiral_rad-p1*p1)/(2*S*spiral_rad)) - acos((S*S+spiral_rad*spiral_rad-Rm*Rm)/(2*S*spiral_rad));
|
||||
theta_ri = theta_r - theta_ro;
|
||||
extent_u = 2*(p2-r2)*tan(bevelang) / thickness;
|
||||
slice_us = concat(
|
||||
[for (u = [0:slice_u:1+extent_u]) u]
|
||||
);
|
||||
lsus = len(slice_us);
|
||||
vertices = concat(
|
||||
[
|
||||
for (u=slice_us, tooth=[0:1:teeth-1]) let(
|
||||
p = lerp(p1,p2,u),
|
||||
r = lerp(r1,r2,u),
|
||||
theta = lerp(-theta_ro, theta_ri, u),
|
||||
slices = cutter_radius==0? 1 : slices;
|
||||
pr = pitch_radius(pitch, teeth);
|
||||
rr = root_radius(pitch, teeth, clearance, interior);
|
||||
pitchoff = (pr-rr) * cos(pitch_angle);
|
||||
ocone_rad = opp_ang_to_hyp(pr, pitch_angle);
|
||||
icone_rad = ocone_rad - face_width;
|
||||
cutter_radius = cutter_radius==0? 1000 : cutter_radius;
|
||||
midpr = (icone_rad + ocone_rad) / 2;
|
||||
radcp = [0, midpr] + polar_to_xy(cutter_radius, 180+spiral_angle);
|
||||
angC1 = law_of_cosines(a=cutter_radius, b=norm(radcp), c=ocone_rad);
|
||||
angC2 = law_of_cosines(a=cutter_radius, b=norm(radcp), c=icone_rad);
|
||||
radcpang = vang(radcp);
|
||||
sang = radcpang - (180-angC1);
|
||||
eang = radcpang - (180-angC2);
|
||||
slice_us = [for (i=[0:1:slices]) i/slices];
|
||||
apts = [for (u=slice_us) radcp + polar_to_xy(cutter_radius, lerp(sang,eang,u))];
|
||||
polars = [for (p=apts) [vang(p)-90, norm(p)]];
|
||||
profile = gear_tooth_profile(
|
||||
pitch = pitch*(p/p1),
|
||||
pitch = pitch,
|
||||
teeth = teeth,
|
||||
PA = PA,
|
||||
clearance = clearance,
|
||||
backlash = backlash,
|
||||
interior = interior,
|
||||
valleys = false
|
||||
),
|
||||
pp = rot(theta, cp=spiral_cp, p=[0,Rm,0]),
|
||||
ang = atan2(pp.y,pp.x)-90,
|
||||
pts = apply_list(
|
||||
path3d(profile), [
|
||||
move([0,-p,0]),
|
||||
rot([0,ang,0]),
|
||||
rot([bevelang,0,0]),
|
||||
move(pp),
|
||||
rot(tooth*360/teeth),
|
||||
move([0,0,thickness*u])
|
||||
]
|
||||
valleys = false,
|
||||
center = true
|
||||
);
|
||||
verts1 = [
|
||||
for (polar=polars) [
|
||||
let(
|
||||
u = polar.y / ocone_rad,
|
||||
m = up((1-u) * pr / tan(pitch_angle)) *
|
||||
up(2*pitchoff) *
|
||||
zrot(polar.x/sin(pitch_angle)) *
|
||||
back(u * pr) *
|
||||
xrot(pitch_angle) *
|
||||
scale(u)
|
||||
)
|
||||
) each pts
|
||||
], [
|
||||
[0,0,-dy], [0,0,thickness]
|
||||
for (tooth=[0:1:teeth-1])
|
||||
each apply(xflip() * zrot(360*tooth/teeth) * m, path3d(profile))
|
||||
]
|
||||
);
|
||||
lcnt = (len(vertices)-2)/lsus/teeth;
|
||||
function _gv(layer,tooth,i) = ((layer*teeth)+(tooth%teeth))*lcnt+(i%lcnt);
|
||||
function _lv(layer,i) = layer*teeth*lcnt+(i%(teeth*lcnt));
|
||||
faces = concat(
|
||||
];
|
||||
thickness = abs(verts1[0][0].z - select(verts1,-1)[0].z);
|
||||
vertices = [for (x=verts1) down(thickness/2, p=reverse(x))];
|
||||
sides_vnf = vnf_vertex_array(vertices, caps=false, col_wrap=true, reverse=true);
|
||||
top_verts = select(vertices,-1);
|
||||
bot_verts = select(vertices,0);
|
||||
gear_pts = len(top_verts);
|
||||
face_pts = gear_pts / teeth;
|
||||
top_faces =[
|
||||
for (i=[0:1:teeth-1], j=[0:1:(face_pts/2)-1]) each [
|
||||
[i*face_pts+j, (i+1)*face_pts-j-1, (i+1)*face_pts-j-2],
|
||||
[i*face_pts+j, (i+1)*face_pts-j-2, i*face_pts+j+1]
|
||||
],
|
||||
for (i=[0:1:teeth-1]) each [
|
||||
[gear_pts, (i+1)*face_pts-1, i*face_pts],
|
||||
[gear_pts, ((i+1)%teeth)*face_pts, (i+1)*face_pts-1]
|
||||
]
|
||||
];
|
||||
vnf1 = vnf_merge([
|
||||
[
|
||||
for (sl=[0:1:lsus-2], i=[0:1:lcnt*teeth-1]) each [
|
||||
[_lv(sl,i), _lv(sl+1,i), _lv(sl,i+1)],
|
||||
[_lv(sl+1,i), _lv(sl+1,i+1), _lv(sl,i+1)]
|
||||
]
|
||||
], [
|
||||
for (tooth=[0:1:teeth-1], i=[0:1:lcnt/2-1]) each [
|
||||
[_gv(0,tooth,i), _gv(0,tooth,i+1), _gv(0,tooth,lcnt-1-(i+1))],
|
||||
[_gv(0,tooth,i), _gv(0,tooth,lcnt-1-(i+1)), _gv(0,tooth,lcnt-1-i)],
|
||||
[_gv(lsus-1,tooth,i), _gv(lsus-1,tooth,lcnt-1-(i+1)), _gv(lsus-1,tooth,i+1)],
|
||||
[_gv(lsus-1,tooth,i), _gv(lsus-1,tooth,lcnt-1-i), _gv(lsus-1,tooth,lcnt-1-(i+1))],
|
||||
]
|
||||
], [
|
||||
for (tooth=[0:1:teeth-1]) each [
|
||||
[len(vertices)-2, _gv(0,tooth,0), _gv(0,tooth,lcnt-1)],
|
||||
[len(vertices)-2, _gv(0,tooth,lcnt-1), _gv(0,tooth+1,0)],
|
||||
[len(vertices)-1, _gv(lsus-1,tooth,lcnt-1), _gv(lsus-1,tooth,0)],
|
||||
[len(vertices)-1, _gv(lsus-1,tooth+1,0), _gv(lsus-1,tooth,lcnt-1)],
|
||||
]
|
||||
]
|
||||
);
|
||||
attachable(anchor,spin,orient, r1=p1, r2=p2, l=thickness) {
|
||||
union() {
|
||||
[each top_verts, [0,0,top_verts[0].z]],
|
||||
top_faces
|
||||
],
|
||||
[
|
||||
[each bot_verts, [0,0,bot_verts[0].z]],
|
||||
[for (x=top_faces) reverse(x)]
|
||||
],
|
||||
sides_vnf
|
||||
]);
|
||||
vnf = left_handed? vnf1 : xflip(p=vnf1);
|
||||
anchors = [
|
||||
anchorpt("pitchbase", [0,0,pitchoff-thickness/2]),
|
||||
anchorpt("flattop", [0,0,thickness/2])
|
||||
];
|
||||
attachable(anchor,spin,orient, vnf=vnf, extent=true, anchors=anchors) {
|
||||
difference() {
|
||||
down(thickness/2) {
|
||||
polyhedron(points=vertices, faces=faces, convexity=floor(teeth/2));
|
||||
}
|
||||
vnf_polyhedron(vnf, convexity=teeth);
|
||||
if (shaft_diam > 0) {
|
||||
cylinder(h=2*thickness+1, r=shaft_diam/2, center=true, $fn=max(12,segs(shaft_diam/2)));
|
||||
}
|
||||
if (bevelang != 0) {
|
||||
h = (c1-r1)/tan(45);
|
||||
down(thickness/2+dy) {
|
||||
difference() {
|
||||
cube([2*c1/cos(45),2*c1/cos(45),2*h], center=true);
|
||||
cylinder(h=h, r1=r1-0.5, r2=c1-0.5, center=false, $fn=teeth*4);
|
||||
}
|
||||
}
|
||||
up(thickness/2-0.01) {
|
||||
cylinder(h=(c2-r2)/tan(45)*5, r1=r2-0.5, r2=lerp(r2-0.5,c2-0.5,5), center=false, $fn=teeth*4);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
children();
|
||||
}
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
BOSL_VERSION = [2,0,447];
|
||||
BOSL_VERSION = [2,0,448];
|
||||
|
||||
|
||||
// Section: BOSL Library Version Functions
|
||||
|
|
Loading…
Reference in a new issue