Merge pull request #297 from revarbat/revarbat_dev

Fixed bevel_gear() so that complementary gears will mesh.
This commit is contained in:
Revar Desmera 2020-10-13 22:34:41 -07:00 committed by GitHub
commit 54c59989ed
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 232 additions and 182 deletions

View file

@ -472,6 +472,73 @@ function line_from_points(points, fast=false, eps=EPSILON) =
// Section: 2D Triangles
// Function: law_of_cosines()
// Usage:
// C = law_of_cosines(a, b, c);
// c = law_of_cosines(a, b, C);
// Description:
// Applies the Law of Cosines for an arbitrary triangle.
// Given three side lengths, returns the angle in degrees for the corner opposite of the third side.
// Given two side lengths, and the angle between them, returns the length of the third side.
// Figure(2D):
// stroke([[-50,0], [10,60], [50,0]], closed=true);
// color("black") {
// translate([ 33,35]) text(text="a", size=8, halign="center", valign="center");
// translate([ 0,-6]) text(text="b", size=8, halign="center", valign="center");
// translate([-22,35]) text(text="c", size=8, halign="center", valign="center");
// }
// color("blue") {
// translate([-37, 6]) text(text="A", size=8, halign="center", valign="center");
// translate([ 9,51]) text(text="B", size=8, halign="center", valign="center");
// translate([ 38, 6]) text(text="C", size=8, halign="center", valign="center");
// }
// Arguments:
// a = The length of the first side.
// b = The length of the second side.
// c = The length of the third side.
// C = The angle in degrees of the corner opposite of the third side.
function law_of_cosines(a, b, c, C) =
// Triangle Law of Cosines:
// c^2 = a^2 + b^2 - 2*a*b*cos(C)
assert(num_defined([c,C]) == 1, "Must give exactly one of c= or C=.")
is_undef(c) ? sqrt(a*a + b*b - 2*a*b*cos(C)) :
acos(constrain((a*a + b*b - c*c) / (2*a*b), -1, 1));
// Function: law_of_sines()
// Usage:
// B = law_of_sines(a, A, b);
// b = law_of_sines(a, A, B);
// Description:
// Applies the Law of Sines for an arbitrary triangle.
// Given two triangle side lengths and the angle between them, returns the angle of the corner opposite of the second side.
// Given a side length, the opposing angle, and a second angle, returns the length of the side opposite of the second angle.
// Figure(2D):
// stroke([[-50,0], [10,60], [50,0]], closed=true);
// color("black") {
// translate([ 33,35]) text(text="a", size=8, halign="center", valign="center");
// translate([ 0,-6]) text(text="b", size=8, halign="center", valign="center");
// translate([-22,35]) text(text="c", size=8, halign="center", valign="center");
// }
// color("blue") {
// translate([-37, 6]) text(text="A", size=8, halign="center", valign="center");
// translate([ 9,51]) text(text="B", size=8, halign="center", valign="center");
// translate([ 38, 6]) text(text="C", size=8, halign="center", valign="center");
// }
// Arguments:
// a = The length of the first side.
// A = The angle in degrees of the corner opposite of the first side.
// b = The length of the second side.
// B = The angle in degrees of the corner opposite of the second side.
function law_of_sines(a, A, b, B) =
// Triangle Law of Sines:
// a/sin(A) = b/sin(B) = c/sin(C)
assert(num_defined([b,B]) == 1, "Must give exactly one of b= or B=.")
let( r = a/sin(A) )
is_undef(b) ? r*sin(B) : asin(constrain(b/r, -1, 1));
// Function: tri_calc()
// Usage:
// tri_calc(ang,ang2,adj,opp,hyp);
@ -816,7 +883,7 @@ function plane3pt_indexed(points, i1, i2, i3) =
function plane_from_normal(normal, pt=[0,0,0]) =
assert( is_matrix([normal,pt],2,3) && !approx(norm(normal),0),
"Inputs `normal` and `pt` should 3d vectors/points and `normal` cannot be zero." )
concat(normal, normal*pt)/norm(normal);
concat(normal, normal*pt) / norm(normal);
// Function: plane_from_points()

View file

@ -130,12 +130,12 @@ function base_radius(pitch=5, teeth=11, PA=28) =
// Usage:
// x = bevel_pitch_angle(teeth, mate_teeth, [drive_angle]);
// Description:
// Returns the correct pitch angle (bevelang) for a bevel gear with a given number of tooth, that is
// Returns the correct pitch angle for a bevel gear with a given number of tooth, that is
// matched to another bevel gear with a (possibly different) number of teeth.
// Arguments:
// teeth = Number of teeth that this gear has.
// mate_teeth = Number of teeth that the matching gear has.
// drive_angle = Angle between the drive shafts of each gear. Usually 90º.
// drive_angle = Angle between the drive shafts of each gear. Default: 90º.
function bevel_pitch_angle(teeth, mate_teeth, drive_angle=90) =
atan(sin(drive_angle)/((mate_teeth/teeth)+cos(drive_angle)));
@ -160,15 +160,18 @@ function _gear_q7(f,r,b,r2,t,s) = _gear_q6(b,s,t,(1-f)*max(b,r)+f*r2); //
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
// teeth = Total number of teeth along the rack
// PA = Controls how straight or bulged the tooth sides are. In degrees.
// PA = Pressure Angle. Controls how straight or bulged the tooth sides are. In degrees.
// clearance = Gap between top of a tooth on one gear and bottom of valley on a meshing gear (in millimeters)
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle
// interior = If true, create a mask for difference()ing from something else.
// valleys = If true, add the valley bottoms on either side of the tooth.
// valleys = If true, add the valley bottoms on either side of the tooth. Default: true
// center = If true, centers the pitch circle of the tooth profile at the origin. Default: false.
// Example(2D):
// gear_tooth_profile(pitch=5, teeth=20, PA=20);
// Example(2D):
// gear_tooth_profile(pitch=5, teeth=20, PA=20, valleys=true);
// gear_tooth_profile(pitch=5, teeth=20, PA=20, valleys=false);
// Example(2D): As a function
// stroke(gear_tooth_profile(pitch=5, teeth=20, PA=20, valleys=false));
function gear_tooth_profile(
pitch = 3,
teeth = 11,
@ -176,7 +179,8 @@ function gear_tooth_profile(
clearance = undef,
backlash = 0.0,
interior = false,
valleys = true
valleys = true,
center = false
) = let(
p = pitch_radius(pitch, teeth),
c = outer_radius(pitch, teeth, clearance, interior),
@ -186,23 +190,22 @@ function gear_tooth_profile(
k = -_gear_iang(b, p) - t/2/p/PI*180, //angle to where involute meets base circle on each side of tooth
kk = r<b? k : -180/teeth,
isteps = 5,
pts = concat(
valleys? [
_gear_polar(r-1, -180.1/teeth),
_gear_polar(r, -180.1/teeth),
] : [
],
[_gear_polar(r, kk)],
[for (i=[0: 1:isteps]) _gear_q7(i/isteps,r,b,c,k, 1)],
[for (i=[isteps:-1:0]) _gear_q7(i/isteps,r,b,c,k,-1)],
[_gear_polar(r, -kk)],
valleys? [
_gear_polar(r, 180.1/teeth),
pts = [
if (valleys) each [
_gear_polar(r-1, 180.1/teeth),
] : [
_gear_polar(r, 180.1/teeth),
],
_gear_polar(r, -kk),
for (i=[0: 1:isteps]) _gear_q7(i/isteps,r,b,c,k,-1),
for (i=[isteps:-1:0]) _gear_q7(i/isteps,r,b,c,k, 1),
_gear_polar(r, kk),
if (valleys) each [
_gear_polar(r, -180.1/teeth),
_gear_polar(r-1, -180.1/teeth),
]
)
) reverse(pts);
],
pts2 = center? fwd(p, p=pts) : pts
) pts2;
module gear_tooth_profile(
@ -212,7 +215,8 @@ module gear_tooth_profile(
backlash = 0.0,
clearance = undef,
interior = false,
valleys = true
valleys = true,
center = false
) {
r = root_radius(pitch, teeth, clearance, interior);
translate([0,-r,0])
@ -224,7 +228,8 @@ module gear_tooth_profile(
backlash = backlash,
clearance = clearance,
interior = interior,
valleys = valleys
valleys = valleys,
center = center
)
);
}
@ -359,7 +364,7 @@ module gear2d(
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example: Spur Gear
// gear(pitch=5, teeth=20, thickness=8, shaft_diam=5);
// Example: Beveled Gear
// Example: Helical Gear
// gear(pitch=5, teeth=20, thickness=10, shaft_diam=5, helical=-30, slices=12, $fa=1, $fs=1);
// Example: Assembly of Gears
// n1 = 11; //red gear number of teeth
@ -426,38 +431,28 @@ module gear(
// Module: bevel_gear()
// Usage:
// bevel_gear(pitch, teeth, face_width, bevelang, <shaft_diam>, <hide>, <PA>, <clearance>, <backlash>, <spiral_rad>, <spiral_ang>, <slices>, <interior>);
// bevel_gear(pitch, teeth, face_width, pitch_angle, <shaft_diam>, <hide>, <PA>, <clearance>, <backlash>, <cutter_radius>, <spiral_angle>, <slices>, <interior>);
// Description:
// Creates a (potentially spiral) bevel gear.
// The module `bevel_gear()` gives an bevel gear, with reasonable
// defaults for all the parameters. Normally, you should just choose
// the first 4 parameters, and let the rest be default values. The
// module `bevel_gear()` gives a gear in the XY plane, centered on the origin,
// with one tooth centered on the positive Y axis. The various functions
// below it take the same parameters, and return various measurements
// for the gear. The most important is `pitch_radius()`, which tells
// how far apart to space gears that are meshing, and `outer_radius()`,
// which gives the size of the region filled by the gear. A gear has
// a "pitch circle", which is an invisible circle that cuts through
// the middle of each tooth (though not the exact center). In order
// for two gears to mesh, their pitch circles should just touch. So
// the distance between their centers should be `pitch_radius()` for
// one, plus `pitch_radius()` for the other, which gives the radii of
// their pitch circles.
// In order for two gears to mesh, they must have the same `pitch`
// and `PA` parameters. `pitch` gives the number
// of millimeters of arc around the pitch circle covered by one tooth
// and one space between teeth. The `PA` controls how flat or
// bulged the sides of the teeth are. Common values include 14.5
// degrees and 20 degrees, and occasionally 25. Though I've seen 28
// recommended for plastic gears. Larger numbers bulge out more, giving
// stronger teeth, so 28 degrees is the default here.
// The ratio of `teeth` for two meshing gears gives how many
// times one will make a full revolution when the the other makes one
// full revolution. If the two numbers are coprime (i.e. are not
// both divisible by the same number greater than 1), then every tooth
// on one gear will meet every tooth on the other, for more even wear.
// So coprime numbers of teeth are good.
// Creates a (potentially spiral) bevel gear. The module `bevel_gear()` gives a bevel gear, with
// reasonable defaults for all the parameters. Normally, you should just choose the first 4
// parameters, and let the rest be default values. The module `bevel_gear()` gives a gear in the XY
// plane, centered on the origin, with one tooth centered on the positive Y axis. The various
// functions below it take the same parameters, and return various measurements for the gear. The
// most important is `pitch_radius()`, which tells how far apart to space gears that are meshing,
// and `outer_radius()`, which gives the size of the region filled by the gear. A gear has a "pitch
// circle", which is an invisible circle that cuts through the middle of each tooth (though not the
// exact center). In order for two gears to mesh, their pitch circles should just touch. So the
// distance between their centers should be `pitch_radius()` for one, plus `pitch_radius()` for the
// other, which gives the radii of their pitch circles. In order for two gears to mesh, they must
// have the same `pitch` and `PA` parameters. `pitch` gives the number of millimeters of arc around
// the pitch circle covered by one tooth and one space between teeth. The `PA` controls how flat or
// bulged the sides of the teeth are. Common values include 14.5 degrees and 20 degrees, and
// occasionally 25. Though I've seen 28 recommended for plastic gears. Larger numbers bulge out
// more, giving stronger teeth, so 28 degrees is the default here. The ratio of `teeth` for two
// meshing gears gives how many times one will make a full revolution when the the other makes one
// full revolution. If the two numbers are coprime (i.e. are not both divisible by the same number
// greater than 1), then every tooth on one gear will meet every tooth on the other, for more even
// wear. So coprime numbers of teeth are good.
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
// teeth = Total number of teeth around the entire perimeter
@ -467,140 +462,128 @@ module gear(
// PA = Controls how straight or bulged the tooth sides are. In degrees.
// clearance = Clearance gap at the bottom of the inter-tooth valleys.
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle
// bevelang = Angle of beveled gear face.
// spiral_rad = Radius of spiral arc for teeth. If 0, then gear will not be spiral. Default: 0
// spiral_ang = The base angle for spiral teeth. Default: 0
// slices = Number of vertical layers to divide gear into. Useful for refining gears with `spiral`.
// scale = Scale of top of gear compared to bottom. Useful for making crown gears.
// pitch_angle = Angle of beveled gear face.
// cutter_radius = Radius of spiral arc for teeth. If 0, then gear will not be spiral. Default: 0
// spiral_angle = The base angle for spiral teeth. Default: 0
// slices = Number of vertical layers to divide gear into. Useful for refining gears with `spiral`. Default: 1
// interior = If true, create a mask for difference()ing from something else.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Extra Anchors:
// "pitchbase" = At the natural height of the pitch radius of the beveled gear.
// "flattop" = At the top of the flat top of the bevel gear.
// Example: Beveled Gear
// bevel_gear(pitch=5, teeth=36, face_width=10, shaft_diam=5, spiral_rad=-20, spiral_ang=35, bevelang=45, slices=12, $fa=1, $fs=1);
// bevel_gear(pitch=5, teeth=36, face_width=10, shaft_diam=5, pitch_angle=45, spiral_angle=0);
// Example: Spiral Beveled Gear and Pinion
// t1 = 14;
// t2 = 32;
// a1 = atan(t1/t2);
// a2 = atan(t2/t1);
// down(pitch_radius(5, t1))
// zrot(180/t2) bevel_gear(pitch=5, teeth=t2, face_width=10, shaft_diam=6, pitch_angle=a2, left_handed=true, slices=8, orient=UP);
// back(pitch_radius(5, t2))
// bevel_gear(pitch=5, teeth=t1, face_width=10, shaft_diam=6, pitch_angle=a1, slices=8, orient=FWD);
module bevel_gear(
pitch = 3,
teeth = 11,
face_width = 6,
bevelang = 45,
pitch_angle = 45,
shaft_diam = 3,
hide = 0,
PA = 20,
clearance = undef,
backlash = 0.0,
spiral_rad = 0,
spiral_ang = 0,
slices = 2,
cutter_radius = 30,
spiral_angle = 35,
left_handed = false,
slices = 1,
interior = false,
anchor = CENTER,
anchor = "pitchbase",
spin = 0,
orient = UP
) {
thickness = face_width * cos(bevelang);
slices = spiral_rad==0? 1 : slices;
spiral_rad = spiral_rad==0? 10000 : spiral_rad;
p1 = pitch_radius(pitch, teeth);
r1 = root_radius(pitch, teeth, clearance, interior);
c1 = outer_radius(pitch, teeth, clearance, interior);
dx = thickness * tan(bevelang);
dy = (p1-r1) * sin(bevelang);
scl = (p1-dx)/p1;
p2 = pitch_radius(pitch*scl, teeth);
r2 = root_radius(pitch*scl, teeth, clearance, interior);
c2 = outer_radius(pitch*scl, teeth, clearance, interior);
slice_u = 1/slices;
Rm = (p1+p2)/2;
H = spiral_rad * cos(spiral_ang);
V = Rm - abs(spiral_rad) * sin(spiral_ang);
spiral_cp = [H,V,0];
S = norm(spiral_cp);
theta_r = acos((S*S+spiral_rad*spiral_rad-p1*p1)/(2*S*spiral_rad)) - acos((S*S+spiral_rad*spiral_rad-p2*p2)/(2*S*spiral_rad));
theta_ro = acos((S*S+spiral_rad*spiral_rad-p1*p1)/(2*S*spiral_rad)) - acos((S*S+spiral_rad*spiral_rad-Rm*Rm)/(2*S*spiral_rad));
theta_ri = theta_r - theta_ro;
extent_u = 2*(p2-r2)*tan(bevelang) / thickness;
slice_us = concat(
[for (u = [0:slice_u:1+extent_u]) u]
);
lsus = len(slice_us);
vertices = concat(
[
for (u=slice_us, tooth=[0:1:teeth-1]) let(
p = lerp(p1,p2,u),
r = lerp(r1,r2,u),
theta = lerp(-theta_ro, theta_ri, u),
slices = cutter_radius==0? 1 : slices;
pr = pitch_radius(pitch, teeth);
rr = root_radius(pitch, teeth, clearance, interior);
pitchoff = (pr-rr) * cos(pitch_angle);
ocone_rad = opp_ang_to_hyp(pr, pitch_angle);
icone_rad = ocone_rad - face_width;
cutter_radius = cutter_radius==0? 1000 : cutter_radius;
midpr = (icone_rad + ocone_rad) / 2;
radcp = [0, midpr] + polar_to_xy(cutter_radius, 180+spiral_angle);
angC1 = law_of_cosines(a=cutter_radius, b=norm(radcp), c=ocone_rad);
angC2 = law_of_cosines(a=cutter_radius, b=norm(radcp), c=icone_rad);
radcpang = vang(radcp);
sang = radcpang - (180-angC1);
eang = radcpang - (180-angC2);
slice_us = [for (i=[0:1:slices]) i/slices];
apts = [for (u=slice_us) radcp + polar_to_xy(cutter_radius, lerp(sang,eang,u))];
polars = [for (p=apts) [vang(p)-90, norm(p)]];
profile = gear_tooth_profile(
pitch = pitch*(p/p1),
pitch = pitch,
teeth = teeth,
PA = PA,
clearance = clearance,
backlash = backlash,
interior = interior,
valleys = false
),
pp = rot(theta, cp=spiral_cp, p=[0,Rm,0]),
ang = atan2(pp.y,pp.x)-90,
pts = apply_list(
path3d(profile), [
move([0,-p,0]),
rot([0,ang,0]),
rot([bevelang,0,0]),
move(pp),
rot(tooth*360/teeth),
move([0,0,thickness*u])
]
valleys = false,
center = true
);
verts1 = [
for (polar=polars) [
let(
u = polar.y / ocone_rad,
m = up((1-u) * pr / tan(pitch_angle)) *
up(2*pitchoff) *
zrot(polar.x/sin(pitch_angle)) *
back(u * pr) *
xrot(pitch_angle) *
scale(u)
)
) each pts
], [
[0,0,-dy], [0,0,thickness]
for (tooth=[0:1:teeth-1])
each apply(xflip() * zrot(360*tooth/teeth) * m, path3d(profile))
]
);
lcnt = (len(vertices)-2)/lsus/teeth;
function _gv(layer,tooth,i) = ((layer*teeth)+(tooth%teeth))*lcnt+(i%lcnt);
function _lv(layer,i) = layer*teeth*lcnt+(i%(teeth*lcnt));
faces = concat(
];
thickness = abs(verts1[0][0].z - select(verts1,-1)[0].z);
vertices = [for (x=verts1) down(thickness/2, p=reverse(x))];
sides_vnf = vnf_vertex_array(vertices, caps=false, col_wrap=true, reverse=true);
top_verts = select(vertices,-1);
bot_verts = select(vertices,0);
gear_pts = len(top_verts);
face_pts = gear_pts / teeth;
top_faces =[
for (i=[0:1:teeth-1], j=[0:1:(face_pts/2)-1]) each [
[i*face_pts+j, (i+1)*face_pts-j-1, (i+1)*face_pts-j-2],
[i*face_pts+j, (i+1)*face_pts-j-2, i*face_pts+j+1]
],
for (i=[0:1:teeth-1]) each [
[gear_pts, (i+1)*face_pts-1, i*face_pts],
[gear_pts, ((i+1)%teeth)*face_pts, (i+1)*face_pts-1]
]
];
vnf1 = vnf_merge([
[
for (sl=[0:1:lsus-2], i=[0:1:lcnt*teeth-1]) each [
[_lv(sl,i), _lv(sl+1,i), _lv(sl,i+1)],
[_lv(sl+1,i), _lv(sl+1,i+1), _lv(sl,i+1)]
]
], [
for (tooth=[0:1:teeth-1], i=[0:1:lcnt/2-1]) each [
[_gv(0,tooth,i), _gv(0,tooth,i+1), _gv(0,tooth,lcnt-1-(i+1))],
[_gv(0,tooth,i), _gv(0,tooth,lcnt-1-(i+1)), _gv(0,tooth,lcnt-1-i)],
[_gv(lsus-1,tooth,i), _gv(lsus-1,tooth,lcnt-1-(i+1)), _gv(lsus-1,tooth,i+1)],
[_gv(lsus-1,tooth,i), _gv(lsus-1,tooth,lcnt-1-i), _gv(lsus-1,tooth,lcnt-1-(i+1))],
]
], [
for (tooth=[0:1:teeth-1]) each [
[len(vertices)-2, _gv(0,tooth,0), _gv(0,tooth,lcnt-1)],
[len(vertices)-2, _gv(0,tooth,lcnt-1), _gv(0,tooth+1,0)],
[len(vertices)-1, _gv(lsus-1,tooth,lcnt-1), _gv(lsus-1,tooth,0)],
[len(vertices)-1, _gv(lsus-1,tooth+1,0), _gv(lsus-1,tooth,lcnt-1)],
]
]
);
attachable(anchor,spin,orient, r1=p1, r2=p2, l=thickness) {
union() {
[each top_verts, [0,0,top_verts[0].z]],
top_faces
],
[
[each bot_verts, [0,0,bot_verts[0].z]],
[for (x=top_faces) reverse(x)]
],
sides_vnf
]);
vnf = left_handed? vnf1 : xflip(p=vnf1);
anchors = [
anchorpt("pitchbase", [0,0,pitchoff-thickness/2]),
anchorpt("flattop", [0,0,thickness/2])
];
attachable(anchor,spin,orient, vnf=vnf, extent=true, anchors=anchors) {
difference() {
down(thickness/2) {
polyhedron(points=vertices, faces=faces, convexity=floor(teeth/2));
}
vnf_polyhedron(vnf, convexity=teeth);
if (shaft_diam > 0) {
cylinder(h=2*thickness+1, r=shaft_diam/2, center=true, $fn=max(12,segs(shaft_diam/2)));
}
if (bevelang != 0) {
h = (c1-r1)/tan(45);
down(thickness/2+dy) {
difference() {
cube([2*c1/cos(45),2*c1/cos(45),2*h], center=true);
cylinder(h=h, r1=r1-0.5, r2=c1-0.5, center=false, $fn=teeth*4);
}
}
up(thickness/2-0.01) {
cylinder(h=(c2-r2)/tan(45)*5, r1=r2-0.5, r2=lerp(r2-0.5,c2-0.5,5), center=false, $fn=teeth*4);
}
}
}
}
children();
}

View file

@ -8,7 +8,7 @@
//////////////////////////////////////////////////////////////////////
BOSL_VERSION = [2,0,447];
BOSL_VERSION = [2,0,448];
// Section: BOSL Library Version Functions