mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2024-12-29 16:29:40 +00:00
Added VNF functions and modules.
This commit is contained in:
parent
e4ecb21217
commit
57236506ff
1 changed files with 291 additions and 0 deletions
291
geometry.scad
291
geometry.scad
|
@ -1645,5 +1645,296 @@ module region(r)
|
|||
}
|
||||
|
||||
|
||||
// Section: Creating Polyhedrons with VNF Structures
|
||||
// VNF stands for "Vertices'N'Faces". VNF structures are 2-item lists, `[VERTICES,FACES]` where the
|
||||
// first item is a list of vertex points, and the second is a list of face indices into the vertex
|
||||
// list. Each VNF is self contained, with face indices referring only to its own vertex list.
|
||||
// You can construct a `polyhedron()` in parts by describing each part in a self-contained VNF, then
|
||||
// merge the various VNFs to get the completed polyhedron vertex list and faces.
|
||||
|
||||
|
||||
// Function: is_vnf()
|
||||
// Description: Returns true if the given value looks passingly like a VNF structure.
|
||||
function is_vnf(x) = is_list(x) && len(x)==2 && is_list(x[0]) && is_list(x[1]) && (x[0]==[] || is_vector(x[0][0])) && (x[1]==[] || is_vector(x[1][0]));
|
||||
|
||||
|
||||
// Function: is_vnf_list()
|
||||
// Description: Returns true if the given value looks passingly like a list of VNF structures.
|
||||
function is_vnf_list(x) = is_list(x) && all([for (v=x) is_vnf(v)]);
|
||||
|
||||
|
||||
// Function: vnf_vertices()
|
||||
// Description: Given a VNF structure, returns the list of vertex points.
|
||||
function vnf_vertices(vnf) = vnf[0];
|
||||
|
||||
|
||||
// Function: vnf_faces()
|
||||
// Description: Given a VNF structure, returns the list of faces, where each face is a list of indices into the VNF vertex list.
|
||||
function vnf_faces(vnf) = vnf[1];
|
||||
|
||||
|
||||
// Function: vnf_get_vertex()
|
||||
// Usage:
|
||||
// vvnf = vnf_get_vertex(vnf, p);
|
||||
// Description:
|
||||
// Finds the index number of the given vertex point `p` in the given VNF structure `vnf`. If said
|
||||
// point does not already exist in the VNF vertex list, it is added. Returns: `[INDEX, VNF]` where
|
||||
// INDEX if the index of the point, and VNF is the possibly modified new VNF structure.
|
||||
// If `p` is given as a list of points, then INDEX will be a list of indices.
|
||||
// Arguments:
|
||||
// vnf = The VNF structue to get the point index from.
|
||||
// p = The point, or list of points to get the index of.
|
||||
// Example:
|
||||
// vnf1 = vnf_get_vertex(p=[3,5,8]); // Returns: [0, [[[3,5,8]],[]]]
|
||||
// vnf2 = vnf_get_vertex(vnf1, p=[3,2,1]); // Returns: [1, [[[3,5,8],[3,2,1]],[]]]
|
||||
// vnf3 = vnf_get_vertex(vnf2, p=[3,5,8]); // Returns: [0, [[[3,5,8],[3,2,1]],[]]]
|
||||
// vnf4 = vnf_get_vertex(vnf3, p=[[1,3,2],[3,2,1]]); // Returns: [[1,2], [[[3,5,8],[3,2,1],[1,3,2]],[]]]
|
||||
function vnf_get_vertex(vnf=[[],[]], p) =
|
||||
is_path(p)? _vnf_get_vertices(vnf, p) :
|
||||
let(
|
||||
p = quant(p,1/1024), // OpenSCAD internally quantizes objects to 1/1024.
|
||||
v = search([p], vnf[0])[0]
|
||||
) [
|
||||
v != []? v : len(vnf[0]),
|
||||
[
|
||||
concat(vnf[0], v != []? [] : [p]),
|
||||
vnf[1]
|
||||
]
|
||||
];
|
||||
|
||||
|
||||
// Internal use only
|
||||
function _vnf_get_vertices(vnf=[[],[]], pts, _i=0, _idxs=[]) =
|
||||
_i>=len(pts)? [_idxs, vnf] :
|
||||
let(
|
||||
vvnf = vnf_get_vertex(vnf, pts[_i])
|
||||
) _vnf_get_vertices(vvnf[1], pts, _i=_i+1, _idxs=concat(_idxs,[vvnf[0]]));
|
||||
|
||||
|
||||
// Function: vnf_add_face()
|
||||
// Usage:
|
||||
// vnf_add_face(vnf, pts);
|
||||
// Description:
|
||||
// Given a VNF structure and a list of face vertex points, adds the face to the VNF structure.
|
||||
// Returns the modified VNF structure `[VERTICES, FACES]`. It is up to the caller to make
|
||||
// sure that the points are in the correct order to make the face normal point outwards.
|
||||
// Arguments:
|
||||
// vnf = The VNF structure to add a face to.
|
||||
// pts = The vertex points for the face.
|
||||
function vnf_add_face(vnf=[[],[]], pts) =
|
||||
let(base=len(vnf[0])) [
|
||||
concat(vnf[0],pts),
|
||||
concat(vnf[1],[[for (i=idx(pts)) i+base]])
|
||||
];
|
||||
/*
|
||||
let(
|
||||
vvnf = vnf_get_vertex(vnf, pts),
|
||||
face = deduplicate(vvnf[0], closed=true),
|
||||
vnf2 = vvnf[1]
|
||||
) [
|
||||
vnf_vertices(vnf2),
|
||||
concat(vnf_faces(vnf2), len(face)>2? [face] : [])
|
||||
];
|
||||
*/
|
||||
|
||||
|
||||
// Function: vnf_add_faces()
|
||||
// Usage:
|
||||
// vnf_add_faces(vnf, faces);
|
||||
// Description:
|
||||
// Given a VNF structure and a list of faces, where each face is given as a list of vertex points,
|
||||
// adds the faces to the VNF structure. Returns the modified VNF structure `[VERTICES, FACES]`.
|
||||
// It is up to the caller to make sure that the points are in the correct order to make the face
|
||||
// normals point outwards.
|
||||
// Arguments:
|
||||
// vnf = The VNF structure to add a face to.
|
||||
// faces = The list of faces, where each face is given as a list of vertex points.
|
||||
function vnf_add_faces(vnf=[[],[]], faces, _i=0) =
|
||||
_i<len(faces)? vnf_add_faces(vnf_add_face(vnf, faces[_i]), faces, _i=_i+1) : vnf;
|
||||
|
||||
|
||||
// Function: vnf_merge()
|
||||
// Usage:
|
||||
// vnf = vnf_merge([VNF, VNF, VNF, ...]);
|
||||
// Description:
|
||||
// Given a list of VNF structures, merges them all into a single VNF structure.
|
||||
function vnf_merge(vnfs=[],_i=0,_acc=[[],[]]) = _i>=len(vnfs)? _acc :
|
||||
vnf_merge(
|
||||
vnfs, _i=_i+1,
|
||||
_acc = let(base=len(_acc[0])) [
|
||||
concat(_acc[0], vnfs[_i][0]),
|
||||
concat(_acc[1], [for (f=vnfs[_i][1]) [for (i=f) i+base]]),
|
||||
]
|
||||
);
|
||||
|
||||
|
||||
// Function: vnf_triangulate()
|
||||
// Usage:
|
||||
// vnf2 = vnf_triangulate(vnf);
|
||||
// Description:
|
||||
// Forces triangulation of faces in the VNF that have more than 3 vertices.
|
||||
function vnf_triangulate(vnf) =
|
||||
let(
|
||||
vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf
|
||||
) [vnf[0], triangulate_faces(vnf[0], vnf[1])];
|
||||
|
||||
|
||||
// Function: vnf_vertex_array()
|
||||
// Usage:
|
||||
// vnf = vnf_vertex_array(points, cols, [caps], [cap1], [cap2], [reverse], [col_wrap], [row_wrap], [vnf]);
|
||||
// Description:
|
||||
// Creates a VNF structure from a vertex list, by dividing the vertices into columns and rows,
|
||||
// adding faces to tile the surface. You can optionally have faces added to wrap the last column
|
||||
// back to the first column, or wrap the last row to the first. Endcaps can be added to either
|
||||
// the first and/or last rows.
|
||||
// Arguments:
|
||||
// points = A list of vertices to divide into columns and rows.
|
||||
// cols = The number of points in a column.
|
||||
// caps = If true, add endcap faces to the first AND last rows.
|
||||
// cap1 = If true, add an endcap face to the first row.
|
||||
// cap2 = If true, add an endcap face to the last row.
|
||||
// col_wrap = If true, add faces to connect the last column to the first.
|
||||
// row_wrap = If true, add faces to connect the last row to the first.
|
||||
// reverse = If true, reverse all face normals.
|
||||
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", and "quincunx".
|
||||
// vnf = If given, add all the vertices and faces to this existing VNF structure.
|
||||
// Example(3D):
|
||||
// vnf = vnf_vertex_array(
|
||||
// points=[
|
||||
// for (h = [0:5:180-EPSILON], t = [0:5:360-EPSILON])
|
||||
// cylindrical_to_xyz(100 + 12 * cos((h/2 + t)*6), t, h)
|
||||
// ],
|
||||
// cols=360/5, col_wrap=true, caps=true, reverse=true, style="alt"
|
||||
// );
|
||||
// vnf_polyhedron(vnf);
|
||||
// Example(3D): Both `col_wrap` and `row_wrap` are true to make a torus.
|
||||
// profile = circle(d=20);
|
||||
// vnf = vnf_vertex_array(
|
||||
// points=[
|
||||
// for (a=[0:5:360-EPSILON])
|
||||
// each zrot(a,p=right(30,p=xrot(90,p=path3d(profile))))
|
||||
// ],
|
||||
// cols=len(profile), col_wrap=true, row_wrap=true, reverse=true
|
||||
// );
|
||||
// vnf_polyhedron(vnf);
|
||||
// Example(3D): Möbius Strip. Note that `row_wrap` is not used, and the first and last profile copies are the same.
|
||||
// profile = square([1,10],center=true);
|
||||
// vnf = vnf_vertex_array(
|
||||
// points=[
|
||||
// for (a=[0:5:360]) each
|
||||
// zrot(a,p=right(30,p=xrot(90,p=zrot(a/2+60,p=path3d(profile)))))
|
||||
// ],
|
||||
// cols=len(profile), col_wrap=true, reverse=true
|
||||
// );
|
||||
// vnf_polyhedron(vnf);
|
||||
// Example(3D): Assembling a Polyhedron from Multiple Parts
|
||||
// profile = circle(d=100);
|
||||
// wall_points=[
|
||||
// for (a=[-90:2:90])
|
||||
// each up(a, p=scale([1-0.1*cos(a*6),1-0.1*cos((a+90)*6),1], p=path3d(profile)))
|
||||
// ];
|
||||
// cap_profile = select(wall_points,0,len(profile)-1);
|
||||
// cap_points=[
|
||||
// for (a=[0:0.01:1.001]) each
|
||||
// up(90-5*sin(a*360*2), p=scale([a,a,1], p=cap_profile))
|
||||
// ];
|
||||
// vnf1 = vnf_vertex_array(
|
||||
// points=wall_points, cols=len(profile), col_wrap=true
|
||||
// );
|
||||
// vnf2 = vnf_vertex_array(
|
||||
// points=down(90, p=zscale(-1, p=cap_points)),
|
||||
// cols=len(profile), col_wrap=true
|
||||
// );
|
||||
// vnf3 = vnf_vertex_array(
|
||||
// points=up(90, p=cap_points),
|
||||
// cols=len(profile), col_wrap=true, reverse=true
|
||||
// );
|
||||
// vnf_polyhedron([vnf1, vnf2, vnf3]);
|
||||
function vnf_vertex_array(
|
||||
points, cols,
|
||||
caps, cap1, cap2,
|
||||
col_wrap=false,
|
||||
row_wrap=false,
|
||||
reverse=false,
|
||||
style="default",
|
||||
vnf=[[],[]]
|
||||
) =
|
||||
assert(len(points)%cols==0)
|
||||
assert((!caps)||(caps&&col_wrap))
|
||||
assert(in_list(style,["default","alt","quincunx"]))
|
||||
let(
|
||||
pcnt = len(points),
|
||||
rows = pcnt/cols,
|
||||
cap1 = first_defined([cap1,caps,false]),
|
||||
cap2 = first_defined([cap2,caps,false]),
|
||||
colcnt = cols - (col_wrap?0:1),
|
||||
rowcnt = rows - (row_wrap?0:1)
|
||||
)
|
||||
vnf_merge([
|
||||
vnf, [
|
||||
concat(
|
||||
points,
|
||||
style!="quincunx"? [] : [
|
||||
for (r = [0:1:rowcnt-1]) (
|
||||
for (c = [0:1:colcnt-1]) (
|
||||
let(
|
||||
i1 = ((r+0)%rows)*cols + ((c+0)%cols),
|
||||
i2 = ((r+1)%rows)*cols + ((c+0)%cols),
|
||||
i3 = ((r+1)%rows)*cols + ((c+1)%cols),
|
||||
i4 = ((r+0)%rows)*cols + ((c+1)%cols)
|
||||
) mean([points[i1], points[i2], points[i3], points[i4]])
|
||||
)
|
||||
)
|
||||
]
|
||||
),
|
||||
concat(
|
||||
[
|
||||
for (r = [0:1:rowcnt-1]) (
|
||||
for (c = [0:1:colcnt-1]) each (
|
||||
let(
|
||||
i1 = ((r+0)%rows)*cols + ((c+0)%cols),
|
||||
i2 = ((r+1)%rows)*cols + ((c+0)%cols),
|
||||
i3 = ((r+1)%rows)*cols + ((c+1)%cols),
|
||||
i4 = ((r+0)%rows)*cols + ((c+1)%cols)
|
||||
)
|
||||
style=="quincunx"? (
|
||||
let(i5 = pcnt + r*colcnt + c)
|
||||
reverse? [[i1,i2,i5],[i2,i3,i5],[i3,i4,i5],[i4,i1,i5]] : [[i1,i5,i2],[i2,i5,i3],[i3,i5,i4],[i4,i5,i1]]
|
||||
) : style=="alt"? (
|
||||
reverse? [[i1,i2,i4],[i2,i3,i4]] : [[i1,i4,i2],[i2,i4,i3]]
|
||||
) : (
|
||||
reverse? [[i1,i2,i3],[i1,i3,i4]] : [[i1,i3,i2],[i1,i4,i3]]
|
||||
)
|
||||
)
|
||||
)
|
||||
],
|
||||
!cap1? [] : [
|
||||
reverse?
|
||||
[for (c = [0:1:cols-1]) c] :
|
||||
[for (c = [cols-1:-1:0]) c]
|
||||
],
|
||||
!cap2? [] : [
|
||||
reverse?
|
||||
[for (c = [cols-1:-1:0]) (rows-1)*cols + c] :
|
||||
[for (c = [0:1:cols-1]) (rows-1)*cols + c]
|
||||
]
|
||||
)
|
||||
]
|
||||
]);
|
||||
|
||||
|
||||
// Module: vnf_polyhedron()
|
||||
// Usage:
|
||||
// vnf_polyhedron(vnf);
|
||||
// vnf_polyhedron([VNF, VNF, VNF, ...]);
|
||||
// Description:
|
||||
// Given a VNF structure, or a list of VNF structures, creates a polyhedron from them.
|
||||
// Arguments:
|
||||
// vnf = A VNF structure, or list of VNF structures.
|
||||
module vnf_polyhedron(vnf) {
|
||||
vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf;
|
||||
polyhedron(vnf[0], vnf[1]);
|
||||
}
|
||||
|
||||
|
||||
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
|
Loading…
Reference in a new issue