Merge pull request #690 from adrianVmariano/master

doc tweaks
This commit is contained in:
Revar Desmera 2021-10-12 19:47:05 -07:00 committed by GitHub
commit 59af31a531
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 74 additions and 50 deletions

View file

@ -337,7 +337,6 @@ module stroke(
);
v1 = unit(path2[i] - path2[i-1]);
v2 = unit(path2[i+1] - path2[i]);
vec = unit((v1+v2)/2);
mat = is_undef(joint_angle)
? rot(from=BACK,to=v1)
: zrot(joint_angle);

View file

@ -93,7 +93,8 @@ function check_and_fix_path(path, valid_dim=undef, closed=false, name="path") =
// Examples:
//
function sanitize_region(r,nonzero=false,eps=EPSILON) =
assert(is_region(r))
let(r=force_region(r))
assert(is_region(r), "Input is not a region")
exclusive_or(
[for(poly=r) each polygon_parts(poly,nonzero,eps)],
eps=eps);
@ -117,7 +118,8 @@ function sanitize_region(r,nonzero=false,eps=EPSILON) =
module region(r)
{
no_children($children);
r = is_path(r) ? [r] : r;
r = force_region(r);
dummy=assert(is_region(r), "Input is not a region");
points = flatten(r);
lengths = [for(path=r) len(path)];
starts = [0,each cumsum(lengths)];
@ -156,12 +158,14 @@ function point_in_region(point, region, eps=EPSILON, _i=0, _cnt=0) =
// formed from a list of simple polygons that do not intersect each other.
// Arguments:
// region = region to check
// eps = tolerance for geometric omparisons. Default: `EPSILON` = 1e-9
// eps = tolerance for geometric comparisons. Default: `EPSILON` = 1e-9
function is_region_simple(region, eps=EPSILON) =
let(region=force_region(region))
assert(is_region(region), "Input is not a region")
[for(p=region) if (!is_path_simple(p,closed=true,eps)) 1] == []
&&
[for(i=[0:1:len(region)-2])
if (_path_region_intersections(region[i], list_tail(region,i+1), eps=eps) != []) 1
if (_region_region_intersections([region[i]], list_tail(region,i+1), eps=eps)[0][0] != []) 1
] ==[];
function _clockwise_region(r) = [for(p=r) clockwise_polygon(p)];
@ -181,7 +185,7 @@ function are_regions_equal(region1, region2, either_winding=false) =
region1=force_region(region1),
region2=force_region(region2)
)
assert(is_region(region1) && is_region(region2))
assert(is_region(region1) && is_region(region2), "One of the inputs is not a region")
len(region1) != len(region2)? false :
__are_regions_equal(either_winding?_clockwise_region(region1):region1,
either_winding?_clockwise_region(region2):region2,
@ -286,7 +290,7 @@ function _region_region_intersections(region1, region2, closed1=true,closed2=tru
// closed1 = if false then treat region1 as list of open paths. Default: true
// closed2 = if false then treat region2 as list of open paths. Default: true
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
// Example:
// Example(2D):
// path = square(50,center=false);
// region = [circle(d=80), circle(d=40)];
// paths = split_region_at_region_crossings(path, region);
@ -299,7 +303,10 @@ function _region_region_intersections(region1, region2, closed1=true,closed2=tru
function split_region_at_region_crossings(region1, region2, closed1=true, closed2=true, eps=EPSILON) =
let(
region1=force_region(region1),
region2=force_region(region2),
region2=force_region(region2)
)
assert(is_region(region1) && is_region(region2),"One of the inputs is not a region")
let(
xings = _region_region_intersections(region1, region2, closed1, closed2, eps),
regions = [region1,region2],
closed = [closed1,closed2]
@ -347,7 +354,10 @@ function split_region_at_region_crossings(region1, region2, closed1=true, closed
// rainbow(region_list) region($item);
function region_parts(region) =
let(
region = force_region(region),
region = force_region(region)
)
assert(is_region(region), "Input is not a region")
let(
inside = [for(i=idx(region))
let(pt = mean([region[i][0], region[i][1]]))
[for(j=idx(region)) i==j ? 0
@ -436,7 +446,7 @@ function _cleave_connected_region(region) =
// vnf = If given, the faces are added to this VNF. Default: `EMPTY_VNF`
function region_faces(region, transform, reverse=false, vnf=EMPTY_VNF) =
let (
regions = region_parts(region),
regions = region_parts(force_region(region)),
vnfs = [
if (vnf != EMPTY_VNF) vnf,
for (rgn = regions) let(
@ -494,7 +504,8 @@ function region_faces(region, transform, reverse=false, vnf=EMPTY_VNF) =
// orgn = difference(mrgn,rgn3);
// linear_sweep(orgn,height=20,convexity=16) show_anchors();
module linear_sweep(region, height=1, center, twist=0, scale=1, slices, maxseg, style="default", convexity, anchor_isect=false, anchor, spin=0, orient=UP) {
region = is_path(region)? [region] : region;
region = force_region(region);
dummy=assert(is_region(region),"Input is not a region");
cp = mean(pointlist_bounds(flatten(region)));
anchor = get_anchor(anchor, center, "origin", "origin");
vnf = linear_sweep(
@ -512,11 +523,14 @@ module linear_sweep(region, height=1, center, twist=0, scale=1, slices, maxseg,
function linear_sweep(region, height=1, center, twist=0, scale=1, slices,
maxseg, style="default", anchor_isect=false, anchor, spin=0, orient=UP) =
let(
region = force_region(region)
)
assert(is_region(region), "Input is not a region")
let(
anchor = get_anchor(anchor,center,BOT,BOT),
region = is_path(region)? [region] : region,
cp = mean(pointlist_bounds(flatten(region))),
regions = region_parts(region),
cp = mean(pointlist_bounds(flatten(region))),
slices = default(slices, floor(twist/5+1)),
step = twist/slices,
hstep = height/slices,
@ -706,64 +720,73 @@ function _point_dist(path,pathseg_unit,pathseg_len,pt) =
// return_faces = return face list. Default: False.
// firstface_index = starting index for face list. Default: 0.
// flip_faces = flip face direction. Default: false
// Example(2D):
// Example(2D,NoAxes):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=10, closed=true));
// Example(2D):
// #stroke(closed=true, star, width=3);
// stroke(closed=true, width=3, offset(star, delta=10, closed=true));
// Example(2D,NoAxes):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=10, chamfer=true, closed=true));
// Example(2D):
// #stroke(closed=true, star, width=3);
// stroke(closed=true, width=3,
// offset(star, delta=10, chamfer=true, closed=true));
// Example(2D,NoAxes):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, r=10, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=-10, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=-10, chamfer=true, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, r=-10, closed=true, $fn=20));
// Example(2D): This case needs `quality=2` for success
// #stroke(closed=true, star, width=3);
// stroke(closed=true, width=3,
// offset(star, r=10, closed=true));
// Example(2D,NoAxes):
// star = star(7, r=120, ir=50);
// #stroke(closed=true, width=3, star);
// stroke(closed=true, width=3,
// offset(star, delta=-15, closed=true));
// Example(2D,NoAxes):
// star = star(7, r=120, ir=50);
// #stroke(closed=true, width=3, star);
// stroke(closed=true, width=3,
// offset(star, delta=-15, chamfer=true, closed=true));
// Example(2D,NoAxes):
// star = star(7, r=120, ir=50);
// #stroke(closed=true, width=3, star);
// stroke(closed=true, width=3,
// offset(star, r=-15, closed=true, $fn=20));
// Example(2D,NoAxes): This case needs `quality=2` for success
// test = [[0,0],[10,0],[10,7],[0,7], [-1,-3]];
// polygon(offset(test,r=-1.9, closed=true, quality=2));
// //polygon(offset(test,r=-1.9, closed=true, quality=1)); // Fails with erroneous 180 deg path error
// %down(.1)polygon(test);
// Example(2D): This case fails if `check_valid=true` when delta is large enough because segments are too close to the opposite side of the curve.
// Example(2D,NoAxes): This case fails if `check_valid=true` when delta is large enough because segments are too close to the opposite side of the curve.
// star = star(5, r=22, ir=13);
// stroke(star,width=.2,closed=true);
// stroke(star,width=.3,closed=true);
// color("green")
// stroke(offset(star, delta=-9, closed=true),width=.2,closed=true); // Works with check_valid=true (the default)
// stroke(offset(star, delta=-9, closed=true),width=.3,closed=true); // Works with check_valid=true (the default)
// color("red")
// stroke(offset(star, delta=-10, closed=true, check_valid=false), // Fails if check_valid=true
// width=.2,closed=true);
// width=.3,closed=true);
// Example(2D): But if you use rounding with offset then you need `check_valid=true` when `r` is big enough. It works without the validity check as long as the offset shape retains a some of the straight edges at the star tip, but once the shape shrinks smaller than that, it fails. There is no simple way to get a correct result for the case with `r=10`, because as in the previous example, it will fail if you turn on validity checks.
// star = star(5, r=22, ir=13);
// color("green")
// stroke(offset(star, r=-8, closed=true,check_valid=false), width=.1, closed=true);
// color("red")
// stroke(offset(star, r=-10, closed=true,check_valid=false), width=.1, closed=true);
// Example(2D): The extra triangles in this example show that the validity check cannot be skipped
// Example(2D,NoAxes): The extra triangles in this example show that the validity check cannot be skipped
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
// stroke(ellipse, closed=true, width=0.3);
// stroke(offset(ellipse, r=-3, check_valid=false, closed=true), width=0.3, closed=true);
// Example(2D): The triangles are removed by the validity check
// stroke(offset(ellipse, r=-3, check_valid=false, closed=true),
// width=0.3, closed=true);
// Example(2D,NoAxes): The triangles are removed by the validity check
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
// stroke(ellipse, closed=true, width=0.3);
// stroke(offset(ellipse, r=-3, check_valid=true, closed=true), width=0.3, closed=true);
// stroke(offset(ellipse, r=-3, check_valid=true, closed=true),
// width=0.3, closed=true);
// Example(2D): Open path. The path moves from left to right and the positive offset shifts to the left of the initial red path.
// sinpath = 2*[for(theta=[-180:5:180]) [theta/4,45*sin(theta)]];
// #stroke(sinpath);
// stroke(offset(sinpath, r=17.5));
// Example(2D): Region
// rgn = difference(circle(d=100), union(square([20,40], center=true), square([40,20], center=true)));
// #linear_extrude(height=1.1) for (p=rgn) stroke(closed=true, width=0.5, p);
// #stroke(sinpath, width=2);
// stroke(offset(sinpath, r=17.5),width=2);
// Example(2D,NoAxes): Region
// rgn = difference(circle(d=100),
// union(square([20,40], center=true),
// square([40,20], center=true)));
// #linear_extrude(height=1.1) stroke(rgn, width=1);
// region(offset(rgn, r=-5));
function offset(
path, r=undef, delta=undef, chamfer=false,
@ -779,8 +802,10 @@ function offset(
chamfer=chamfer, check_valid=check_valid, quality=quality,closed=true)])]
)
union(ofsregs)
: let(rcount = num_defined([r,delta]))
:
let(rcount = num_defined([r,delta]))
assert(rcount==1,"Must define exactly one of 'delta' and 'r'")
assert(is_path(path), "Input must be a path or region")
let(
chamfer = is_def(r) ? false : chamfer,
quality = max(0,round(quality)),
@ -936,8 +961,8 @@ function _filter_region_parts(region1, region2, keep1, keep2, eps=EPSILON) =
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(union(shape1,shape2));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
function union(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? union(concat([regions],[b],c==undef?[]:[c]), eps=eps) :
len(regions)==0? [] :