mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2024-12-29 16:29:40 +00:00
commit
59c22a2670
9 changed files with 1153 additions and 294 deletions
|
@ -91,7 +91,7 @@ $tags_hidden = [];
|
|||
|
||||
// Function: anchorpt()
|
||||
// Usage:
|
||||
// anchor(name, pos, [dir], [rot])
|
||||
// anchor(name, pos, <dir>, <rot>)
|
||||
// Description:
|
||||
// Creates a anchor data structure.
|
||||
// Arguments:
|
||||
|
@ -105,21 +105,21 @@ function anchorpt(name, pos=[0,0,0], orient=UP, spin=0) = [name, pos, orient, sp
|
|||
// Function: attach_geom()
|
||||
//
|
||||
// Usage: Square/Trapezoid Geometry
|
||||
// geom = attach_geom(anchor, spin, [orient], two_d, size, [size2], [shift], [cp], [offset], [anchors]);
|
||||
// geom = attach_geom(anchor, spin, two_d, size, <size2>, <shift>, <cp>, <offset>, <anchors>);
|
||||
// Usage: Circle/Oval Geometry
|
||||
// geom = attach_geom(anchor, spin, [orient], two_d, r|d, [cp], [offset], [anchors]);
|
||||
// geom = attach_geom(anchor, spin, two_d, r|d, <cp>, <offset>, <anchors>);
|
||||
// Usage: 2D Path/Polygon Geometry
|
||||
// geom = attach_geom(anchor, spin, [orient], two_d, path, [extent], [cp], [offset], [anchors]);
|
||||
// geom = attach_geom(anchor, spin, two_d, path, <extent>, <cp>, <offset>, <anchors>);
|
||||
// Usage: Cubical/Prismoidal Geometry
|
||||
// geom = attach_geom(anchor, spin, [orient], size, [size2], [shift], [cp], [offset], [anchors]);
|
||||
// geom = attach_geom(anchor, spin, <orient>, size, <size2>, <shift>, <cp>, <offset>, <anchors>);
|
||||
// Usage: Cylindrical Geometry
|
||||
// geom = attach_geom(anchor, spin, [orient], r|d, l, [cp], [axis], [offset], [anchors]);
|
||||
// geom = attach_geom(anchor, spin, <orient>, r|d, l, <cp>, <axis>, <offset>, <anchors>);
|
||||
// Usage: Conical Geometry
|
||||
// geom = attach_geom(anchor, spin, [orient], r1|d1, r2|d2, l, [cp], [axis], [offset], [anchors]);
|
||||
// geom = attach_geom(anchor, spin, <orient>, r1|d1, r2|d2, l, <cp>, <axis>, <offset>, <anchors>);
|
||||
// Usage: Spheroid/Ovoid Geometry
|
||||
// geom = attach_geom(anchor, spin, [orient], r|d, [cp], [offset], [anchors]);
|
||||
// geom = attach_geom(anchor, spin, <orient>, r|d, <cp>, <offset>, <anchors>);
|
||||
// Usage: VNF Geometry
|
||||
// geom = attach_geom(anchor, spin, [orient], vnf, [extent], [cp], [offset], [anchors]);
|
||||
// geom = attach_geom(anchor, spin, <orient>, vnf, <extent>, <cp>, <offset>, <anchors>);
|
||||
//
|
||||
// Description:
|
||||
// Given arguments that describe the geometry of an attachable object, returns the internal geometry description.
|
||||
|
@ -332,8 +332,8 @@ function attach_geom_size(geom) =
|
|||
) delt
|
||||
) : type == "rect"? ( //size, size2
|
||||
let(
|
||||
size=geom[1], size2=geom[2],
|
||||
maxx = max(size.x,size2)
|
||||
size=geom[1], size2=geom[2], shift=geom[3],
|
||||
maxx = max(size.x,size2+abs(shift))
|
||||
) [maxx, size.y]
|
||||
) : type == "circle"? ( //r
|
||||
let( r=geom[1] )
|
||||
|
@ -349,7 +349,7 @@ function attach_geom_size(geom) =
|
|||
|
||||
// Function: attach_transform()
|
||||
// Usage:
|
||||
// mat = attach_transform(anchor=CENTER, spin=0, orient=UP, geom);
|
||||
// mat = attach_transform(anchor, spin, orient, geom);
|
||||
// Description:
|
||||
// Returns the affine3d transformation matrix needed to `anchor`, `spin`, and `orient`
|
||||
// the given geometry `geom` shape into position.
|
||||
|
@ -557,12 +557,12 @@ function find_anchor(anchor, geom) =
|
|||
mpt = approx(point2d(anchor),[0,0])? [maxx,0,0] : [maxx, avgy, avgz],
|
||||
pos = point3d(cp) + rot(from=RIGHT, to=anchor, p=mpt)
|
||||
) [anchor, pos, anchor, oang]
|
||||
) : type == "rect"? ( //size, size2
|
||||
) : type == "rect"? ( //size, size2, shift
|
||||
let(
|
||||
size=geom[1], size2=geom[2],
|
||||
size=geom[1], size2=geom[2], shift=geom[3],
|
||||
u = (anchor.y+1)/2,
|
||||
frpt = [size.x/2*anchor.x, -size.y/2],
|
||||
bkpt = [size2/2*anchor.x, size.y/2],
|
||||
bkpt = [size2/2*anchor.x+shift, size.y/2],
|
||||
pos = point2d(cp) + lerp(frpt, bkpt, u) + offset,
|
||||
vec = unit(rot(from=BACK, to=bkpt-frpt, p=anchor),[0,1])
|
||||
) [anchor, pos, vec, 0]
|
||||
|
@ -629,21 +629,21 @@ function attachment_is_shown(tags) =
|
|||
// Function: reorient()
|
||||
//
|
||||
// Usage: Square/Trapezoid Geometry
|
||||
// reorient(anchor, spin, [orient], two_d, size, [size2], [shift], [cp], [offset], [anchors], [p]);
|
||||
// reorient(anchor, spin, <orient>, two_d, size, <size2>, <shift>, <cp>, <offset>, <anchors>, <p>);
|
||||
// Usage: Circle/Oval Geometry
|
||||
// reorient(anchor, spin, [orient], two_d, r|d, [cp], [offset], [anchors], [p]);
|
||||
// reorient(anchor, spin, <orient>, two_d, r|d, <cp>, <offset>, <anchors>, <p>);
|
||||
// Usage: 2D Path/Polygon Geometry
|
||||
// reorient(anchor, spin, [orient], two_d, path, [extent], [cp], [offset], [anchors], [p]);
|
||||
// reorient(anchor, spin, <orient>, two_d, path, <extent>, <cp>, <offset>, <anchors>, <p>);
|
||||
// Usage: Cubical/Prismoidal Geometry
|
||||
// reorient(anchor, spin, [orient], size, [size2], [shift], [cp], [offset], [anchors], [p]);
|
||||
// reorient(anchor, spin, <orient>, size, <size2>, <shift>, <cp>, <offset>, <anchors>, <p>);
|
||||
// Usage: Cylindrical Geometry
|
||||
// reorient(anchor, spin, [orient], r|d, l, [offset], [axis], [cp], [anchors], [p]);
|
||||
// reorient(anchor, spin, <orient>, r|d, l, <offset>, <axis>, <cp>, <anchors>, <p>);
|
||||
// Usage: Conical Geometry
|
||||
// reorient(anchor, spin, [orient], r1|d1, r2|d2, l, [axis], [cp], [offset], [anchors], [p]);
|
||||
// reorient(anchor, spin, <orient>, r1|d1, r2|d2, l, <axis>, <cp>, <offset>, <anchors>, <p>);
|
||||
// Usage: Spheroid/Ovoid Geometry
|
||||
// reorient(anchor, spin, [orient], r|d, [cp], [offset], [anchors], [p]);
|
||||
// reorient(anchor, spin, <orient>, r|d, <cp>, <offset>, <anchors>, <p>);
|
||||
// Usage: VNF Geometry
|
||||
// reorient(anchor, spin, [orient], vnf, [extent], [cp], [offset], [anchors], [p]);
|
||||
// reorient(anchor, spin, <orient>, vnf, <extent>, <cp>, <offset>, <anchors>, <p>);
|
||||
//
|
||||
// Description:
|
||||
// Given anchor, spin, orient, and general geometry info for a managed volume, this calculates
|
||||
|
@ -723,21 +723,21 @@ function reorient(
|
|||
// Module: attachable()
|
||||
//
|
||||
// Usage: Square/Trapezoid Geometry
|
||||
// attachable(anchor, spin, [orient], two_d, size, [size2], [shift], [cp], [offset], [anchors] ...
|
||||
// attachable(anchor, spin, two_d, size, <size2>, <shift>, <cp>, <offset>, <anchors> ...
|
||||
// Usage: Circle/Oval Geometry
|
||||
// attachable(anchor, spin, [orient], two_d, r|d, [cp], [offset], [anchors]) ...
|
||||
// attachable(anchor, spin, two_d, r|d, <cp>, <offset>, <anchors>) ...
|
||||
// Usage: 2D Path/Polygon Geometry
|
||||
// attachable(anchor, spin, [orient], two_d, path, [extent], [cp], [offset], [anchors] ...
|
||||
// attachable(anchor, spin, two_d, path, <extent>, <cp>, <offset>, <anchors> ...
|
||||
// Usage: Cubical/Prismoidal Geometry
|
||||
// attachable(anchor, spin, [orient], size, [size2], [shift], [cp], [offset], [anchors] ...
|
||||
// attachable(anchor, spin, <orient>, size, <size2>, <shift>, <cp>, <offset>, <anchors> ...
|
||||
// Usage: Cylindrical Geometry
|
||||
// attachable(anchor, spin, [orient], r|d, l, [axis], [cp], [offset], [anchors]) ...
|
||||
// attachable(anchor, spin, <orient>, r|d, l, <axis>, <cp>, <offset>, <anchors>) ...
|
||||
// Usage: Conical Geometry
|
||||
// attachable(anchor, spin, [orient], r1|d1, r2|d2, l, [axis], [cp], [offset], [anchors]) ...
|
||||
// attachable(anchor, spin, <orient>, r1|d1, r2|d2, l, <axis>, <cp>, <offset>, <anchors>) ...
|
||||
// Usage: Spheroid/Ovoid Geometry
|
||||
// attachable(anchor, spin, [orient], r|d, [cp], [offset], [anchors]) ...
|
||||
// attachable(anchor, spin, <orient>, r|d, <cp>, <offset>, <anchors>) ...
|
||||
// Usage: VNF Geometry
|
||||
// attachable(anchor, spin, [orient], vnf, [extent], [cp], [offset], [anchors]) ...
|
||||
// attachable(anchor, spin, <orient>, vnf, <extent>, <cp>, <offset>, <anchors>) ...
|
||||
//
|
||||
// Description:
|
||||
// Manages the anchoring, spin, orientation, and attachments for a 3D volume or 2D area.
|
||||
|
@ -969,8 +969,8 @@ module position(from)
|
|||
|
||||
// Module: attach()
|
||||
// Usage:
|
||||
// attach(from, [overlap]) ...
|
||||
// attach(from, to, [overlap]) ...
|
||||
// attach(from, <overlap>) ...
|
||||
// attach(from, to, <overlap>) ...
|
||||
// Description:
|
||||
// Attaches children to a parent object at an anchor point and orientation.
|
||||
// Attached objects will be overlapped into the parent object by a little bit,
|
||||
|
@ -1012,7 +1012,7 @@ module attach(from, to=undef, overlap=undef, norot=false)
|
|||
|
||||
// Module: face_profile()
|
||||
// Usage:
|
||||
// face_profile(faces=[], convexity=10, r, d) ...
|
||||
// face_profile(faces, r, d, <convexity>) ...
|
||||
// Description:
|
||||
// Given a 2D edge profile, extrudes it into a mask for all edges and corners bounding each given face.
|
||||
// Arguments:
|
||||
|
@ -1032,7 +1032,7 @@ module face_profile(faces=[], r, d, convexity=10) {
|
|||
|
||||
// Module: edge_profile()
|
||||
// Usage:
|
||||
// edge_profile([edges], [except], [convexity]) ...
|
||||
// edge_profile(<edges>, <except>, <convexity>) ...
|
||||
// Description:
|
||||
// Takes a 2D mask shape and attaches it to the selected edges, with the appropriate orientation
|
||||
// and extruded length to be `diff()`ed away, to give the edge a matching profile.
|
||||
|
@ -1082,7 +1082,7 @@ module edge_profile(edges=EDGES_ALL, except=[], convexity=10) {
|
|||
|
||||
// Module: corner_profile()
|
||||
// Usage:
|
||||
// corner_profile([corners], [except], [convexity]) ...
|
||||
// corner_profile(<corners>, <except>, <convexity>) ...
|
||||
// Description:
|
||||
// Takes a 2D mask shape, rotationally extrudes and converts it into a corner mask, and attaches it
|
||||
// to the selected corners with the appropriate orientation. Tags it as a "mask" to allow it to be
|
||||
|
@ -1144,7 +1144,7 @@ module corner_profile(corners=CORNERS_ALL, except=[], r, d, convexity=10) {
|
|||
|
||||
// Module: edge_mask()
|
||||
// Usage:
|
||||
// edge_mask([edges], [except]) ...
|
||||
// edge_mask(<edges>, <except>) ...
|
||||
// Description:
|
||||
// Takes a 3D mask shape, and attaches it to the given edges, with the
|
||||
// appropriate orientation to be `diff()`ed away.
|
||||
|
@ -1186,7 +1186,7 @@ module edge_mask(edges=EDGES_ALL, except=[]) {
|
|||
|
||||
// Module: corner_mask()
|
||||
// Usage:
|
||||
// corner_mask([corners], [except]) ...
|
||||
// corner_mask(<corners>, <except>) ...
|
||||
// Description:
|
||||
// Takes a 3D mask shape, and attaches it to the given corners, with the appropriate
|
||||
// orientation to be `diff()`ed away. The 3D corner mask shape should be designed to
|
||||
|
@ -1305,8 +1305,8 @@ module show(tags="")
|
|||
|
||||
// Module: diff()
|
||||
// Usage:
|
||||
// diff(neg, [keep]) ...
|
||||
// diff(neg, pos, [keep]) ...
|
||||
// diff(neg, <keep>) ...
|
||||
// diff(neg, pos, <keep>) ...
|
||||
// Description:
|
||||
// If `neg` is given, takes the union of all children with tags that are in `neg`, and differences
|
||||
// them from the union of all children with tags in `pos`. If `pos` is not given, then all items in
|
||||
|
@ -1363,8 +1363,8 @@ module diff(neg, pos=undef, keep=undef)
|
|||
|
||||
// Module: intersect()
|
||||
// Usage:
|
||||
// intersect(a, [keep]) ...
|
||||
// intersect(a, b, [keep]) ...
|
||||
// intersect(a, <keep>) ...
|
||||
// intersect(a, b, <keep>) ...
|
||||
// Description:
|
||||
// If `a` is given, takes the union of all children with tags that are in `a`, and `intersection()`s
|
||||
// them with the union of all children with tags in `b`. If `b` is not given, then the union of all
|
||||
|
|
26
debug.scad
26
debug.scad
|
@ -274,7 +274,7 @@ function standard_anchors(two_d=false) = [
|
|||
|
||||
// Module: anchor_arrow()
|
||||
// Usage:
|
||||
// anchor_arrow([s], [color], [flag]);
|
||||
// anchor_arrow(<s>, <color>, <flag>);
|
||||
// Description:
|
||||
// Show an anchor orientation arrow.
|
||||
// Arguments:
|
||||
|
@ -303,7 +303,7 @@ module anchor_arrow(s=10, color=[0.333,0.333,1], flag=true, $tags="anchor-arrow"
|
|||
|
||||
// Module: anchor_arrow2d()
|
||||
// Usage:
|
||||
// anchor_arrow2d([s], [color], [flag]);
|
||||
// anchor_arrow2d(<s>, <color>, <flag>);
|
||||
// Description:
|
||||
// Show an anchor orientation arrow.
|
||||
// Arguments:
|
||||
|
@ -312,7 +312,7 @@ module anchor_arrow(s=10, color=[0.333,0.333,1], flag=true, $tags="anchor-arrow"
|
|||
// Example:
|
||||
// anchor_arrow2d(s=20);
|
||||
module anchor_arrow2d(s=15, color=[0.333,0.333,1], $tags="anchor-arrow") {
|
||||
noop() stroke([[0,0],[0,s]], width=s/10, endcap1="butt", endcap2="arrow2");
|
||||
noop() color(color) stroke([[0,0],[0,s]], width=s/10, endcap1="butt", endcap2="arrow2");
|
||||
}
|
||||
|
||||
|
||||
|
@ -341,18 +341,28 @@ module show_internal_anchors(opacity=0.2) {
|
|||
// Example(FlatSpin):
|
||||
// cube(50, center=true) show_anchors();
|
||||
module show_anchors(s=10, std=true, custom=true) {
|
||||
check = assert($parent_geom != undef) 1;
|
||||
two_d = attach_geom_2d($parent_geom);
|
||||
if (std) {
|
||||
for (anchor=standard_anchors()) {
|
||||
attach(anchor) anchor_arrow(s);
|
||||
for (anchor=standard_anchors(two_d=two_d)) {
|
||||
if(two_d) {
|
||||
attach(anchor) anchor_arrow2d(s);
|
||||
} else {
|
||||
attach(anchor) anchor_arrow(s);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (custom) {
|
||||
for (anchor=select($parent_geom,-1)) {
|
||||
attach(anchor[0]) {
|
||||
anchor_arrow(s, color="cyan");
|
||||
recolor("black")
|
||||
if(two_d) {
|
||||
anchor_arrow2d(s, color="cyan");
|
||||
} else {
|
||||
anchor_arrow(s, color="cyan");
|
||||
}
|
||||
color("black")
|
||||
noop($tags="anchor-arrow") {
|
||||
xrot(90) {
|
||||
xrot(two_d? 0 : 90) {
|
||||
up(s/10) {
|
||||
linear_extrude(height=0.01, convexity=12, center=true) {
|
||||
text(text=anchor[0], size=s/4, halign="center", valign="center");
|
||||
|
|
|
@ -15,7 +15,7 @@ done
|
|||
if [[ "$FILES" != "" ]]; then
|
||||
PREVIEW_LIBS="$FILES"
|
||||
else
|
||||
PREVIEW_LIBS="Transforms Distributors Basic_Shapes FractalTree"
|
||||
PREVIEW_LIBS="Transforms Distributors Shapes2d Shapes3d Paths FractalTree"
|
||||
fi
|
||||
|
||||
dir="$(basename $PWD)"
|
||||
|
|
29
shapes.scad
29
shapes.scad
|
@ -1159,6 +1159,14 @@ module torus(
|
|||
// Creates a spheroid object, with support for anchoring and attachments.
|
||||
// This is a drop-in replacement for the built-in `sphere()` module.
|
||||
// When called as a function, returns a [VNF](vnf.scad) for a spheroid.
|
||||
// The exact triangulation of this spheroid can be controlled via the `style=`
|
||||
// argument, where the value can be one of `"orig"`, `"aligned"`, `"stagger"`,
|
||||
// `"octa"`, or `"icosa"`:
|
||||
// - `style="orig"` constructs a sphere the same way that the OpenSCAD `sphere()` built-in does.
|
||||
// - `style="aligned"` constructs a sphere where, if `$fn` is a multiple of 4, it has vertices at all axis maxima and minima. ie: its bounding box is exactly the sphere diameter in length on all three axes. This is the default.
|
||||
// - `style="stagger"` forms a sphere where all faces are triangular, but the top and bottom poles have thinner triangles.
|
||||
// - `style="octa"` forms a sphere by subdividing an octahedron (8-sided platonic solid). This makes more uniform faces over the entirety of the sphere, and guarantees the bounding box is the sphere diameter in size on all axes. The effective `$fn` value is quantized to a multiple of 4, though. This is used in constructing rounded corners for various other shapes.
|
||||
// - `style="icosa"` forms a sphere by subdividing an icosahedron (20-sided platonic solid). This makes even more uniform faces over the entirety of the sphere. The effective `$fn` value is quantized to a multiple of 5, though.
|
||||
// Arguments:
|
||||
// r = Radius of the spheroid.
|
||||
// d = Diameter of the spheroid.
|
||||
|
@ -1200,21 +1208,16 @@ module spheroid(r, d, circum=false, style="aligned", anchor=CENTER, spin=0, orie
|
|||
{
|
||||
r = get_radius(r=r, d=d, dflt=1);
|
||||
sides = segs(r);
|
||||
vsides = ceil(sides/2);
|
||||
attachable(anchor,spin,orient, r=r) {
|
||||
if (style=="orig") {
|
||||
rotate_extrude(convexity=2,$fn=sides) {
|
||||
difference() {
|
||||
oval(r=r, circum=circum, realign=true, $fn=sides);
|
||||
left(r) square(2*r,center=true);
|
||||
}
|
||||
}
|
||||
} else if (style=="aligned") {
|
||||
rotate_extrude(convexity=2,$fn=sides) {
|
||||
difference() {
|
||||
oval(r=r, circum=circum, $fn=sides);
|
||||
left(r) square(2*r,center=true);
|
||||
}
|
||||
}
|
||||
merids = [ for (i=[0:1:vsides]) 90-(i+0.5)*180/(vsides+1) ];
|
||||
path = [
|
||||
let(a = merids[0]) [0, r*sin(a)],
|
||||
for (a=merids) r * [cos(a), sin(a)],
|
||||
let(a = select(merids,-1)) [0, r*sin(a)]
|
||||
];
|
||||
rotate_extrude(convexity=2,$fn=sides) polygon(path);
|
||||
} else {
|
||||
vnf = spheroid(r=r, circum=circum, style=style);
|
||||
vnf_polyhedron(vnf, convexity=2);
|
||||
|
|
|
@ -1250,7 +1250,7 @@ module trapezoid(h, w1, w2, angle, shift=0, anchor=CENTER, spin=0) {
|
|||
w2 = !is_undef(w2)? w2 : w1 - 2*(adj_ang_to_opp(h, angle) + shift);
|
||||
assert(w1>=0 && w2>=0 && h>0, "Degenerate trapezoid geometry.");
|
||||
path = [[w1/2,-h/2], [-w1/2,-h/2], [-w2/2+shift,h/2], [w2/2+shift,h/2]];
|
||||
attachable(anchor,spin, two_d=true, size=[w1,h], size2=w2) {
|
||||
attachable(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift) {
|
||||
polygon(path);
|
||||
children();
|
||||
}
|
||||
|
@ -1325,8 +1325,8 @@ function teardrop2d(r, d, ang=45, cap_h, anchor=CENTER, spin=0) =
|
|||
// Arguments:
|
||||
// r = The radius of the end circles.
|
||||
// d = The diameter of the end circles.
|
||||
// spread = The distance between the centers of the end circles.
|
||||
// tangent = The angle in degrees of the tangent point for the joining arcs, measured away from the Y axis.
|
||||
// spread = The distance between the centers of the end circles. Default: 10
|
||||
// tangent = The angle in degrees of the tangent point for the joining arcs, measured away from the Y axis. Default: 30
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Examples(2D):
|
||||
|
|
504
tutorials/Paths.md
Normal file
504
tutorials/Paths.md
Normal file
|
@ -0,0 +1,504 @@
|
|||
# Paths, Polygons and Regions Tutorial
|
||||
|
||||
## Paths
|
||||
A number of advanced features in BOSL2 rely on paths, which are just ordered lists of points.
|
||||
|
||||
First-off, some terminology:
|
||||
- A 2D point is a vectors of X and Y axis position values. ie: `[3,4]` or `[7,-3]`.
|
||||
- A 3D point is a vectors of X, Y and Z axis position values. ie: `[3,4,2]` or `[-7,5,3]`.
|
||||
- A 2D path is simply a list of two or more 2D points. ie: `[[5,7], [1,-5], [-5,6]]`
|
||||
- A 3D path is simply a list of two or more 3D points. ie: `[[5,7,-1], [1,-5,3], [-5,6,1]]`
|
||||
- A polygon is a 2D (or planar 3D) path where the last point is assumed to connect to the first point.
|
||||
- A region is a list of 2D polygons, where each polygon is XORed against all the others. ie: if one polygon is inside another, it makes a hole in the first polygon.
|
||||
|
||||
### Stroke
|
||||
A path can be hard to visualize, since it's just a bunch of numbers in the source code.
|
||||
One way to see the path is to pass it to `polygon()`:
|
||||
|
||||
```openscad-2D
|
||||
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
|
||||
polygon(path);
|
||||
```
|
||||
|
||||
Sometimes, however, it's easier to see just the path itself. For this, you can use the `stroke()` module.
|
||||
At its most basic, `stroke()` just shows the path's line segments:
|
||||
|
||||
```openscad-2D
|
||||
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
|
||||
stroke(path);
|
||||
```
|
||||
|
||||
You can vary the width of the drawn path with the `width=` argument:
|
||||
|
||||
```openscad-2D
|
||||
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
|
||||
stroke(path, width=3);
|
||||
```
|
||||
|
||||
You can vary the line length along the path by giving a list of widths, one per point:
|
||||
|
||||
```openscad-2D
|
||||
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
|
||||
stroke(path, width=[3,2,1,2,3]);
|
||||
```
|
||||
|
||||
If a path is meant to represent a closed polygon, you can use `closed=true` to show it that way:
|
||||
|
||||
```openscad-2D
|
||||
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
|
||||
stroke(path, closed=true);
|
||||
```
|
||||
|
||||
The ends of the drawn path are normally capped with a "round" endcap, but there are other options:
|
||||
|
||||
```openscad-2D
|
||||
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
|
||||
stroke(path, endcaps="round");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
|
||||
stroke(path, endcaps="butt");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
|
||||
stroke(path, endcaps="line");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
|
||||
stroke(path, endcaps="tail");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
|
||||
stroke(path, endcaps="arrow2");
|
||||
```
|
||||
|
||||
For more standard supported endcap options, see the docs for [`stroke()`](shapes2d.scad#stroke).
|
||||
|
||||
The start and ending endcaps can be specified individually or separately, using `endcap1=` and `endcap2=`:
|
||||
|
||||
```openscad-2D
|
||||
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
|
||||
stroke(path, endcap2="arrow2");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
|
||||
stroke(path, endcap1="butt", endcap2="arrow2");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
|
||||
stroke(path, endcap1="tail", endcap2="arrow");
|
||||
```
|
||||
|
||||
The size of the endcaps will be relative to the width of the line where the endcap is to be placed:
|
||||
|
||||
```openscad-2D
|
||||
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
|
||||
widths = [1, 1.25, 1.5, 1.75, 2];
|
||||
stroke(path, width=widths, endcaps="arrow2");
|
||||
```
|
||||
|
||||
If none of the standard endcaps are useful to you, it is possible to design your own, simply by
|
||||
passing a path to the `endcaps=`, `endcap1=`, or `endcap2=` arguments. You may also need to give
|
||||
`trim=` to tell it how far back to trim the main line, so it renders nicely. The values in the
|
||||
endcap polygon, and in the `trim=` argument are relative to the line width. A value of 1 is one
|
||||
line width size.
|
||||
|
||||
Untrimmed:
|
||||
|
||||
```openscad-2D
|
||||
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
|
||||
dblarrow = [[0,0], [2,-3], [0.5,-2.3], [2,-4], [0.5,-3.5], [-0.5,-3.5], [-2,-4], [-0.5,-2.3], [-2,-3]];
|
||||
stroke(path, endcaps=dblarrow);
|
||||
```
|
||||
|
||||
Trimmed:
|
||||
|
||||
```openscad-2D
|
||||
path = [[0,0], [-10,10], [0,20], [10,20], [10,10]];
|
||||
dblarrow = [[0,0], [2,-3], [0.5,-2.3], [2,-4], [0.5,-3.5], [-0.5,-3.5], [-2,-4], [-0.5,-2.3], [-2,-3]];
|
||||
stroke(path, trim=3.5, endcaps=dblarrow);
|
||||
```
|
||||
|
||||
### Standard 2D Shape Polygons
|
||||
BOSL2 will let you get the perimeter polygon for almost all of the standard 2D shapes simply by calling them like a function:
|
||||
|
||||
```openscad-2D
|
||||
path = square(40, center=true);
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = rect([40,30], rounding=5, center=true);
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = trapezoid(w1=40, w2=20, h=30);
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = circle(d=50);
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = oval(d=[50,30]);
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = pentagon(d=50);
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = star(n=5, step=2, d=50);
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
### Arcs
|
||||
Often, when you are constructing a path, you will want to add an arc. The `arc()` command lets you do that:
|
||||
|
||||
```openscad-2D
|
||||
path = arc(r=30, angle=120);
|
||||
stroke(path, endcap2="arrow2");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = arc(d=60, angle=120);
|
||||
stroke(path, endcap2="arrow2");
|
||||
```
|
||||
|
||||
If you give the `N=` argument, you can control exactly how many points the arc is divided into:
|
||||
|
||||
```openscad-2D
|
||||
path = arc(N=5, r=30, angle=120);
|
||||
stroke(path, endcap2="arrow2");
|
||||
```
|
||||
|
||||
With the `start=` argument, you can start the arc somewhere other than the X+ axis:
|
||||
|
||||
```openscad-2D
|
||||
path = arc(start=45, r=30, angle=120);
|
||||
stroke(path, endcap2="arrow2");
|
||||
```
|
||||
|
||||
Alternatively, you can give starting and ending angles in a list in the `angle=` argument:
|
||||
|
||||
```openscad-2D
|
||||
path = arc(angle=[120,45], r=30);
|
||||
stroke(path, endcap2="arrow2");
|
||||
```
|
||||
|
||||
The `cp=` argument lets you center the arc somewhere other than the origin:
|
||||
|
||||
```openscad-2D
|
||||
path = arc(cp=[10,0], r=30, angle=120);
|
||||
stroke(path, endcap2="arrow2");
|
||||
```
|
||||
|
||||
The arc can also be given by three points on the arc:
|
||||
|
||||
```openscad-2D
|
||||
pts = [[-15,10],[0,20],[35,-5]];
|
||||
path = arc(points=pts);
|
||||
stroke(path, endcap2="arrow2");
|
||||
```
|
||||
|
||||
|
||||
### Turtle Graphics
|
||||
Another way you can create a path is using the `turtle()` command. It implements a simple path
|
||||
description language that is similar to LOGO Turtle Graphics. The concept is that you have a virtial
|
||||
turtle or cursor walking a path. It can "move" forward or backward, or turn "left" or "right" in
|
||||
place:
|
||||
|
||||
```openscad-2D
|
||||
path = turtle([
|
||||
"move", 10,
|
||||
"left", 90,
|
||||
"move", 20,
|
||||
"left", 135,
|
||||
"move", 10*sqrt(2),
|
||||
"right", 90,
|
||||
"move", 10*sqrt(2),
|
||||
"left", 135,
|
||||
"move", 20
|
||||
]);
|
||||
stroke(path, endcap2="arrow2");
|
||||
```
|
||||
|
||||
The position and the facing of the turtle/cursor updates after each command. The motion and turning
|
||||
commands can also have default distances or angles given:
|
||||
|
||||
```openscad-2D
|
||||
path = turtle([
|
||||
"angle",360/6,
|
||||
"length",10,
|
||||
"move","turn",
|
||||
"move","turn",
|
||||
"move","turn",
|
||||
"move","turn",
|
||||
"move"
|
||||
]);
|
||||
stroke(path, endcap2="arrow2");
|
||||
```
|
||||
|
||||
You can use "scale" to relatively scale up the default motion length:
|
||||
|
||||
```openscad-2D
|
||||
path = turtle([
|
||||
"angle",360/6,
|
||||
"length",10,
|
||||
"move","turn",
|
||||
"move","turn",
|
||||
"scale",2,
|
||||
"move","turn",
|
||||
"move","turn",
|
||||
"scale",0.5,
|
||||
"move"
|
||||
]);
|
||||
stroke(path, endcap2="arrow2");
|
||||
```
|
||||
|
||||
Sequences of commands can be repeated using the "repeat" command:
|
||||
|
||||
```openscad-2D
|
||||
path=turtle([
|
||||
"angle",360/5,
|
||||
"length",10,
|
||||
"repeat",5,["move","turn"]
|
||||
]);
|
||||
stroke(path, endcap2="arrow2");
|
||||
```
|
||||
|
||||
More complicated commands also exist, including those that form arcs:
|
||||
|
||||
```openscad-2D
|
||||
path = turtle([
|
||||
"move", 10,
|
||||
"left", 90,
|
||||
"move", 20,
|
||||
"arcleft", 10, 180,
|
||||
"move", 20
|
||||
]);
|
||||
stroke(path, endcap2="arrow2");
|
||||
```
|
||||
|
||||
A comprehensive list of supported turtle commands can be found in the docs for [`turtle()`](shapes2d.scad#turtle).
|
||||
|
||||
### Transforming Paths and Polygons
|
||||
To translate a path, you can just pass it to the `move()` (or up/down/left/right/fwd/back) function in the `p=` argument:
|
||||
|
||||
```openscad-2D
|
||||
path = move([-15,-30], p=square(50,center=true));
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = fwd(30, p=square(50,center=true));
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = left(30, p=square(50,center=true));
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
To scale a path, you can just pass it to the `scale()` (or [xyz]scale) function in the `p=` argument:
|
||||
|
||||
```openscad-2D
|
||||
path = scale([1.5,0.75], p=square(50,center=true));
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = xscale(1.5, p=square(50,center=true));
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = yscale(1.5, p=square(50,center=true));
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
To rotate a path, just can pass it to the `rot()` (or [xyz]rot) function in the `p=` argument:
|
||||
|
||||
```openscad-2D
|
||||
path = rot(30, p=square(50,center=true));
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = zrot(30, p=square(50,center=true));
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
To mirror a path, just can pass it to the `mirror()` (or [xyz]flip) function in the `p=` argument:
|
||||
|
||||
```openscad-2D
|
||||
path = mirror([1,1], p=trapezoid(w1=40, w2=10, h=25));
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = xflip(p=trapezoid(w1=40, w2=10, h=25));
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
path = yflip(p=trapezoid(w1=40, w2=10, h=25));
|
||||
stroke(path, closed=true, endcap2="arrow2");
|
||||
```
|
||||
|
||||
You can get raw transformation matrices for various transformations by calling them like a function without a `p=` argument:
|
||||
|
||||
```openscad-2D
|
||||
mat = move([5,10,0]);
|
||||
multmatrix(mat) square(50,center=true);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
mat = scale([1.5,0.75,1]);
|
||||
multmatrix(mat) square(50,center=true);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
mat = rot(30);
|
||||
multmatrix(mat) square(50,center=true);
|
||||
```
|
||||
|
||||
Raw transformation matrices can be multiplied together to precalculate a compound transformation. For example, to scale a shape, then rotate it, then translate the result, you can do something like:
|
||||
|
||||
```openscad-2D
|
||||
mat = move([5,10,0]) * rot(30) * scale([1.5,0.75,1]);
|
||||
multmatrix(mat) square(50,center=true);
|
||||
```
|
||||
|
||||
To apply a compound transformation matrix to a path, you can use the `apply()` function:
|
||||
|
||||
```openscad-2D
|
||||
mat = move([5,10]) * rot(30, planar=true) * scale([1.5,0.75]);
|
||||
path = square(50,center=true);
|
||||
tpath = apply(mat, path);
|
||||
stroke(tpath, endcap2="arrow2");
|
||||
```
|
||||
|
||||
|
||||
### Regions
|
||||
A polygon is good to denote a single closed 2D shape with no holes in it. For more complex 2D
|
||||
shapes, you will need to use regions. A region is a list of 2D polygons, where each polygon is
|
||||
XORed against all the others. You can display a region using the `region()` module.
|
||||
|
||||
If you have a region with one polygon fully inside another, it makes a hole:
|
||||
|
||||
```openscad-2D
|
||||
rgn = [square(50,center=true), circle(d=30)];
|
||||
region(rgn);
|
||||
```
|
||||
|
||||
If you have a region with multiple polygons that are not contained by any others, they make multiple discontiguous shapes:
|
||||
|
||||
```openscad-2D
|
||||
rgn = [
|
||||
move([-30, 20], p=square(20,center=true)),
|
||||
move([ 0,-20], p=trapezoid(w1=20, w2=10, h=20)),
|
||||
move([ 30, 20], p=square(20,center=true)),
|
||||
];
|
||||
region(rgn);
|
||||
```
|
||||
|
||||
Region polygons can be nested abitrarily deep, in multiple discontiguous shapes:
|
||||
|
||||
```openscad-2D
|
||||
rgn = [
|
||||
for (d=[50:-10:10]) left(30, p=circle(d=d)),
|
||||
for (d=[50:-10:10]) right(30, p=circle(d=d))
|
||||
];
|
||||
region(rgn);
|
||||
```
|
||||
|
||||
A region with crossing polygons is somewhat poorly formed, but the intersection(s) of the polygons become holes:
|
||||
|
||||
```openscad-2D
|
||||
rgn = [
|
||||
left(15, p=circle(d=50)),
|
||||
right(15, p=circle(d=50))
|
||||
];
|
||||
region(rgn);
|
||||
```
|
||||
|
||||
### Boolean Region Geometry
|
||||
Similarly to how OpenSCAD can perform operations like union/difference/intersection/offset on shape geometry,
|
||||
the BOSL2 library lets you perform those same operations on regions:
|
||||
|
||||
```openscad-2D
|
||||
rgn1 = [for (d=[40:-10:10]) circle(d=d)];
|
||||
rgn2 = [square([60,12], center=true)];
|
||||
rgn = union(rgn1, rgn2);
|
||||
region(rgn);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
rgn1 = [for (d=[40:-10:10]) circle(d=d)];
|
||||
rgn2 = [square([60,12], center=true)];
|
||||
rgn = difference(rgn1, rgn2);
|
||||
region(rgn);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
rgn1 = [for (d=[40:-10:10]) circle(d=d)];
|
||||
rgn2 = [square([60,12], center=true)];
|
||||
rgn = intersection(rgn1, rgn2);
|
||||
region(rgn);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
rgn1 = [for (d=[40:-10:10]) circle(d=d)];
|
||||
rgn2 = [square([60,12], center=true)];
|
||||
rgn = exclusive_or(rgn1, rgn2);
|
||||
region(rgn);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
orig_rgn = [star(n=5, step=2, d=50)];
|
||||
rgn = offset(orig_rgn, r=-3, closed=true);
|
||||
color("blue") region(orig_rgn);
|
||||
region(rgn);
|
||||
```
|
||||
|
||||
You can use regions for several useful things. If you wanted a grid of holes in your object that
|
||||
form the shape given by a region, you can do that with `grid2d()`:
|
||||
|
||||
```openscad-3D
|
||||
rgn = [
|
||||
circle(d=100),
|
||||
star(n=5,step=2,d=100,spin=90)
|
||||
];
|
||||
difference() {
|
||||
cyl(h=5, d=120);
|
||||
grid2d(size=[120,120], spacing=[4,4], inside=rgn) cyl(h=10,d=2);
|
||||
}
|
||||
```
|
||||
|
||||
You can also sweep a region through 3-space to make a solid:
|
||||
|
||||
```openscad-3D
|
||||
$fa=1; $fs=1;
|
||||
rgn = [ for (d=[50:-10:10]) circle(d=d) ];
|
||||
tforms = [
|
||||
for (a=[90:-5:0]) xrot(a, cp=[0,-70]),
|
||||
for (a=[0:5:90]) xrot(a, cp=[0,70]),
|
||||
move([0,150,-70]) * xrot(90),
|
||||
];
|
||||
sweep(rgn, tforms, closed=false, caps=true);
|
||||
```
|
||||
|
||||
|
||||
|
553
tutorials/Shapes2d.md
Normal file
553
tutorials/Shapes2d.md
Normal file
|
@ -0,0 +1,553 @@
|
|||
# 2D Shapes Tutorial
|
||||
|
||||
## Primitives
|
||||
There are two built-in 2D primitive shapes that OpenSCAD provides: `square()`, and `circle()`.
|
||||
The BOSL2 library provides alternative to these shapes so that they support more features,
|
||||
and more ways to simply reorient them.
|
||||
|
||||
|
||||
### 2D Squares
|
||||
You can still use the built-in `square()` in the familiar ways that OpenSCAD provides:
|
||||
|
||||
```openscad-2D
|
||||
square(100, center=false);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
square(100, center=true);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
square([60,40], center=true);
|
||||
```
|
||||
|
||||
The BOSL2 library provides an enhanced equivalent to `square()` called `rect()`.
|
||||
You can use it in the same way you use `square()`, but it also provides
|
||||
extended functionality. For example, it allows you to round the corners:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], center=true, rounding=10);
|
||||
```
|
||||
|
||||
Or chamfer them:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], center=true, chamfer=10);
|
||||
```
|
||||
|
||||
You can even specify *which* corners get rounded or chamfered. If you pass a
|
||||
list of four size numbers to the `rounding=` or `chamfer=` arguments, it will
|
||||
give each corner its own size. In order, it goes from the back-right (quadrant I)
|
||||
corner, counter-clockwise around to the back-left (quadrant II) corner, to the
|
||||
forward-left (quadrant III) corner, to the forward-right (quadrant IV) corner:
|
||||
|
||||
```openscad-2DImgOnly
|
||||
module text3d(text) color("black") text(
|
||||
text=text, font="Times", size=10,
|
||||
halign="center", valign="center"
|
||||
);
|
||||
translate([ 50, 50]) text3d("I");
|
||||
translate([-50, 50]) text3d("II");
|
||||
translate([-50,-50]) text3d("III");
|
||||
translate([ 50,-50]) text3d("IV");
|
||||
rect([90,80], center=true);
|
||||
```
|
||||
|
||||
If a size is given as `0`, then there is no rounding and/or chamfering for
|
||||
that quadrant's corner:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], center=true, rounding=[0,5,10,15]);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], center=true, chamfer=[0,5,10,15]);
|
||||
```
|
||||
|
||||
You can give both `rounding=` and `chamfer=` arguments to mix rounding and
|
||||
chamfering, but only if you specify per corner. If you want a rounding in
|
||||
a corner, specify a 0 chamfer for that corner, and vice versa:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], center=true, rounding=[5,0,10,0], chamfer=[0,5,0,15]);
|
||||
```
|
||||
|
||||
#### Anchors and Spin
|
||||
Another way that `rect()` is enhanced over `square()`, is that you can anchor,
|
||||
spin and attach it.
|
||||
|
||||
The `anchor=` argument is an alternative to `center=`, which allows more
|
||||
alignment options. It takes a vector as a value, pointing roughly towards
|
||||
the side or corner you want to align to the origin. For example, to align
|
||||
the center of the back edge to the origin, set the anchor to `[0,1]`:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], anchor=[0,1]);
|
||||
```
|
||||
|
||||
To align the front right corner to the origin:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], anchor=[1,-1]);
|
||||
```
|
||||
|
||||
To center:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], anchor=[0,0]);
|
||||
```
|
||||
|
||||
To make it clearer when giving vectors, there are several standard vector
|
||||
constants defined:
|
||||
|
||||
Constant | Direction | Value
|
||||
-------- | --------- | -----------
|
||||
`LEFT` | X- | `[-1, 0, 0]`
|
||||
`RIGHT` | X+ | `[ 1, 0, 0]`
|
||||
`FRONT`/`FORWARD`/`FWD` | Y- | `[ 0,-1, 0]`
|
||||
`BACK` | Y+ | `[ 0, 1, 0]`
|
||||
`BOTTOM`/`BOT`/`BTM`/`DOWN` | Z- | `[ 0, 0,-1]` (3D only.)
|
||||
`TOP`/`UP` | Z+ | `[ 0, 0, 1]` (3D only.)
|
||||
`CENTER`/`CTR` | Centered | `[ 0, 0, 0]`
|
||||
|
||||
Note that even though these are 3D vectors, you can use most of them,
|
||||
(except `UP`/`DOWN`, of course) for anchors in 2D shapes:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], anchor=BACK);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], anchor=CENTER);
|
||||
```
|
||||
|
||||
You can add vectors together to point to corners:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], anchor=FRONT+RIGHT);
|
||||
```
|
||||
|
||||
Finally, the `spin` argument can rotate the shape by a given number of degrees
|
||||
clockwise:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], anchor=CENTER, spin=30);
|
||||
```
|
||||
|
||||
Anchoring or centering is performed before the spin:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], anchor=BACK, spin=30);
|
||||
```
|
||||
|
||||
Anchor points double as attachment points, so that you can attach other shapes:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40],center=true)
|
||||
show_anchors();
|
||||
```
|
||||
|
||||
### 2D Circles and Ovals
|
||||
The built-in `circle()` primitive can be used as expected:
|
||||
|
||||
```openscad-2D
|
||||
circle(r=50);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
circle(d=100);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
circle(d=100, $fn=8);
|
||||
```
|
||||
|
||||
The BOSL2 library also provides an enhanced equivalent of `circle()` called `oval()`.
|
||||
You can use it in the same way you use `circle()`, but it also provides extended
|
||||
functionality. For example, it allows more control over its size and orientation.
|
||||
|
||||
Since a circle in OpenSCAD can only be approximated by a regular polygon with
|
||||
a number of straight sides, this can lead to size and shape inaccuracies.
|
||||
To counter this, the `realign=` and `circum=` arguments are also provided.
|
||||
|
||||
The `realign=` argument, if set `true`, rotates the `oval()` by half the angle
|
||||
between the sides:
|
||||
|
||||
```openscad-2D
|
||||
oval(d=100, $fn=8, realign=true);
|
||||
```
|
||||
|
||||
The `circum=` argument, if true, makes it so that the polygon forming the
|
||||
`oval()` circumscribes the ideal circle instead of inscribing it.
|
||||
|
||||
Inscribing the ideal circle:
|
||||
|
||||
```openscad-2D
|
||||
difference() {
|
||||
circle(d=100, $fn=360);
|
||||
oval(d=100, $fn=8);
|
||||
}
|
||||
```
|
||||
|
||||
Circumscribing the ideal circle:
|
||||
|
||||
```openscad-2D
|
||||
difference() {
|
||||
oval(d=100, $fn=8, circum=true);
|
||||
circle(d=100, $fn=360);
|
||||
}
|
||||
```
|
||||
|
||||
The `oval()` module, as its name suggests, can be given separate X and Y radii
|
||||
or diameters. To do this, just give `r=` or `d=` with a list of two radii or
|
||||
diameters:
|
||||
|
||||
```openscad-2D
|
||||
oval(r=[30,20]);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
oval(d=[60,40]);
|
||||
```
|
||||
|
||||
Another way that `oval()` is enhanced over `circle()`, is that you can anchor,
|
||||
spin and attach it.
|
||||
|
||||
```openscad-2D
|
||||
oval(r=50, anchor=BACK);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
oval(r=50, anchor=FRONT+RIGHT);
|
||||
```
|
||||
|
||||
Using spin on a circle may not make initial sense, until you remember that
|
||||
anchoring is performed before spin:
|
||||
|
||||
```openscad-2D
|
||||
oval(r=50, anchor=FRONT, spin=-30);
|
||||
```
|
||||
|
||||
|
||||
### Trapezoids
|
||||
|
||||
OpenSCAD doesn't provide a simple way to make 2D triangles, trapezoids, or parallelograms.
|
||||
The BOSL2 library can provide all of these shapes with the `trapezoid()` module.
|
||||
|
||||
To make a simple triangle, just make one of the widths zero:
|
||||
|
||||
```openscad-2D
|
||||
trapezoid(w1=50, w2=0, h=50);
|
||||
```
|
||||
|
||||
To make a right triangle, you need to use the `shift=` argument, to shift the back of the trapezoid along the X axis:
|
||||
|
||||
```openscad-2D
|
||||
trapezoid(w1=50, w2=0, h=50, shift=-25);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
trapezoid(w1=50, w2=0, h=50, shift=25);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
trapezoid(w1=0, w2=50, h=50, shift=-25);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
trapezoid(w1=0, w2=50, h=50, shift=25);
|
||||
```
|
||||
|
||||
You can make a trapezoid by specifying non-zero widths for both the front (`w1=`) and back (`w2=`):
|
||||
|
||||
```openscad-2D
|
||||
trapezoid(w1=30, w2=50, h=50);
|
||||
```
|
||||
|
||||
A parallelogram is just a matter of using the same width for front and back, with a shift along the X axis:
|
||||
|
||||
```openscad-2D
|
||||
trapezoid(w1=50, w2=50, shift=20, h=50);
|
||||
```
|
||||
|
||||
A quadrilateral can be made by having unequal, non-zero front (`w1=`) and back (`w2=`) widths, with the back shifted along the X axis:
|
||||
|
||||
```openscad-2D
|
||||
trapezoid(w1=50, w2=30, shift=20, h=50);
|
||||
```
|
||||
|
||||
You can use `anchor=` and `spin=`, just like with other attachable shapes. However, the anchor
|
||||
points are based on the side angles of the faces, and may not be where you expect them:
|
||||
|
||||
```openscad-2D
|
||||
trapezoid(w1=30, w2=50, h=50)
|
||||
show_anchors();
|
||||
```
|
||||
|
||||
### Regular N-Gons
|
||||
|
||||
OpenSCAD lets you make regular N-gons (pentagon, hexagon, etc) by using `circle()` with `$fn`.
|
||||
While this is concise, it may be less than obvious at first glance:
|
||||
|
||||
```openscad-2D
|
||||
circle(d=50, $fn=5);
|
||||
```
|
||||
|
||||
The BOSL2 library has modules that are named more clearly:
|
||||
|
||||
```openscad-2D
|
||||
pentagon(d=50);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
hexagon(d=50);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
octagon(d=50);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
regular_ngon(n=7, d=50);
|
||||
```
|
||||
|
||||
These modules also provide you with extra functionality.
|
||||
|
||||
They can be sized by side length:
|
||||
|
||||
```openscad-2D
|
||||
pentagon(side=20);
|
||||
```
|
||||
|
||||
They can be sized by circumscribed circle radius/diameter:
|
||||
|
||||
```openscad-2D
|
||||
pentagon(ir=25);
|
||||
pentagon(id=50);
|
||||
```
|
||||
|
||||
They can be realigned by half a side's angle:
|
||||
|
||||
```openscad-2D
|
||||
left(30) pentagon(d=50, realign=true);
|
||||
right(30) pentagon(d=50, realign=false);
|
||||
```
|
||||
|
||||
They can be rounded:
|
||||
|
||||
```openscad-2D
|
||||
pentagon(d=50, rounding=10);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
hexagon(d=50, rounding=10);
|
||||
```
|
||||
|
||||
They also have somewhat different attachment behavior:
|
||||
|
||||
```openscad-2D
|
||||
color("green") stroke(circle(d=50), closed=true);
|
||||
oval(d=50,$fn=5)
|
||||
attach(LEFT) color("blue") anchor_arrow2d();
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
pentagon(d=50)
|
||||
attach(LEFT) color("blue") anchor_arrow2d();
|
||||
```
|
||||
|
||||
You can use `anchor=` and `spin=`, just like with other attachable shapes. However, the anchor
|
||||
points are based on where the anchor vector would intersect the side of the N-gon, and may not
|
||||
be where you expect them:
|
||||
|
||||
```openscad-2D
|
||||
pentagon(d=50)
|
||||
show_anchors(custom=false);
|
||||
```
|
||||
|
||||
N-gons also have named anchor points for their sides and tips:
|
||||
|
||||
```openscad-2D
|
||||
pentagon(d=30)
|
||||
show_anchors(std=false);
|
||||
```
|
||||
|
||||
|
||||
### Stars
|
||||
|
||||
The BOSL2 library has stars as a basic supported shape. They can have any number of points.
|
||||
You can specify a star's shape by point count, inner and outer vertex radius/diameters:
|
||||
|
||||
```openscad-2D
|
||||
star(n=3, id=10, d=50);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
star(n=5, id=15, r=25);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
star(n=10, id=30, d=50);
|
||||
```
|
||||
|
||||
Or you can specify the star shape by point count and number of points to step:
|
||||
|
||||
```openscad-2D
|
||||
star(n=7, step=2, d=50);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
star(n=7, step=3, d=50);
|
||||
```
|
||||
|
||||
If the `realign=` argument is given a true value, then the star will be rotated by half a point angle:
|
||||
|
||||
```openscad-2D
|
||||
left(30) star(n=5, step=2, d=50);
|
||||
right(30) star(n=5, step=2, d=50, realign=true);
|
||||
```
|
||||
|
||||
The `align_tip=` argument can be given a vector so that you can align the first point in a specific direction:
|
||||
|
||||
```openscad-2D
|
||||
star(n=5, ir=15, or=30, align_tip=BACK+LEFT)
|
||||
attach("tip0") color("blue") anchor_arrow2d();
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
star(n=5, ir=15, or=30, align_tip=BACK+RIGHT)
|
||||
attach("tip0") color("blue") anchor_arrow2d();
|
||||
```
|
||||
|
||||
Similarly, the first indentation or pit can be oriented towards a specific vector with `align_pit=`:
|
||||
|
||||
|
||||
```openscad-2D
|
||||
star(n=5, ir=15, or=30, align_pit=BACK+LEFT)
|
||||
attach("pit0") color("blue") anchor_arrow2d();
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
star(n=5, ir=15, or=30, align_pit=BACK+RIGHT)
|
||||
attach("pit0") color("blue") anchor_arrow2d();
|
||||
```
|
||||
|
||||
You can use `anchor=` and `spin=`, just like with other attachable shapes. However, the anchor
|
||||
points are based on the furthest extents of the shape, and may not be where you expect them:
|
||||
|
||||
```openscad-2D
|
||||
star(n=5, step=2, d=50)
|
||||
show_anchors(custom=false);
|
||||
```
|
||||
|
||||
Stars also have named anchor points for their pits, tips, and midpoints between tips:
|
||||
|
||||
```openscad-2D
|
||||
star(n=5, step=2, d=40)
|
||||
show_anchors(std=false);
|
||||
```
|
||||
|
||||
|
||||
|
||||
### Teardrop2D
|
||||
|
||||
Often when 3D printing, you may want to make a circular hole in a vertical wall. If the hole is
|
||||
too big, however, the overhang at the top of the hole can cause problems with printing on an
|
||||
FDM/FFF printer. If you don't want to use support material, you can just use the teardrop shape.
|
||||
The `teardrop2d()` module will let you make a 2D version of the teardrop shape, so that you can
|
||||
extrude it later:
|
||||
|
||||
```openscad-2D
|
||||
teardrop2d(r=20);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
teardrop2d(d=50);
|
||||
```
|
||||
|
||||
The default overhang angle is 45 degrees, but you can adjust that with the `ang=` argument:
|
||||
|
||||
```openscad-2D
|
||||
teardrop2d(d=50, ang=30);
|
||||
```
|
||||
|
||||
If you prefer to flatten the top of the teardrop, to encourage bridging, you can use the `cap_h=`
|
||||
argument:
|
||||
|
||||
```openscad-2D
|
||||
teardrop2d(d=50, cap_h=25);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
teardrop2d(d=50, ang=30, cap_h=30);
|
||||
```
|
||||
|
||||
You can use `anchor=` and `spin=`, just like with other attachable shapes. However, the anchor
|
||||
points are based on the furthest extents of the shape, and may not be where you expect them:
|
||||
|
||||
```openscad-2D
|
||||
teardrop2d(d=50, ang=30, cap_h=30)
|
||||
show_anchors();
|
||||
```
|
||||
|
||||
|
||||
### Glued Circles
|
||||
|
||||
A more unusal shape that BOSL2 provides is Glued Circles. It's basically a pair of circles,
|
||||
connected by what looks like a gloopy glued miniscus:
|
||||
|
||||
```openscad-2D
|
||||
glued_circles(d=30, spread=40);
|
||||
```
|
||||
|
||||
The `r=`/`d=` arguments can specify the radius or diameter of the two circles:
|
||||
|
||||
```openscad-2D
|
||||
glued_circles(r=20, spread=45);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
glued_circles(d=40, spread=45);
|
||||
```
|
||||
|
||||
The `spread=` argument specifies the distance between the centers of the two circles:
|
||||
|
||||
```openscad-2D
|
||||
glued_circles(d=30, spread=30);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
glued_circles(d=30, spread=40);
|
||||
```
|
||||
|
||||
The `tangent=` argument gives the angle of the tangent of the meniscus on the two circles:
|
||||
|
||||
```openscad-2D
|
||||
glued_circles(d=30, spread=30, tangent=45);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
glued_circles(d=30, spread=30, tangent=20);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
glued_circles(d=30, spread=30, tangent=-20);
|
||||
```
|
||||
|
||||
One useful thing you can do is to string a few `glued_circle()`s in a line then extrude them to make a ribbed wall:
|
||||
|
||||
```openscad-3D
|
||||
$fn=36; s=10;
|
||||
linear_extrude(height=50,convexity=16,center=true)
|
||||
xcopies(s*sqrt(2),n=3)
|
||||
glued_circles(d=s, spread=s*sqrt(2), tangent=45);
|
||||
```
|
||||
|
||||
You can use `anchor=` and `spin=`, just like with other attachable shapes. However, the anchor
|
||||
points are based on the furthest extents of the shape, and may not be where you expect them:
|
||||
|
||||
```openscad-2D
|
||||
glued_circles(d=40, spread=40, tangent=45)
|
||||
show_anchors();
|
||||
```
|
||||
|
|
@ -1,233 +1,13 @@
|
|||
# Basic Shapes Tutorial
|
||||
|
||||
## Primitives
|
||||
There are 5 built-in primitive shapes that OpenSCAD provides.
|
||||
`square()`, `circle()`, `cube()`, `cylinder()`, and `sphere()`.
|
||||
The BOSL2 library extends or provides alternative to these shapes so
|
||||
There are 3 built-in 3D primitive shapes that OpenSCAD provides: `cube()`, `cylinder()`,
|
||||
and `sphere()`. The BOSL2 library extends and provides alternative to these shapes so
|
||||
that they support more features, and more ways to simply reorient them.
|
||||
|
||||
|
||||
### 2D Squares
|
||||
You can still use the built-in `square()` in the familiar ways that OpenSCAD provides:
|
||||
|
||||
```openscad-2D
|
||||
square(100, center=false);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
square(100, center=true);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
square([60,40], center=true);
|
||||
```
|
||||
|
||||
The BOSL2 library provides an enhanced equivalent to `square()` called `rect()`.
|
||||
You can use it in the same way you use `square()`, but it also provides
|
||||
extended functionality. For example, it allows you to round the corners:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], center=true, rounding=10);
|
||||
```
|
||||
|
||||
Or chamfer them:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], center=true, chamfer=10);
|
||||
```
|
||||
|
||||
You can even specify *which* corners get rounded or chamfered. If you pass a
|
||||
list of four size numbers to the `rounding=` or `chamfer=` arguments, it will
|
||||
give each corner its own size. In order, it goes from the back-right (quadrant I)
|
||||
corner, counter-clockwise around to the back-left (quadrant II) corner, to the
|
||||
forward-left (quadrant III) corner, to the forward-right (quadrant IV) corner:
|
||||
|
||||
```openscad-2DImgOnly
|
||||
module text3d(text) color("black") text(
|
||||
text=text, font="Times", size=10,
|
||||
halign="center", valign="center"
|
||||
);
|
||||
translate([ 50, 50]) text3d("I");
|
||||
translate([-50, 50]) text3d("II");
|
||||
translate([-50,-50]) text3d("III");
|
||||
translate([ 50,-50]) text3d("IV");
|
||||
rect([90,80], center=true);
|
||||
```
|
||||
|
||||
If a size is given as `0`, then there is no rounding and/or chamfering for
|
||||
that quadrant's corner:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], center=true, rounding=[0,5,10,15]);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], center=true, chamfer=[0,5,10,15]);
|
||||
```
|
||||
|
||||
You can give both `rounding=` and `chamfer=` arguments to mix rounding and
|
||||
chamfering, but only if you specify per corner. If you want a rounding in
|
||||
a corner, specify a 0 chamfer for that corner, and vice versa:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], center=true, rounding=[5,0,10,0], chamfer=[0,5,0,15]);
|
||||
```
|
||||
|
||||
#### Anchors and Spin
|
||||
Another way that `rect()` is enhanced over `square()`, is that you can anchor,
|
||||
spin and attach it.
|
||||
|
||||
The `anchor=` argument is an alternative to `center=`, which allows more
|
||||
alignment options. It takes a vector as a value, pointing roughly towards
|
||||
the side or corner you want to align to the origin. For example, to align
|
||||
the center of the back edge to the origin, set the anchor to `[0,1]`:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], anchor=[0,1]);
|
||||
```
|
||||
|
||||
To align the front right corner to the origin:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], anchor=[1,-1]);
|
||||
```
|
||||
|
||||
To center:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], anchor=[0,0]);
|
||||
```
|
||||
|
||||
To make it clearer when giving vectors, there are several standard vector
|
||||
constants defined:
|
||||
|
||||
Constant | Direction | Value
|
||||
-------- | --------- | -----------
|
||||
`LEFT` | X- | `[-1, 0, 0]`
|
||||
`RIGHT` | X+ | `[ 1, 0, 0]`
|
||||
`FRONT`/`FORWARD`/`FWD` | Y- | `[ 0,-1, 0]`
|
||||
`BACK` | Y+ | `[ 0, 1, 0]`
|
||||
`BOTTOM`/`BOT`/`BTM`/`DOWN` | Z- | `[ 0, 0,-1]` (3D only.)
|
||||
`TOP`/`UP` | Z+ | `[ 0, 0, 1]` (3D only.)
|
||||
`CENTER`/`CTR` | Centered | `[ 0, 0, 0]`
|
||||
|
||||
Note that even though these are 3D vectors, you can use most of them,
|
||||
(except `UP`/`DOWN`, of course) for anchors in 2D shapes:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], anchor=BACK);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], anchor=CENTER);
|
||||
```
|
||||
|
||||
You can add vectors together to point to corners:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], anchor=FRONT+RIGHT);
|
||||
```
|
||||
|
||||
Finally, the `spin` argument can rotate the shape by a given number of degrees
|
||||
clockwise:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], anchor=CENTER, spin=30);
|
||||
```
|
||||
|
||||
Anchoring or centering is performed before the spin:
|
||||
|
||||
```openscad-2D
|
||||
rect([60,40], anchor=BACK, spin=30);
|
||||
```
|
||||
|
||||
|
||||
### 2D Circles
|
||||
The built-in `circle()` primitive can be used as expected:
|
||||
|
||||
```openscad-2D
|
||||
circle(r=50);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
circle(d=100);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
circle(d=100, $fn=8);
|
||||
```
|
||||
|
||||
The BOSL2 library provides an enhanced equivalent of `circle()` called `oval()`.
|
||||
You can use it in the same way you use `circle()`, but it also provides
|
||||
extended functionality. For example, it allows more control over its size and
|
||||
orientation.
|
||||
|
||||
Since a circle in OpenSCAD can only be approximated by a regular polygon with
|
||||
a number of straight sides, this can lead to size and shape inaccuracies.
|
||||
To counter this, the `realign=` and `circum=` arguments are also provided.
|
||||
|
||||
The `realign=` argument, if set `true`, rotates the `oval()` by half the angle
|
||||
between the sides:
|
||||
|
||||
```openscad-2D
|
||||
oval(d=100, $fn=8, realign=true);
|
||||
```
|
||||
|
||||
The `circum=` argument, if true, makes it so that the polygon forming the
|
||||
`oval()` circumscribes the ideal circle instead of inscribing it.
|
||||
|
||||
Inscribing the ideal circle:
|
||||
|
||||
```openscad-2D
|
||||
difference() {
|
||||
circle(d=100, $fn=360);
|
||||
oval(d=100, $fn=8);
|
||||
}
|
||||
```
|
||||
|
||||
Circumscribing the ideal circle:
|
||||
|
||||
```openscad-2D
|
||||
difference() {
|
||||
oval(d=100, $fn=8, circum=true);
|
||||
circle(d=100, $fn=360);
|
||||
}
|
||||
```
|
||||
|
||||
The `oval()` module, as its name suggests, can be given separate X and Y radii
|
||||
or diameters. To do this, just give `r=` or `d=` with a list of two radii or
|
||||
diameters:
|
||||
|
||||
```openscad-2D
|
||||
oval(r=[30,20]);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
oval(d=[60,40]);
|
||||
```
|
||||
|
||||
Another way that `oval()` is enhanced over `circle()`, is that you can anchor,
|
||||
spin and attach it.
|
||||
|
||||
```openscad-2D
|
||||
oval(r=50, anchor=BACK);
|
||||
```
|
||||
|
||||
```openscad-2D
|
||||
oval(r=50, anchor=FRONT+RIGHT);
|
||||
```
|
||||
|
||||
Using spin on a circle may not make initial sense, until you remember that
|
||||
anchoring is performed before spin:
|
||||
|
||||
```openscad-2D
|
||||
oval(r=50, anchor=FRONT, spin=-30);
|
||||
```
|
||||
|
||||
|
||||
### 3D Cubes
|
||||
BOSL2 overrides the built-in `cube()` module. It still can be used as you
|
||||
expect from the built-in:
|
||||
BOSL2 overrides the built-in `cube()` module. It still can be used as you expect from the built-in:
|
||||
|
||||
```openscad-3D
|
||||
cube(100);
|
||||
|
@ -243,7 +23,7 @@ expect from the built-in:
|
|||
|
||||
It is also enhanced to allow you to anchor, spin, orient, and attach it.
|
||||
|
||||
You can use `anchor=` similarly to how you use it with `square()` or `rect()`,
|
||||
You can use `anchor=` similarly to how you use it with `rect()` or `oval()`,
|
||||
except you can also anchor vertically in 3D, allowing anchoring to faces, edges,
|
||||
and corners:
|
||||
|
||||
|
@ -546,11 +326,20 @@ The "stagger" style will stagger the triangulation of the vertical rows:
|
|||
spheroid(d=100, style="stagger", $fn=20);
|
||||
```
|
||||
|
||||
The "icosa"` style will make for roughly equal-sized triangles for the entire
|
||||
sphere surface:
|
||||
The "icosa" style will make for roughly equal-sized triangles for the entire
|
||||
sphere surface, based on subdividing an icosahedron. This style will round the
|
||||
effective `$fn` to a multiple of 5 when constructing the spheroid:
|
||||
|
||||
```openscad-3D
|
||||
spheroid(d=100, style="icosa", $fn=20);
|
||||
```
|
||||
|
||||
The "octa" style will also make for roughly equal-sized triangles for the entire
|
||||
sphere surface, but based on subdividing an octahedron. This is useful in that it
|
||||
guarantees vertices at the axis extrema. This style will round the effective `$fn`
|
||||
to a multiple of 4 when constructing the spheroid:
|
||||
|
||||
```openscad-3D
|
||||
spheroid(d=100, style="octa", $fn=20);
|
||||
```
|
||||
|
|
@ -8,7 +8,7 @@
|
|||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
BOSL_VERSION = [2,0,482];
|
||||
BOSL_VERSION = [2,0,489];
|
||||
|
||||
|
||||
// Section: BOSL Library Version Functions
|
||||
|
|
Loading…
Reference in a new issue