mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2024-12-29 00:09:41 +00:00
err message tweak in star()
rearranged polygon_line_intersection to handle 2d and fixed but where it didn't test polygon membership correctly. Also there was a bug with use of the bounded argument. Added Ronaldo's triangulation.
This commit is contained in:
parent
02d874cf65
commit
5a4d9554df
4 changed files with 266 additions and 91 deletions
241
geometry.scad
241
geometry.scad
|
@ -8,20 +8,23 @@
|
|||
|
||||
// Section: Lines, Rays, and Segments
|
||||
|
||||
// Function: point_on_segment()
|
||||
// Function: point_on_line()
|
||||
// Usage:
|
||||
// pt = point_on_segment(point, edge);
|
||||
// pt = point_on_line(point, line, [bounded], [eps]);
|
||||
// Topics: Geometry, Points, Segments
|
||||
// Description:
|
||||
// Determine if the point is on the line segment between two points.
|
||||
// Returns true if yes, and false if not.
|
||||
// Determine if the point is on the line segment, ray or segment defined by the two between two points.
|
||||
// Returns true if yes, and false if not. If bounded is set to true it specifies a segment, with
|
||||
// both lines bounded at the ends. Set bounded to `[true,false]` to get a ray. You can use
|
||||
// the shorthands RAY and SEGMENT to set bounded.
|
||||
// Arguments:
|
||||
// point = The point to test.
|
||||
// edge = Array of two points forming the line segment to test against.
|
||||
// line = Array of two points defining the line, ray, or segment to test against.
|
||||
// bounded = boolean or list of two booleans defining endpoint conditions for the line. If false treat the line as an unbounded line. If true treat it as a segment. If [true,false] treat as a ray, based at the first endpoint. Default: false
|
||||
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
||||
function point_on_segment(point, edge, eps=EPSILON) =
|
||||
function point_on_line(point, line, bounded=false, eps=EPSILON) =
|
||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||
point_line_distance(point, edge, SEGMENT)<eps;
|
||||
point_line_distance(point, line, bounded)<eps;
|
||||
|
||||
|
||||
//Internal - distance from point `d` to the line passing through the origin with unit direction n
|
||||
|
@ -621,61 +624,70 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) =
|
|||
|
||||
// Function: polygon_line_intersection()
|
||||
// Usage:
|
||||
// pt = polygon_line_intersection(poly, line, [bounded], [eps]);
|
||||
// pt = polygon_line_intersection(poly, line, [bounded], [nonzero], [eps]);
|
||||
// Topics: Geometry, Polygons, Lines, Intersection
|
||||
// Description:
|
||||
// Takes a possibly bounded line, and a 3D planar polygon, and finds their intersection point.
|
||||
// If the line and the polygon are on the same plane then returns a list, possibly empty, of 3D line
|
||||
// segments, one for each section of the line that is inside the polygon.
|
||||
// If the line is not on the plane of the polygon, but intersects it, then returns the 3D intersection
|
||||
// point. If the line does not intersect the polygon, then `undef` is returned.
|
||||
// Takes a possibly bounded line, and a 2D or 3D planar polygon, and finds their intersection.
|
||||
// If the line does not intersect the polygon then `undef` returns `undef`.
|
||||
// In 3D if the line is not on the plane of the polygon but intersects it then you get a single intersection point.
|
||||
// Otherwise the polygon and line are in the same plane and you will get a list of segments.
|
||||
// Use `is_vector` to distinguish these two cases.
|
||||
// Arguments:
|
||||
// poly = The 3D planar polygon to find the intersection with.
|
||||
// line = A list of two distinct 3D points on the line.
|
||||
// bounded = If false, the line is considered unbounded. If true, it is treated as a bounded line segment. If given as `[true, false]` or `[false, true]`, the boundedness of the points are specified individually, allowing the line to be treated as a half-bounded ray. Default: false (unbounded)
|
||||
// nonzero = set to true to use the nonzero rule for determining it points are in a polygon. See point_in_polygon. Default: false.
|
||||
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
||||
function polygon_line_intersection(poly, line, bounded=false, eps=EPSILON) =
|
||||
function polygon_line_intersection(poly, line, bounded=false, nonzero=false, eps=EPSILON) =
|
||||
assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." )
|
||||
assert(is_path(poly,dim=3), "Invalid polygon." )
|
||||
assert(is_path(poly,dim=[2,3]), "Invalid polygon." )
|
||||
assert(is_bool(bounded) || is_bool_list(bounded,2), "Invalid bound condition.")
|
||||
assert(_valid_line(line,dim=3,eps=eps), "Invalid 3D line." )
|
||||
assert(_valid_line(line,dim=len(poly[0]),eps=eps), "Line invalid or does not match polygon dimension." )
|
||||
let(
|
||||
bounded = force_list(bounded,2),
|
||||
poly = deduplicate(poly),
|
||||
indices = noncollinear_triple(poly)
|
||||
) indices==[] ? undef :
|
||||
let(
|
||||
p1 = poly[indices[0]],
|
||||
p2 = poly[indices[1]],
|
||||
p3 = poly[indices[2]],
|
||||
plane = plane3pt(p1,p2,p3),
|
||||
res = _general_plane_line_intersection(plane, line, eps=eps)
|
||||
) is_undef(res)? undef :
|
||||
is_undef(res[1]) ? (
|
||||
let(// Line is on polygon plane.
|
||||
poly = deduplicate(poly)
|
||||
)
|
||||
len(poly[0])==2 ? // planar case
|
||||
let(
|
||||
linevec = unit(line[1] - line[0]),
|
||||
lp1 = line[0] + (bounded[0]? 0 : -1000000) * linevec,
|
||||
lp2 = line[1] + (bounded[1]? 0 : 1000000) * linevec,
|
||||
poly2d = clockwise_polygon(project_plane(plane, poly)),
|
||||
line2d = project_plane(plane, [lp1,lp2]),
|
||||
parts = split_path_at_region_crossings(line2d, [poly2d], closed=false),
|
||||
inside = [
|
||||
for (part = parts)
|
||||
if (point_in_polygon(mean(part), poly2d)>0) part
|
||||
]
|
||||
) !inside? undef :
|
||||
let( isegs = [for (seg = inside) lift_plane(plane, seg) ] )
|
||||
isegs
|
||||
) :
|
||||
bounded[0] && res[1]<0? undef :
|
||||
bounded[1] && res[1]>1? undef :
|
||||
let(
|
||||
proj = clockwise_polygon(project_plane([p1, p2, p3], poly)),
|
||||
pt = project_plane([p1, p2, p3], res[0])
|
||||
) point_in_polygon(pt, proj) < 0 ? undef :
|
||||
res[0];
|
||||
bound = 100*max(flatten(pointlist_bounds(poly))),
|
||||
boundedline = [line[0] + (bounded[0]? 0 : -bound) * linevec,
|
||||
line[1] + (bounded[1]? 0 : bound) * linevec],
|
||||
parts = split_path_at_region_crossings(boundedline, [poly], closed=false),
|
||||
inside = [for (part = parts)
|
||||
if (point_in_polygon(mean(part), poly,nonzero=nonzero,eps=eps)>=0) part
|
||||
]
|
||||
)
|
||||
len(inside)==0? undef : _merge_segments(inside, [inside[0]], eps)
|
||||
: // 3d case
|
||||
let(indices = noncollinear_triple(poly))
|
||||
indices==[] ? undef : // Polygon is collinear
|
||||
let(
|
||||
plane = plane3pt(poly[indices[0]], poly[indices[1]], poly[indices[2]]),
|
||||
plane_isect = plane_line_intersection(plane, line, bounded, eps)
|
||||
)
|
||||
is_undef(plane_isect) ? undef :
|
||||
is_vector(plane_isect,3) ?
|
||||
let(
|
||||
poly2d = project_plane(plane,poly),
|
||||
pt2d = project_plane(plane, plane_isect)
|
||||
)
|
||||
(point_in_polygon(pt2d, poly2d, nonzero=nonzero, eps=eps) < 0 ? undef : plane_isect)
|
||||
: // Case where line is on the polygon plane
|
||||
let(
|
||||
poly2d = project_plane(plane, poly),
|
||||
line2d = project_plane(plane, line),
|
||||
segments = polygon_line_intersection(poly2d, line2d, bounded=bounded, nonzero=nonzero, eps=eps)
|
||||
)
|
||||
segments==undef ? undef : [for(seg=segments) lift_plane(plane,seg)];
|
||||
|
||||
|
||||
function _merge_segments(insegs,outsegs, eps, i=1) = //let(f=echo(insegs=insegs, outsegs=outsegs,lo=last(outsegs[1]), fi=insegs[i][0]))
|
||||
i==len(insegs) ? outsegs :
|
||||
approx(last(outsegs)[1], insegs[i][0], eps) ? _merge_segments(insegs, [each list_head(outsegs),[last(outsegs)[0],insegs[i][1]]], eps, i+1)
|
||||
: _merge_segments(insegs, [each outsegs, insegs[i]], eps, i+1);
|
||||
|
||||
|
||||
// Function: plane_intersection()
|
||||
// Usage:
|
||||
// line = plane_intersection(plane1, plane2)
|
||||
|
@ -1302,17 +1314,16 @@ function centroid(poly, eps=EPSILON) =
|
|||
function polygon_normal(poly) =
|
||||
assert(is_path(poly,dim=3), "Invalid 3D polygon." )
|
||||
let(
|
||||
L=len(poly),
|
||||
area_vec = sum([for(i=idx(poly))
|
||||
cross(poly[(i+1)%L]-poly[0],
|
||||
poly[(i+2)%L]-poly[(i+1)%L])])
|
||||
area_vec = sum([for(i=[1:len(poly)-2])
|
||||
cross(poly[i]-poly[0],
|
||||
poly[i+1]-poly[i])])
|
||||
)
|
||||
norm(area_vec)<EPSILON ? undef : -unit(area_vec);
|
||||
unit(-area_vec, error=undef);
|
||||
|
||||
|
||||
// Function: point_in_polygon()
|
||||
// Usage:
|
||||
// test = point_in_polygon(point, poly, [eps])
|
||||
// test = point_in_polygon(point, poly, [nonzero], [eps])
|
||||
// Topics: Geometry, Polygons
|
||||
// Description:
|
||||
// This function tests whether the given 2D point is inside, outside or on the boundary of
|
||||
|
@ -1356,7 +1367,7 @@ function polygon_normal(poly) =
|
|||
// Arguments:
|
||||
// point = The 2D point to check
|
||||
// poly = The list of 2D points forming the perimeter of the polygon.
|
||||
// nonzero = The rule to use: true for "Nonzero" rule and false for "Even-Odd" (Default: true )
|
||||
// nonzero = The rule to use: true for "Nonzero" rule and false for "Even-Odd". Default: false (Even-Odd)
|
||||
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
||||
// Example(2D): With nonzero set to true, we get this result. Green dots are inside the polygon and red are outside:
|
||||
// a=20*2/3;
|
||||
|
@ -1390,7 +1401,7 @@ function polygon_normal(poly) =
|
|||
// color(point_in_polygon(p,path,nonzero=false)==1 ? "green" : "red")
|
||||
// move(p)circle(r=1, $fn=12);
|
||||
// }
|
||||
function point_in_polygon(point, poly, nonzero=true, eps=EPSILON) =
|
||||
function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
|
||||
// Original algorithms from http://geomalgorithms.com/a03-_inclusion.html
|
||||
assert( is_vector(point,2) && is_path(poly,dim=2) && len(poly)>2,
|
||||
"The point and polygon should be in 2D. The polygon should have more that 2 points." )
|
||||
|
@ -1401,7 +1412,7 @@ function point_in_polygon(point, poly, nonzero=true, eps=EPSILON) =
|
|||
for (i = [0:1:len(poly)-1])
|
||||
let( seg = select(poly,i,i+1) )
|
||||
if (!approx(seg[0],seg[1],eps) )
|
||||
point_on_segment(point, seg, eps=eps)? 1:0
|
||||
point_on_line(point, seg, SEGMENT, eps=eps)? 1:0
|
||||
]
|
||||
)
|
||||
sum(on_brd) > 0? 0 :
|
||||
|
@ -1432,6 +1443,122 @@ function point_in_polygon(point, poly, nonzero=true, eps=EPSILON) =
|
|||
) 2*(len(cross)%2)-1;
|
||||
|
||||
|
||||
// Function: polygon_triangulation(poly, [ind], [eps])
|
||||
// Usage:
|
||||
// triangles = polygon_triangulation(poly)
|
||||
// triangles = polygon_triangulation(poly, ind)
|
||||
// Description:
|
||||
// Given a simple polygon in 2D or 3D, triangulates it and returns a list
|
||||
// of triples indexing into the polygon vertices. When the optional argument `ind` is
|
||||
// given, the it is used as an index list into `poly` to define the polygon. In that case,
|
||||
// `poly` may have a length greater than `ind`. Otherwise, all points in `poly`
|
||||
// are considered as vertices of the polygon.
|
||||
// .
|
||||
// The function may issue an error if it finds that the polygon is not simple
|
||||
// (self-intersecting) or its vertices are collinear. An error may also be issued
|
||||
// for 3d non planar polygons.
|
||||
// For 2d polygons, the output triangles will have the same winding (CW or CCW) of
|
||||
// the input polygon. For 3d polygons, the triangle windings will induce a normal
|
||||
// vector with the same direction of the polygon normal.
|
||||
// Arguments:
|
||||
// poly = Array of vertices for the polygon.
|
||||
// ind = A list indexing the vertices of the polygon in `poly`.
|
||||
// eps = A maximum tolerance in geometrical tests. Default: EPSILON
|
||||
// Example:
|
||||
// poly = star(id=10, od=15,n=11);
|
||||
// tris = polygon_triangulation(poly);
|
||||
// polygon(poly);
|
||||
// up(1)
|
||||
// color("blue");
|
||||
// for(tri=tris) trace_path(select(poly,tri), size=.1, closed=true);
|
||||
//
|
||||
// Example:
|
||||
// include<BOSL2/polyhedra.scad>
|
||||
// vnf = regular_polyhedron_info(name="dodecahedron",side=5,info="vnf");
|
||||
// %vnf_polyhedron(vnf);
|
||||
// vnf_tri = [vnf[0], [for(face=vnf[1]) each polygon_triangulation(vnf[0], face) ] ];
|
||||
// color("blue")
|
||||
// vnf_wireframe(vnf_tri, d=.15);
|
||||
|
||||
function polygon_triangulation(poly, ind, eps=EPSILON) =
|
||||
assert(is_path(poly), "Polygon `poly` should be a list of 2d or 3d points")
|
||||
assert(is_undef(ind)
|
||||
|| (is_vector(ind) && min(ind)>=0 && max(ind)<len(poly) ),
|
||||
"Improper or out of bounds list of indices")
|
||||
let( ind = is_undef(ind) ? count(len(poly)) : ind )
|
||||
len(poly[ind[0]]) == 3
|
||||
? // represents the polygon projection on its plane as a 2d polygon
|
||||
let(
|
||||
pts = select(poly,ind),
|
||||
nrm = polygon_normal(pts)
|
||||
)
|
||||
// here, instead of an error, it might return [] or undef
|
||||
assert( nrm!=undef,
|
||||
"The polygon has self-intersections or its vertices are collinear or non coplanar.")
|
||||
let(
|
||||
imax = max_index([for(p=pts) norm(p-pts[0]) ]),
|
||||
v1 = unit( pts[imax] - pts[0] ),
|
||||
v2 = cross(v1,nrm),
|
||||
prpts = pts*transpose([v1,v2])
|
||||
)
|
||||
[for(tri=_triangulate(prpts, count(len(ind)), eps)) select(ind,tri) ]
|
||||
: let( cw = polygon_is_clockwise(select(poly, ind)) )
|
||||
cw
|
||||
? [for(tri=_triangulate( poly, reverse(ind), eps )) reverse(tri) ]
|
||||
: _triangulate( poly, ind, eps );
|
||||
|
||||
|
||||
|
||||
// requires ccw 2d polygons
|
||||
// returns ccw triangles
|
||||
function _triangulate(poly, ind, eps=EPSILON, tris=[]) =
|
||||
len(ind)==3 ? concat(tris,[ind]) :
|
||||
let( ear = _get_ear(poly,ind,eps) )
|
||||
assert( ear!=undef,
|
||||
"The polygon has self-intersections or its vertices are collinear or non coplanar.")
|
||||
let(
|
||||
ear_tri = select(ind,ear,ear+2),
|
||||
indr = select(ind,ear+2, ear) // indices of the remaining points
|
||||
)
|
||||
_triangulate(poly, indr, eps, concat(tris,[ear_tri]));
|
||||
|
||||
// search a valid ear from the remaining polygon
|
||||
function _get_ear(poly, ind, eps, _i=0) =
|
||||
_i>=len(ind) ? undef : // poly has no ears
|
||||
let( // the _i-th ear candidate
|
||||
p0 = poly[ind[_i]],
|
||||
p1 = poly[ind[(_i+1)%len(ind)]],
|
||||
p2 = poly[ind[(_i+2)%len(ind)]]
|
||||
)
|
||||
// if it is not a convex vertex, try the next one
|
||||
_is_cw2(p0,p1,p2,eps) ? _get_ear(poly,ind,eps, _i=_i+1) :
|
||||
let( // vertex p1 is convex; check if the triangle contains any other point
|
||||
to_tst = select(ind,_i+3, _i-1),
|
||||
pt2tst = select(poly,to_tst), // points other than p0, p1 and p2
|
||||
q = [(p0-p2).y, (p2-p0).x], // orthogonal to ray [p0,p2] pointing right
|
||||
q0 = q*p0,
|
||||
atleft = [for(p=pt2tst) if(p*q<=q0) p ]
|
||||
)
|
||||
atleft==[] ? _i : // no point inside -> an ear
|
||||
let(
|
||||
q = [(p2-p1).y, (p1-p2).x], // orthogonal to ray [p1,p2] pointing right
|
||||
q0 = q*p2,
|
||||
atleft = [for(p=atleft) if(p*q<=q0) p ]
|
||||
)
|
||||
atleft==[] ? _i : // no point inside -> an ear
|
||||
let(
|
||||
q = [(p1-p0).y, (p0-p1).x], // orthogonal to ray [p1,p0] pointing right
|
||||
q0 = q*p1,
|
||||
atleft = [for(p=atleft) if(p*q<=q0) p ]
|
||||
)
|
||||
atleft==[] ? _i : // no point inside -> an ear
|
||||
// check the next ear candidate
|
||||
_get_ear(poly, ind, eps, _i=_i+1);
|
||||
|
||||
function _is_cw2(a,b,c,eps=EPSILON) = cross(a-c,b-c)<eps*norm(a-c)*norm(b-c);
|
||||
|
||||
|
||||
|
||||
// Function: is_polygon_clockwise()
|
||||
// Usage:
|
||||
// test = is_polygon_clockwise(poly);
|
||||
|
|
|
@ -1563,7 +1563,7 @@ function star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit
|
|||
)
|
||||
assert(is_def(n), "Must specify number of points, n")
|
||||
assert(count==1, "Must specify exactly one of ir, id, step")
|
||||
assert(stepOK, str("Parameter 'step' must be between 2 and ",floor(n/2)," for ",n," point star"))
|
||||
assert(stepOK, str("Parameter 'step' must be between 2 and ",floor(n/2-1/2)," for ",n," point star"))
|
||||
let(
|
||||
mat = !is_undef(_mat) ? _mat :
|
||||
( realign? rot(-180/n, planar=true) : affine2d_identity() ) * (
|
||||
|
|
|
@ -6,7 +6,7 @@ include <../std.scad>
|
|||
|
||||
|
||||
|
||||
test_point_on_segment();
|
||||
test_point_on_line();
|
||||
test_collinear();
|
||||
test_point_line_distance();
|
||||
test_segment_distance();
|
||||
|
@ -53,10 +53,8 @@ test_is_polygon_clockwise();
|
|||
test_clockwise_polygon();
|
||||
test_ccw_polygon();
|
||||
test_reverse_polygon();
|
||||
//test_polygon_normal();
|
||||
//test_split_polygons_at_each_x();
|
||||
//test_split_polygons_at_each_y();
|
||||
//test_split_polygons_at_each_z();
|
||||
|
||||
test_polygon_normal();
|
||||
|
||||
//tests to migrate to other files
|
||||
test_is_path();
|
||||
|
@ -268,35 +266,43 @@ module test_line_from_points() {
|
|||
}
|
||||
*test_line_from_points();
|
||||
|
||||
module test_point_on_segment() {
|
||||
assert(point_on_segment([-15,0], [[-10,0], [10,0]]) == false);
|
||||
assert(point_on_segment([-10,0], [[-10,0], [10,0]]) == true);
|
||||
assert(point_on_segment([-5,0], [[-10,0], [10,0]]) == true);
|
||||
assert(point_on_segment([0,0], [[-10,0], [10,0]]) == true);
|
||||
assert(point_on_segment([3,3], [[-10,0], [10,0]]) == false);
|
||||
assert(point_on_segment([5,0], [[-10,0], [10,0]]) == true);
|
||||
assert(point_on_segment([10,0], [[-10,0], [10,0]]) == true);
|
||||
assert(point_on_segment([15,0], [[-10,0], [10,0]]) == false);
|
||||
module test_point_on_line() {
|
||||
assert(point_on_line([-15,0], [[-10,0], [10,0]],SEGMENT) == false);
|
||||
assert(point_on_line([-10,0], [[-10,0], [10,0]],SEGMENT) == true);
|
||||
assert(point_on_line([-5,0], [[-10,0], [10,0]],SEGMENT) == true);
|
||||
assert(point_on_line([0,0], [[-10,0], [10,0]],SEGMENT) == true);
|
||||
assert(point_on_line([3,3], [[-10,0], [10,0]],SEGMENT) == false);
|
||||
assert(point_on_line([5,0], [[-10,0], [10,0]],SEGMENT) == true);
|
||||
assert(point_on_line([10,0], [[-10,0], [10,0]],SEGMENT) == true);
|
||||
assert(point_on_line([15,0], [[-10,0], [10,0]],SEGMENT) == false);
|
||||
|
||||
assert(point_on_segment([0,-15], [[0,-10], [0,10]]) == false);
|
||||
assert(point_on_segment([0,-10], [[0,-10], [0,10]]) == true);
|
||||
assert(point_on_segment([0, -5], [[0,-10], [0,10]]) == true);
|
||||
assert(point_on_segment([0, 0], [[0,-10], [0,10]]) == true);
|
||||
assert(point_on_segment([3, 3], [[0,-10], [0,10]]) == false);
|
||||
assert(point_on_segment([0, 5], [[0,-10], [0,10]]) == true);
|
||||
assert(point_on_segment([0, 10], [[0,-10], [0,10]]) == true);
|
||||
assert(point_on_segment([0, 15], [[0,-10], [0,10]]) == false);
|
||||
assert(point_on_line([0,-15], [[0,-10], [0,10]],SEGMENT) == false);
|
||||
assert(point_on_line([0,-10], [[0,-10], [0,10]],SEGMENT) == true);
|
||||
assert(point_on_line([0, -5], [[0,-10], [0,10]],SEGMENT) == true);
|
||||
assert(point_on_line([0, 0], [[0,-10], [0,10]],SEGMENT) == true);
|
||||
assert(point_on_line([3, 3], [[0,-10], [0,10]],SEGMENT) == false);
|
||||
assert(point_on_line([0, 5], [[0,-10], [0,10]],SEGMENT) == true);
|
||||
assert(point_on_line([0, 10], [[0,-10], [0,10]],SEGMENT) == true);
|
||||
assert(point_on_line([0, 15], [[0,-10], [0,10]],SEGMENT) == false);
|
||||
|
||||
assert(point_on_segment([-15,-15], [[-10,-10], [10,10]]) == false);
|
||||
assert(point_on_segment([-10,-10], [[-10,-10], [10,10]]) == true);
|
||||
assert(point_on_segment([ -5, -5], [[-10,-10], [10,10]]) == true);
|
||||
assert(point_on_segment([ 0, 0], [[-10,-10], [10,10]]) == true);
|
||||
assert(point_on_segment([ 0, 3], [[-10,-10], [10,10]]) == false);
|
||||
assert(point_on_segment([ 5, 5], [[-10,-10], [10,10]]) == true);
|
||||
assert(point_on_segment([ 10, 10], [[-10,-10], [10,10]]) == true);
|
||||
assert(point_on_segment([ 15, 15], [[-10,-10], [10,10]]) == false);
|
||||
assert(point_on_line([-15,-15], [[-10,-10], [10,10]],SEGMENT) == false);
|
||||
assert(point_on_line([-10,-10], [[-10,-10], [10,10]],SEGMENT) == true);
|
||||
assert(point_on_line([ -5, -5], [[-10,-10], [10,10]],SEGMENT) == true);
|
||||
assert(point_on_line([ 0, 0], [[-10,-10], [10,10]],SEGMENT) == true);
|
||||
assert(point_on_line([ 0, 3], [[-10,-10], [10,10]],SEGMENT) == false);
|
||||
assert(point_on_line([ 5, 5], [[-10,-10], [10,10]],SEGMENT) == true);
|
||||
assert(point_on_line([ 10, 10], [[-10,-10], [10,10]],SEGMENT) == true);
|
||||
assert(point_on_line([ 15, 15], [[-10,-10], [10,10]],SEGMENT) == false);
|
||||
|
||||
assert(point_on_line([10,10], [[0,0],[5,5]]) == true);
|
||||
assert(point_on_line([4,4], [[0,0],[5,5]]) == true);
|
||||
assert(point_on_line([-2,-2], [[0,0],[5,5]]) == true);
|
||||
assert(point_on_line([5,5], [[0,0],[5,5]]) == true);
|
||||
assert(point_on_line([10,10], [[0,0],[5,5]],RAY) == true);
|
||||
assert(point_on_line([0,0], [[0,0],[5,5]],RAY) == true);
|
||||
assert(point_on_line([3,3], [[0,0],[5,5]],RAY) == true);
|
||||
}
|
||||
*test_point_on_segment();
|
||||
*test_point_on_line();
|
||||
|
||||
|
||||
module test__point_left_of_line2d() {
|
||||
|
@ -593,6 +599,16 @@ module test_plane_from_points() {
|
|||
*test_plane_from_points();
|
||||
|
||||
|
||||
module test_polygon_normal() {
|
||||
circ = path3d(circle($fn=37, r=3));
|
||||
|
||||
assert_approx(polygon_normal(circ), UP);
|
||||
assert_approx(polygon_normal(rot(from=UP,to=[1,2,3],p=circ)), unit([1,2,3]));
|
||||
assert_approx(polygon_normal(rot(from=UP,to=[4,-2,3],p=reverse(circ))), -unit([4,-2,3]));
|
||||
assert_approx(polygon_normal(path3d([[0,0], [10,10], [11,10], [0,-1], [-1,1]])), UP);
|
||||
}
|
||||
*test_polygon_normal();
|
||||
|
||||
module test_plane_normal() {
|
||||
assert_approx(plane_normal(plane3pt([0,0,20], [0,10,10], [0,0,0])), [1,0,0]);
|
||||
assert_approx(plane_normal(plane3pt([2,0,20], [2,10,10], [2,0,0])), [1,0,0]);
|
||||
|
@ -650,6 +666,37 @@ module test_polygon_line_intersection() {
|
|||
undef, info);
|
||||
assert_approx(polygon_line_intersection(polygnr,linegnr,bounded=[false,false]),
|
||||
trnsl, info);
|
||||
|
||||
sq = path3d(square(10));
|
||||
pentagram = 10*path3d(turtle(["move",10,"left",144], repeat=4));
|
||||
for (tran = [ident(4), skew(sxy=1.2)*scale([.9,1,1.2])*yrot(14)*zrot(37)*xrot(9)])
|
||||
{
|
||||
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[5,5,-1], [5,5,10]])), apply(tran, [5,5,0]));
|
||||
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[5,5,1], [5,5,10]])), apply(tran, [5,5,0]));
|
||||
assert(undef==polygon_line_intersection(apply(tran,sq),apply(tran,[[5,5,1], [5,5,10]]),RAY));
|
||||
assert(undef==polygon_line_intersection(apply(tran,sq),apply(tran,[[11,11,-1],[11,11,1]])));
|
||||
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[5,0,-10], [5,0,10]])), apply(tran, [5,0,0]));
|
||||
assert_equal(polygon_line_intersection(apply(tran,sq),apply(tran,[[5,0,1], [5,0,10]]),RAY), undef);
|
||||
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[10,0,1],[10,0,10]])), apply(tran, [10,0,0]));
|
||||
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[1,5,0],[9,6,0]])), apply(tran, [[[0,4.875,0],[10,6.125,0]]]));
|
||||
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[1,5,0],[9,6,0]]),SEGMENT), apply(tran, [[[1,5,0],[9,6,0]]]));
|
||||
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[-1,-1,0],[8,8,0]])), apply(tran, [[[0,0,0],[10,10,0]]]));
|
||||
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[-1,-1,0],[8,8,0]]),SEGMENT), apply(tran, [[[0,0,0],[8,8,0]]]));
|
||||
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[-1,-1,0],[8,8,0]]),RAY), apply(tran, [[[0,0,0],[10,10,0]]]));
|
||||
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[-2,4,0], [12,11,0]]),RAY), apply(tran, [[[0,5,0],[10,10,0]]]));
|
||||
assert_equal(polygon_line_intersection(apply(tran,sq),apply(tran,[[-20,0,0],[20,40,0]]),RAY), undef);
|
||||
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[-1,0,0],[11,0,0]])), apply(tran, [[[0,0,0],[10,0,0]]]));
|
||||
}
|
||||
assert_approx(polygon_line_intersection(path2d(sq),[[1,5],[9,6]],SEGMENT), [[[1,5],[9,6]]]);
|
||||
assert_approx(polygon_line_intersection(path2d(sq),[[1,5],[9,6]],LINE), [[[0,4.875],[10,6.125]]]);
|
||||
assert_approx(polygon_line_intersection(pentagram,[[50,10,-4],[54,12,4]], nonzero=true), [52,11,0]);
|
||||
assert_equal(polygon_line_intersection(pentagram,[[50,10,-4],[54,12,4]], nonzero=false), undef);
|
||||
assert_approx(polygon_line_intersection(pentagram,[[50,-10,-4],[54,-12,4]], nonzero=true), [52,-11,0]);
|
||||
assert_approx(polygon_line_intersection(pentagram,[[50,-10,-4],[54,-12,4]], nonzero=false), [52,-11,0]);
|
||||
assert_approx(polygon_line_intersection(star(8,step=3,od=10), [[-5,3], [5,3]]),
|
||||
[[[-3.31370849898, 3], [-2.24264068712, 3]],
|
||||
[[-0.828427124746, 3], [0.828427124746, 3]],
|
||||
[[2.24264068712, 3], [3.31370849898, 3]]]);
|
||||
}
|
||||
*test_polygon_line_intersection();
|
||||
|
||||
|
|
5
vnf.scad
5
vnf.scad
|
@ -210,8 +210,9 @@ function vnf_reverse_faces(vnf) =
|
|||
function vnf_triangulate(vnf) =
|
||||
let(
|
||||
vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf,
|
||||
verts = vnf[0]
|
||||
) [verts, triangulate_faces(verts, vnf[1])];
|
||||
verts = vnf[0],
|
||||
faces = [for (face=vnf[1]) polygon_triangulation(verts, face)]
|
||||
) [verts, faces];
|
||||
|
||||
|
||||
// Function: vnf_vertex_array()
|
||||
|
|
Loading…
Reference in a new issue