err message tweak in star()

rearranged polygon_line_intersection to handle 2d and fixed
but where it didn't test polygon membership correctly.  Also
there was a bug with use of the bounded argument.
Added Ronaldo's triangulation.
This commit is contained in:
Adrian Mariano 2021-09-13 22:09:51 -04:00
parent 02d874cf65
commit 5a4d9554df
4 changed files with 266 additions and 91 deletions

View file

@ -8,20 +8,23 @@
// Section: Lines, Rays, and Segments // Section: Lines, Rays, and Segments
// Function: point_on_segment() // Function: point_on_line()
// Usage: // Usage:
// pt = point_on_segment(point, edge); // pt = point_on_line(point, line, [bounded], [eps]);
// Topics: Geometry, Points, Segments // Topics: Geometry, Points, Segments
// Description: // Description:
// Determine if the point is on the line segment between two points. // Determine if the point is on the line segment, ray or segment defined by the two between two points.
// Returns true if yes, and false if not. // Returns true if yes, and false if not. If bounded is set to true it specifies a segment, with
// both lines bounded at the ends. Set bounded to `[true,false]` to get a ray. You can use
// the shorthands RAY and SEGMENT to set bounded.
// Arguments: // Arguments:
// point = The point to test. // point = The point to test.
// edge = Array of two points forming the line segment to test against. // line = Array of two points defining the line, ray, or segment to test against.
// bounded = boolean or list of two booleans defining endpoint conditions for the line. If false treat the line as an unbounded line. If true treat it as a segment. If [true,false] treat as a ray, based at the first endpoint. Default: false
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) // eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
function point_on_segment(point, edge, eps=EPSILON) = function point_on_line(point, line, bounded=false, eps=EPSILON) =
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
point_line_distance(point, edge, SEGMENT)<eps; point_line_distance(point, line, bounded)<eps;
//Internal - distance from point `d` to the line passing through the origin with unit direction n //Internal - distance from point `d` to the line passing through the origin with unit direction n
@ -621,59 +624,68 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) =
// Function: polygon_line_intersection() // Function: polygon_line_intersection()
// Usage: // Usage:
// pt = polygon_line_intersection(poly, line, [bounded], [eps]); // pt = polygon_line_intersection(poly, line, [bounded], [nonzero], [eps]);
// Topics: Geometry, Polygons, Lines, Intersection // Topics: Geometry, Polygons, Lines, Intersection
// Description: // Description:
// Takes a possibly bounded line, and a 3D planar polygon, and finds their intersection point. // Takes a possibly bounded line, and a 2D or 3D planar polygon, and finds their intersection.
// If the line and the polygon are on the same plane then returns a list, possibly empty, of 3D line // If the line does not intersect the polygon then `undef` returns `undef`.
// segments, one for each section of the line that is inside the polygon. // In 3D if the line is not on the plane of the polygon but intersects it then you get a single intersection point.
// If the line is not on the plane of the polygon, but intersects it, then returns the 3D intersection // Otherwise the polygon and line are in the same plane and you will get a list of segments.
// point. If the line does not intersect the polygon, then `undef` is returned. // Use `is_vector` to distinguish these two cases.
// Arguments: // Arguments:
// poly = The 3D planar polygon to find the intersection with. // poly = The 3D planar polygon to find the intersection with.
// line = A list of two distinct 3D points on the line. // line = A list of two distinct 3D points on the line.
// bounded = If false, the line is considered unbounded. If true, it is treated as a bounded line segment. If given as `[true, false]` or `[false, true]`, the boundedness of the points are specified individually, allowing the line to be treated as a half-bounded ray. Default: false (unbounded) // bounded = If false, the line is considered unbounded. If true, it is treated as a bounded line segment. If given as `[true, false]` or `[false, true]`, the boundedness of the points are specified individually, allowing the line to be treated as a half-bounded ray. Default: false (unbounded)
// nonzero = set to true to use the nonzero rule for determining it points are in a polygon. See point_in_polygon. Default: false.
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) // eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
function polygon_line_intersection(poly, line, bounded=false, eps=EPSILON) = function polygon_line_intersection(poly, line, bounded=false, nonzero=false, eps=EPSILON) =
assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." )
assert(is_path(poly,dim=3), "Invalid polygon." ) assert(is_path(poly,dim=[2,3]), "Invalid polygon." )
assert(is_bool(bounded) || is_bool_list(bounded,2), "Invalid bound condition.") assert(is_bool(bounded) || is_bool_list(bounded,2), "Invalid bound condition.")
assert(_valid_line(line,dim=3,eps=eps), "Invalid 3D line." ) assert(_valid_line(line,dim=len(poly[0]),eps=eps), "Line invalid or does not match polygon dimension." )
let( let(
bounded = force_list(bounded,2), bounded = force_list(bounded,2),
poly = deduplicate(poly), poly = deduplicate(poly)
indices = noncollinear_triple(poly) )
) indices==[] ? undef : len(poly[0])==2 ? // planar case
let( let(
p1 = poly[indices[0]],
p2 = poly[indices[1]],
p3 = poly[indices[2]],
plane = plane3pt(p1,p2,p3),
res = _general_plane_line_intersection(plane, line, eps=eps)
) is_undef(res)? undef :
is_undef(res[1]) ? (
let(// Line is on polygon plane.
linevec = unit(line[1] - line[0]), linevec = unit(line[1] - line[0]),
lp1 = line[0] + (bounded[0]? 0 : -1000000) * linevec, bound = 100*max(flatten(pointlist_bounds(poly))),
lp2 = line[1] + (bounded[1]? 0 : 1000000) * linevec, boundedline = [line[0] + (bounded[0]? 0 : -bound) * linevec,
poly2d = clockwise_polygon(project_plane(plane, poly)), line[1] + (bounded[1]? 0 : bound) * linevec],
line2d = project_plane(plane, [lp1,lp2]), parts = split_path_at_region_crossings(boundedline, [poly], closed=false),
parts = split_path_at_region_crossings(line2d, [poly2d], closed=false), inside = [for (part = parts)
inside = [ if (point_in_polygon(mean(part), poly,nonzero=nonzero,eps=eps)>=0) part
for (part = parts)
if (point_in_polygon(mean(part), poly2d)>0) part
] ]
) !inside? undef : )
let( isegs = [for (seg = inside) lift_plane(plane, seg) ] ) len(inside)==0? undef : _merge_segments(inside, [inside[0]], eps)
isegs : // 3d case
) : let(indices = noncollinear_triple(poly))
bounded[0] && res[1]<0? undef : indices==[] ? undef : // Polygon is collinear
bounded[1] && res[1]>1? undef :
let( let(
proj = clockwise_polygon(project_plane([p1, p2, p3], poly)), plane = plane3pt(poly[indices[0]], poly[indices[1]], poly[indices[2]]),
pt = project_plane([p1, p2, p3], res[0]) plane_isect = plane_line_intersection(plane, line, bounded, eps)
) point_in_polygon(pt, proj) < 0 ? undef : )
res[0]; is_undef(plane_isect) ? undef :
is_vector(plane_isect,3) ?
let(
poly2d = project_plane(plane,poly),
pt2d = project_plane(plane, plane_isect)
)
(point_in_polygon(pt2d, poly2d, nonzero=nonzero, eps=eps) < 0 ? undef : plane_isect)
: // Case where line is on the polygon plane
let(
poly2d = project_plane(plane, poly),
line2d = project_plane(plane, line),
segments = polygon_line_intersection(poly2d, line2d, bounded=bounded, nonzero=nonzero, eps=eps)
)
segments==undef ? undef : [for(seg=segments) lift_plane(plane,seg)];
function _merge_segments(insegs,outsegs, eps, i=1) = //let(f=echo(insegs=insegs, outsegs=outsegs,lo=last(outsegs[1]), fi=insegs[i][0]))
i==len(insegs) ? outsegs :
approx(last(outsegs)[1], insegs[i][0], eps) ? _merge_segments(insegs, [each list_head(outsegs),[last(outsegs)[0],insegs[i][1]]], eps, i+1)
: _merge_segments(insegs, [each outsegs, insegs[i]], eps, i+1);
// Function: plane_intersection() // Function: plane_intersection()
@ -1302,17 +1314,16 @@ function centroid(poly, eps=EPSILON) =
function polygon_normal(poly) = function polygon_normal(poly) =
assert(is_path(poly,dim=3), "Invalid 3D polygon." ) assert(is_path(poly,dim=3), "Invalid 3D polygon." )
let( let(
L=len(poly), area_vec = sum([for(i=[1:len(poly)-2])
area_vec = sum([for(i=idx(poly)) cross(poly[i]-poly[0],
cross(poly[(i+1)%L]-poly[0], poly[i+1]-poly[i])])
poly[(i+2)%L]-poly[(i+1)%L])])
) )
norm(area_vec)<EPSILON ? undef : -unit(area_vec); unit(-area_vec, error=undef);
// Function: point_in_polygon() // Function: point_in_polygon()
// Usage: // Usage:
// test = point_in_polygon(point, poly, [eps]) // test = point_in_polygon(point, poly, [nonzero], [eps])
// Topics: Geometry, Polygons // Topics: Geometry, Polygons
// Description: // Description:
// This function tests whether the given 2D point is inside, outside or on the boundary of // This function tests whether the given 2D point is inside, outside or on the boundary of
@ -1356,7 +1367,7 @@ function polygon_normal(poly) =
// Arguments: // Arguments:
// point = The 2D point to check // point = The 2D point to check
// poly = The list of 2D points forming the perimeter of the polygon. // poly = The list of 2D points forming the perimeter of the polygon.
// nonzero = The rule to use: true for "Nonzero" rule and false for "Even-Odd" (Default: true ) // nonzero = The rule to use: true for "Nonzero" rule and false for "Even-Odd". Default: false (Even-Odd)
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) // eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
// Example(2D): With nonzero set to true, we get this result. Green dots are inside the polygon and red are outside: // Example(2D): With nonzero set to true, we get this result. Green dots are inside the polygon and red are outside:
// a=20*2/3; // a=20*2/3;
@ -1390,7 +1401,7 @@ function polygon_normal(poly) =
// color(point_in_polygon(p,path,nonzero=false)==1 ? "green" : "red") // color(point_in_polygon(p,path,nonzero=false)==1 ? "green" : "red")
// move(p)circle(r=1, $fn=12); // move(p)circle(r=1, $fn=12);
// } // }
function point_in_polygon(point, poly, nonzero=true, eps=EPSILON) = function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
// Original algorithms from http://geomalgorithms.com/a03-_inclusion.html // Original algorithms from http://geomalgorithms.com/a03-_inclusion.html
assert( is_vector(point,2) && is_path(poly,dim=2) && len(poly)>2, assert( is_vector(point,2) && is_path(poly,dim=2) && len(poly)>2,
"The point and polygon should be in 2D. The polygon should have more that 2 points." ) "The point and polygon should be in 2D. The polygon should have more that 2 points." )
@ -1401,7 +1412,7 @@ function point_in_polygon(point, poly, nonzero=true, eps=EPSILON) =
for (i = [0:1:len(poly)-1]) for (i = [0:1:len(poly)-1])
let( seg = select(poly,i,i+1) ) let( seg = select(poly,i,i+1) )
if (!approx(seg[0],seg[1],eps) ) if (!approx(seg[0],seg[1],eps) )
point_on_segment(point, seg, eps=eps)? 1:0 point_on_line(point, seg, SEGMENT, eps=eps)? 1:0
] ]
) )
sum(on_brd) > 0? 0 : sum(on_brd) > 0? 0 :
@ -1432,6 +1443,122 @@ function point_in_polygon(point, poly, nonzero=true, eps=EPSILON) =
) 2*(len(cross)%2)-1; ) 2*(len(cross)%2)-1;
// Function: polygon_triangulation(poly, [ind], [eps])
// Usage:
// triangles = polygon_triangulation(poly)
// triangles = polygon_triangulation(poly, ind)
// Description:
// Given a simple polygon in 2D or 3D, triangulates it and returns a list
// of triples indexing into the polygon vertices. When the optional argument `ind` is
// given, the it is used as an index list into `poly` to define the polygon. In that case,
// `poly` may have a length greater than `ind`. Otherwise, all points in `poly`
// are considered as vertices of the polygon.
// .
// The function may issue an error if it finds that the polygon is not simple
// (self-intersecting) or its vertices are collinear. An error may also be issued
// for 3d non planar polygons.
// For 2d polygons, the output triangles will have the same winding (CW or CCW) of
// the input polygon. For 3d polygons, the triangle windings will induce a normal
// vector with the same direction of the polygon normal.
// Arguments:
// poly = Array of vertices for the polygon.
// ind = A list indexing the vertices of the polygon in `poly`.
// eps = A maximum tolerance in geometrical tests. Default: EPSILON
// Example:
// poly = star(id=10, od=15,n=11);
// tris = polygon_triangulation(poly);
// polygon(poly);
// up(1)
// color("blue");
// for(tri=tris) trace_path(select(poly,tri), size=.1, closed=true);
//
// Example:
// include<BOSL2/polyhedra.scad>
// vnf = regular_polyhedron_info(name="dodecahedron",side=5,info="vnf");
// %vnf_polyhedron(vnf);
// vnf_tri = [vnf[0], [for(face=vnf[1]) each polygon_triangulation(vnf[0], face) ] ];
// color("blue")
// vnf_wireframe(vnf_tri, d=.15);
function polygon_triangulation(poly, ind, eps=EPSILON) =
assert(is_path(poly), "Polygon `poly` should be a list of 2d or 3d points")
assert(is_undef(ind)
|| (is_vector(ind) && min(ind)>=0 && max(ind)<len(poly) ),
"Improper or out of bounds list of indices")
let( ind = is_undef(ind) ? count(len(poly)) : ind )
len(poly[ind[0]]) == 3
? // represents the polygon projection on its plane as a 2d polygon
let(
pts = select(poly,ind),
nrm = polygon_normal(pts)
)
// here, instead of an error, it might return [] or undef
assert( nrm!=undef,
"The polygon has self-intersections or its vertices are collinear or non coplanar.")
let(
imax = max_index([for(p=pts) norm(p-pts[0]) ]),
v1 = unit( pts[imax] - pts[0] ),
v2 = cross(v1,nrm),
prpts = pts*transpose([v1,v2])
)
[for(tri=_triangulate(prpts, count(len(ind)), eps)) select(ind,tri) ]
: let( cw = polygon_is_clockwise(select(poly, ind)) )
cw
? [for(tri=_triangulate( poly, reverse(ind), eps )) reverse(tri) ]
: _triangulate( poly, ind, eps );
// requires ccw 2d polygons
// returns ccw triangles
function _triangulate(poly, ind, eps=EPSILON, tris=[]) =
len(ind)==3 ? concat(tris,[ind]) :
let( ear = _get_ear(poly,ind,eps) )
assert( ear!=undef,
"The polygon has self-intersections or its vertices are collinear or non coplanar.")
let(
ear_tri = select(ind,ear,ear+2),
indr = select(ind,ear+2, ear) // indices of the remaining points
)
_triangulate(poly, indr, eps, concat(tris,[ear_tri]));
// search a valid ear from the remaining polygon
function _get_ear(poly, ind, eps, _i=0) =
_i>=len(ind) ? undef : // poly has no ears
let( // the _i-th ear candidate
p0 = poly[ind[_i]],
p1 = poly[ind[(_i+1)%len(ind)]],
p2 = poly[ind[(_i+2)%len(ind)]]
)
// if it is not a convex vertex, try the next one
_is_cw2(p0,p1,p2,eps) ? _get_ear(poly,ind,eps, _i=_i+1) :
let( // vertex p1 is convex; check if the triangle contains any other point
to_tst = select(ind,_i+3, _i-1),
pt2tst = select(poly,to_tst), // points other than p0, p1 and p2
q = [(p0-p2).y, (p2-p0).x], // orthogonal to ray [p0,p2] pointing right
q0 = q*p0,
atleft = [for(p=pt2tst) if(p*q<=q0) p ]
)
atleft==[] ? _i : // no point inside -> an ear
let(
q = [(p2-p1).y, (p1-p2).x], // orthogonal to ray [p1,p2] pointing right
q0 = q*p2,
atleft = [for(p=atleft) if(p*q<=q0) p ]
)
atleft==[] ? _i : // no point inside -> an ear
let(
q = [(p1-p0).y, (p0-p1).x], // orthogonal to ray [p1,p0] pointing right
q0 = q*p1,
atleft = [for(p=atleft) if(p*q<=q0) p ]
)
atleft==[] ? _i : // no point inside -> an ear
// check the next ear candidate
_get_ear(poly, ind, eps, _i=_i+1);
function _is_cw2(a,b,c,eps=EPSILON) = cross(a-c,b-c)<eps*norm(a-c)*norm(b-c);
// Function: is_polygon_clockwise() // Function: is_polygon_clockwise()
// Usage: // Usage:
// test = is_polygon_clockwise(poly); // test = is_polygon_clockwise(poly);

View file

@ -1563,7 +1563,7 @@ function star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit
) )
assert(is_def(n), "Must specify number of points, n") assert(is_def(n), "Must specify number of points, n")
assert(count==1, "Must specify exactly one of ir, id, step") assert(count==1, "Must specify exactly one of ir, id, step")
assert(stepOK, str("Parameter 'step' must be between 2 and ",floor(n/2)," for ",n," point star")) assert(stepOK, str("Parameter 'step' must be between 2 and ",floor(n/2-1/2)," for ",n," point star"))
let( let(
mat = !is_undef(_mat) ? _mat : mat = !is_undef(_mat) ? _mat :
( realign? rot(-180/n, planar=true) : affine2d_identity() ) * ( ( realign? rot(-180/n, planar=true) : affine2d_identity() ) * (

View file

@ -6,7 +6,7 @@ include <../std.scad>
test_point_on_segment(); test_point_on_line();
test_collinear(); test_collinear();
test_point_line_distance(); test_point_line_distance();
test_segment_distance(); test_segment_distance();
@ -53,10 +53,8 @@ test_is_polygon_clockwise();
test_clockwise_polygon(); test_clockwise_polygon();
test_ccw_polygon(); test_ccw_polygon();
test_reverse_polygon(); test_reverse_polygon();
//test_polygon_normal();
//test_split_polygons_at_each_x(); test_polygon_normal();
//test_split_polygons_at_each_y();
//test_split_polygons_at_each_z();
//tests to migrate to other files //tests to migrate to other files
test_is_path(); test_is_path();
@ -268,35 +266,43 @@ module test_line_from_points() {
} }
*test_line_from_points(); *test_line_from_points();
module test_point_on_segment() { module test_point_on_line() {
assert(point_on_segment([-15,0], [[-10,0], [10,0]]) == false); assert(point_on_line([-15,0], [[-10,0], [10,0]],SEGMENT) == false);
assert(point_on_segment([-10,0], [[-10,0], [10,0]]) == true); assert(point_on_line([-10,0], [[-10,0], [10,0]],SEGMENT) == true);
assert(point_on_segment([-5,0], [[-10,0], [10,0]]) == true); assert(point_on_line([-5,0], [[-10,0], [10,0]],SEGMENT) == true);
assert(point_on_segment([0,0], [[-10,0], [10,0]]) == true); assert(point_on_line([0,0], [[-10,0], [10,0]],SEGMENT) == true);
assert(point_on_segment([3,3], [[-10,0], [10,0]]) == false); assert(point_on_line([3,3], [[-10,0], [10,0]],SEGMENT) == false);
assert(point_on_segment([5,0], [[-10,0], [10,0]]) == true); assert(point_on_line([5,0], [[-10,0], [10,0]],SEGMENT) == true);
assert(point_on_segment([10,0], [[-10,0], [10,0]]) == true); assert(point_on_line([10,0], [[-10,0], [10,0]],SEGMENT) == true);
assert(point_on_segment([15,0], [[-10,0], [10,0]]) == false); assert(point_on_line([15,0], [[-10,0], [10,0]],SEGMENT) == false);
assert(point_on_segment([0,-15], [[0,-10], [0,10]]) == false); assert(point_on_line([0,-15], [[0,-10], [0,10]],SEGMENT) == false);
assert(point_on_segment([0,-10], [[0,-10], [0,10]]) == true); assert(point_on_line([0,-10], [[0,-10], [0,10]],SEGMENT) == true);
assert(point_on_segment([0, -5], [[0,-10], [0,10]]) == true); assert(point_on_line([0, -5], [[0,-10], [0,10]],SEGMENT) == true);
assert(point_on_segment([0, 0], [[0,-10], [0,10]]) == true); assert(point_on_line([0, 0], [[0,-10], [0,10]],SEGMENT) == true);
assert(point_on_segment([3, 3], [[0,-10], [0,10]]) == false); assert(point_on_line([3, 3], [[0,-10], [0,10]],SEGMENT) == false);
assert(point_on_segment([0, 5], [[0,-10], [0,10]]) == true); assert(point_on_line([0, 5], [[0,-10], [0,10]],SEGMENT) == true);
assert(point_on_segment([0, 10], [[0,-10], [0,10]]) == true); assert(point_on_line([0, 10], [[0,-10], [0,10]],SEGMENT) == true);
assert(point_on_segment([0, 15], [[0,-10], [0,10]]) == false); assert(point_on_line([0, 15], [[0,-10], [0,10]],SEGMENT) == false);
assert(point_on_segment([-15,-15], [[-10,-10], [10,10]]) == false); assert(point_on_line([-15,-15], [[-10,-10], [10,10]],SEGMENT) == false);
assert(point_on_segment([-10,-10], [[-10,-10], [10,10]]) == true); assert(point_on_line([-10,-10], [[-10,-10], [10,10]],SEGMENT) == true);
assert(point_on_segment([ -5, -5], [[-10,-10], [10,10]]) == true); assert(point_on_line([ -5, -5], [[-10,-10], [10,10]],SEGMENT) == true);
assert(point_on_segment([ 0, 0], [[-10,-10], [10,10]]) == true); assert(point_on_line([ 0, 0], [[-10,-10], [10,10]],SEGMENT) == true);
assert(point_on_segment([ 0, 3], [[-10,-10], [10,10]]) == false); assert(point_on_line([ 0, 3], [[-10,-10], [10,10]],SEGMENT) == false);
assert(point_on_segment([ 5, 5], [[-10,-10], [10,10]]) == true); assert(point_on_line([ 5, 5], [[-10,-10], [10,10]],SEGMENT) == true);
assert(point_on_segment([ 10, 10], [[-10,-10], [10,10]]) == true); assert(point_on_line([ 10, 10], [[-10,-10], [10,10]],SEGMENT) == true);
assert(point_on_segment([ 15, 15], [[-10,-10], [10,10]]) == false); assert(point_on_line([ 15, 15], [[-10,-10], [10,10]],SEGMENT) == false);
assert(point_on_line([10,10], [[0,0],[5,5]]) == true);
assert(point_on_line([4,4], [[0,0],[5,5]]) == true);
assert(point_on_line([-2,-2], [[0,0],[5,5]]) == true);
assert(point_on_line([5,5], [[0,0],[5,5]]) == true);
assert(point_on_line([10,10], [[0,0],[5,5]],RAY) == true);
assert(point_on_line([0,0], [[0,0],[5,5]],RAY) == true);
assert(point_on_line([3,3], [[0,0],[5,5]],RAY) == true);
} }
*test_point_on_segment(); *test_point_on_line();
module test__point_left_of_line2d() { module test__point_left_of_line2d() {
@ -593,6 +599,16 @@ module test_plane_from_points() {
*test_plane_from_points(); *test_plane_from_points();
module test_polygon_normal() {
circ = path3d(circle($fn=37, r=3));
assert_approx(polygon_normal(circ), UP);
assert_approx(polygon_normal(rot(from=UP,to=[1,2,3],p=circ)), unit([1,2,3]));
assert_approx(polygon_normal(rot(from=UP,to=[4,-2,3],p=reverse(circ))), -unit([4,-2,3]));
assert_approx(polygon_normal(path3d([[0,0], [10,10], [11,10], [0,-1], [-1,1]])), UP);
}
*test_polygon_normal();
module test_plane_normal() { module test_plane_normal() {
assert_approx(plane_normal(plane3pt([0,0,20], [0,10,10], [0,0,0])), [1,0,0]); assert_approx(plane_normal(plane3pt([0,0,20], [0,10,10], [0,0,0])), [1,0,0]);
assert_approx(plane_normal(plane3pt([2,0,20], [2,10,10], [2,0,0])), [1,0,0]); assert_approx(plane_normal(plane3pt([2,0,20], [2,10,10], [2,0,0])), [1,0,0]);
@ -650,6 +666,37 @@ module test_polygon_line_intersection() {
undef, info); undef, info);
assert_approx(polygon_line_intersection(polygnr,linegnr,bounded=[false,false]), assert_approx(polygon_line_intersection(polygnr,linegnr,bounded=[false,false]),
trnsl, info); trnsl, info);
sq = path3d(square(10));
pentagram = 10*path3d(turtle(["move",10,"left",144], repeat=4));
for (tran = [ident(4), skew(sxy=1.2)*scale([.9,1,1.2])*yrot(14)*zrot(37)*xrot(9)])
{
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[5,5,-1], [5,5,10]])), apply(tran, [5,5,0]));
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[5,5,1], [5,5,10]])), apply(tran, [5,5,0]));
assert(undef==polygon_line_intersection(apply(tran,sq),apply(tran,[[5,5,1], [5,5,10]]),RAY));
assert(undef==polygon_line_intersection(apply(tran,sq),apply(tran,[[11,11,-1],[11,11,1]])));
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[5,0,-10], [5,0,10]])), apply(tran, [5,0,0]));
assert_equal(polygon_line_intersection(apply(tran,sq),apply(tran,[[5,0,1], [5,0,10]]),RAY), undef);
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[10,0,1],[10,0,10]])), apply(tran, [10,0,0]));
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[1,5,0],[9,6,0]])), apply(tran, [[[0,4.875,0],[10,6.125,0]]]));
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[1,5,0],[9,6,0]]),SEGMENT), apply(tran, [[[1,5,0],[9,6,0]]]));
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[-1,-1,0],[8,8,0]])), apply(tran, [[[0,0,0],[10,10,0]]]));
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[-1,-1,0],[8,8,0]]),SEGMENT), apply(tran, [[[0,0,0],[8,8,0]]]));
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[-1,-1,0],[8,8,0]]),RAY), apply(tran, [[[0,0,0],[10,10,0]]]));
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[-2,4,0], [12,11,0]]),RAY), apply(tran, [[[0,5,0],[10,10,0]]]));
assert_equal(polygon_line_intersection(apply(tran,sq),apply(tran,[[-20,0,0],[20,40,0]]),RAY), undef);
assert_approx(polygon_line_intersection(apply(tran,sq),apply(tran,[[-1,0,0],[11,0,0]])), apply(tran, [[[0,0,0],[10,0,0]]]));
}
assert_approx(polygon_line_intersection(path2d(sq),[[1,5],[9,6]],SEGMENT), [[[1,5],[9,6]]]);
assert_approx(polygon_line_intersection(path2d(sq),[[1,5],[9,6]],LINE), [[[0,4.875],[10,6.125]]]);
assert_approx(polygon_line_intersection(pentagram,[[50,10,-4],[54,12,4]], nonzero=true), [52,11,0]);
assert_equal(polygon_line_intersection(pentagram,[[50,10,-4],[54,12,4]], nonzero=false), undef);
assert_approx(polygon_line_intersection(pentagram,[[50,-10,-4],[54,-12,4]], nonzero=true), [52,-11,0]);
assert_approx(polygon_line_intersection(pentagram,[[50,-10,-4],[54,-12,4]], nonzero=false), [52,-11,0]);
assert_approx(polygon_line_intersection(star(8,step=3,od=10), [[-5,3], [5,3]]),
[[[-3.31370849898, 3], [-2.24264068712, 3]],
[[-0.828427124746, 3], [0.828427124746, 3]],
[[2.24264068712, 3], [3.31370849898, 3]]]);
} }
*test_polygon_line_intersection(); *test_polygon_line_intersection();

View file

@ -210,8 +210,9 @@ function vnf_reverse_faces(vnf) =
function vnf_triangulate(vnf) = function vnf_triangulate(vnf) =
let( let(
vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf, vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf,
verts = vnf[0] verts = vnf[0],
) [verts, triangulate_faces(verts, vnf[1])]; faces = [for (face=vnf[1]) polygon_triangulation(verts, face)]
) [verts, faces];
// Function: vnf_vertex_array() // Function: vnf_vertex_array()