diff --git a/math.scad b/math.scad index 2262cac..5477512 100644 --- a/math.scad +++ b/math.scad @@ -857,7 +857,7 @@ function determinant(M) = // Description: // Returns true if A is a numeric matrix of height m and width n. If m or n // are omitted or set to undef then true is returned for any positive dimension. -// If `square` is true then the matrix is required to be square. Note if you +// If `square` is true then the matrix is required to be square. // specify m != n and require a square matrix then the result will always be false. // Arguments: // A = matrix to test @@ -1010,16 +1010,6 @@ function all(l, i=0, fail=false) = // count_true([[0,0], [1,0]]); // Returns 1. // count_true([[1,1], [1,1]]); // Returns 4. // count_true([[1,1], [1,1]], nmax=3); // Returns 3. -function count_true(l, nmax=undef, i=0, cnt=0) = - (i>=len(l) || (nmax!=undef && cnt>=nmax))? cnt : - count_true( - l=l, nmax=nmax, i=i+1, cnt=cnt+( - is_list(l[i])? count_true(l[i], nmax=nmax-cnt) : - (l[i]? 1 : 0) - ) - ); - - function count_true(l, nmax) = !is_list(l) ? !(!l) ? 1: 0 : let( c = [for( i = 0, @@ -1212,27 +1202,6 @@ function C_div(z1,z2) = // The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0] // where a_n is the z^n coefficient. Polynomial coefficients are real. // The result is a number if `z` is a number and a complex number otherwise. - -// Note: this should probably be recoded to use division by [1,-z], which is more accurate -// and avoids overflow with large coefficients, but requires poly_div to support complex coefficients. -function polynomial(p, z, _k, _zk, _total) = - is_undef(_k) - ? assert( is_vector(p), "Input polynomial coefficients must be a vector." ) - let(p = _poly_trim(p)) - assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." ) - polynomial( p, - z, - len(p)-1, - is_num(z)? 1 : [1,0], - is_num(z) ? 0 : [0,0]) - : _k==0 - ? _total + +_zk*p[0] - : polynomial( p, - z, - _k-1, - is_num(z) ? _zk*z : C_times(_zk,z), - _total+_zk*p[_k]); - function polynomial(p,z,k,total) =      is_undef(k)    ?    assert( is_vector(p) , "Input polynomial coefficients must be a vector." ) @@ -1248,36 +1217,13 @@ function polynomial(p,z,k,total) = // Description: // Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first, // computes the coefficient list of the product polynomial. -function poly_mult(p,q) = - is_undef(q) ? - assert( is_list(p) - && []==[for(pi=p) if( !is_vector(pi) && pi!=[]) 0], - "Invalid arguments to poly_mult") - len(p)==2 ? poly_mult(p[0],p[1]) - : poly_mult(p[0], poly_mult(select(p,1,-1))) - : - _poly_trim( - [ - for(n = [len(p)+len(q)-2:-1:0]) - sum( [for(i=[0:1:len(p)-1]) - let(j = len(p)+len(q)- 2 - n - i) - if (j>=0 && j=0 && j