Merge pull request #600 from RonaldoCMP/master

Doc and formating tweaks, minor code bugs/changes
This commit is contained in:
Revar Desmera 2021-07-04 14:11:09 -07:00 committed by GitHub
commit 5f57ee6cda
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 223 additions and 222 deletions

View file

@ -38,7 +38,7 @@
function is_homogeneous(l, depth=10) =
!is_list(l) || l==[] ? false :
let( l0=l[0] )
[] == [for(i=[1:len(l)-1]) if( ! _same_type(l[i],l0, depth+1) ) 0 ];
[] == [for(i=[1:1:len(l)-1]) if( ! _same_type(l[i],l0, depth+1) ) 0 ];
function is_homogenous(l, depth=10) = is_homogeneous(l, depth);
@ -63,8 +63,8 @@ function _same_type(a,b, depth) =
// a list of indices or a range.
// Usage:
// item = select(list, start);
// item = select(list, RANGE);
// item = select(list, INDEXLIST);
// item = select(list, [s:d:e]);
// item = select(list, [i0,i1...,ik]);
// list = select(list, start, end);
// Arguments:
// list = The list to get the portion of.
@ -342,7 +342,7 @@ function min_index(vals, all=false) =
// Function: max_index()
// Usage:
// idx = max_index(vals);
// idxlist = max_index(vals,all=true);
// idxlist = max_index(vals, all=true);
// Topics: List Handling
// See Also: min_index(), list_increasing(), list_decreasing()
// Description:
@ -964,14 +964,15 @@ function _group_sort_by_index(l,idx) =
[equal],
_group_sort_by_index(greater,idx)
);
function _group_sort(l) =
len(l) == 0 ? [] :
len(l) == 1 ? [l] :
let(
pivot = l[floor(len(l)/2)],
equal = [ for(li=l) if( li==pivot) li ] ,
lesser = [ for(li=l) if( li< pivot) li ] ,
equal = [ for(li=l) if( li==pivot) li ],
lesser = [ for(li=l) if( li< pivot) li ],
greater = [ for(li=l) if( li> pivot) li ]
)
concat(
@ -1207,16 +1208,16 @@ function unique(list) =
: let( sorted = sort(list))
[
for (i=[0:1:len(sorted)-1])
if (i==0 || (sorted[i] != sorted[i-1]))
sorted[i]
if (i==0 || (sorted[i] != sorted[i-1]))
sorted[i]
];
function _unique_sort(l) =
len(l) <= 1 ? l :
let(
pivot = l[floor(len(l)/2)],
equal = [ for(li=l) if( li==pivot) li ] ,
lesser = [ for(li=l) if( li<pivot ) li ] ,
equal = [ for(li=l) if( li==pivot) li ],
lesser = [ for(li=l) if( li<pivot ) li ],
greater = [ for(li=l) if( li>pivot) li ]
)
concat(
@ -1242,23 +1243,15 @@ function unique_count(list) =
assert(is_list(list) || is_string(list), "Invalid input." )
list == [] ? [[],[]] :
is_homogeneous(list,1) && ! is_list(list[0])
? let( sorted = _group_sort(list) ) [
[for(s=sorted) s[0] ],
[for(s=sorted) len(s) ]
]
: let(
list=sort(list),
ind = [
0,
for(i=[1:1:len(list)-1])
if (list[i]!=list[i-1]) i
]
) [
select(list,ind),
deltas( concat(ind,[len(list)]) )
];
? let( sorted = _group_sort(list) )
[ [for(s=sorted) s[0] ], [for(s=sorted) len(s) ] ]
: let(
list = sort(list),
ind = [0, for(i=[1:1:len(list)-1]) if (list[i]!=list[i-1]) i]
)
[ select(list,ind), deltas( concat(ind,[len(list)]) ) ];
// Section: List Iteration Helpers
// Function: idx()

View file

@ -2381,9 +2381,9 @@ function is_convex_polygon(poly,eps=EPSILON) =
// should have the same dimension, either 2D or 3D.
// A zero result means the hulls intercept whithin a tolerance `eps`.
// Arguments:
// points1 - first list of 2d or 3d points.
// points2 - second list of 2d or 3d points.
// eps - tolerance in distance evaluations. Default: EPSILON.
// points1 = first list of 2d or 3d points.
// points2 = second list of 2d or 3d points.
// eps = tolerance in distance evaluations. Default: EPSILON.
// Example(2D):
// pts1 = move([-3,0], p=square(3,center=true));
// pts2 = rot(a=45, p=square(2,center=true));
@ -2440,8 +2440,8 @@ function _GJK_distance(points1, points2, eps=EPSILON, lbd, d, simplex=[]) =
// All the points in the lists should have the same dimension, either 2D or 3D.
// This function is tipically faster than `convex_distance` to find a non-collision.
// Arguments:
// points1 - first list of 2d or 3d points.
// points2 - second list of 2d or 3d points.
// points1 = first list of 2d or 3d points.
// points2 = second list of 2d or 3d points.
// eps - tolerance for the intersection tests. Default: EPSILON.
// Example(2D):
// pts1 = move([-3,0], p=square(3,center=true));

390
math.scad
View file

@ -30,7 +30,7 @@ NAN = acos(2);
// Function: sqr()
// Usage:
// sqr(x);
// x2 = sqr(x);
// Description:
// If given a number, returns the square of that number,
// If given a vector, returns the sum-of-squares/dot product of the vector elements.
@ -62,7 +62,7 @@ function log2(x) =
// Function: hypot()
// Usage:
// l = hypot(x,y,[z]);
// l = hypot(x, y, [z]);
// Description:
// Calculate hypotenuse length of a 2D or 3D triangle.
// Arguments:
@ -79,7 +79,7 @@ function hypot(x,y,z=0) =
// Function: factorial()
// Usage:
// x = factorial(n,[d]);
// x = factorial(n, [d]);
// Description:
// Returns the factorial of the given integer value, or n!/d! if d is given.
// Arguments:
@ -116,7 +116,7 @@ function binomial(n) =
// Function: binomial_coefficient()
// Usage:
// x = binomial_coefficient(n,k);
// x = binomial_coefficient(n, k);
// Description:
// Returns the k-th binomial coefficient of the integer `n`.
// Arguments:
@ -304,98 +304,104 @@ function atanh(x) =
// Section: Quantization
// Function: quant()
// Usage:
// num = quant(x, y);
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding to the nearest multiple.
// If `x` is a list, then every item in that list will be recursively quantized.
// Arguments:
// x = The value to quantize.
// y = The multiple to quantize to.
// y = The non-zero integer quantum of the quantization.
// Example:
// quant(12,4); // Returns: 12
// quant(13,4); // Returns: 12
// quant(13.1,4); // Returns: 12
// quant(14,4); // Returns: 16
// quant(14.1,4); // Returns: 16
// quant(15,4); // Returns: 16
// quant(16,4); // Returns: 16
// quant(9,3); // Returns: 9
// quant(10,3); // Returns: 9
// quant(10.4,3); // Returns: 9
// quant(10.5,3); // Returns: 12
// quant(11,3); // Returns: 12
// quant(12,3); // Returns: 12
// quant([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,16,16,16,16]
// quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12]
// quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]]
// a = quant(12,4); // Returns: 12
// b = quant(13,4); // Returns: 12
// c = quant(13.1,4); // Returns: 12
// d = quant(14,4); // Returns: 16
// e = quant(14.1,4); // Returns: 16
// f = quant(15,4); // Returns: 16
// g = quant(16,4); // Returns: 16
// h = quant(9,3); // Returns: 9
// i = quant(10,3); // Returns: 9
// j = quant(10.4,3); // Returns: 9
// k = quant(10.5,3); // Returns: 12
// l = quant(11,3); // Returns: 12
// m = quant(12,3); // Returns: 12
// n = quant([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,16,16,16,16]
// o = quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12]
// p = quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]]
function quant(x,y) =
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.")
assert( is_int(y) && y>0, "The quantum `y` must be a non zero integer.")
is_list(x)
? [for (v=x) quant(v,y)]
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
: assert( is_finite(x), "The input to quantize is not a number nor a list of numbers.")
floor(x/y+0.5)*y;
// Function: quantdn()
// Usage:
// num = quantdn(x, y);
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding down to the previous multiple.
// If `x` is a list, then every item in that list will be recursively quantized down.
// Arguments:
// x = The value to quantize.
// y = The multiple to quantize to.
// y = The non-zero integer quantum of the quantization.
// Examples:
// quantdn(12,4); // Returns: 12
// quantdn(13,4); // Returns: 12
// quantdn(13.1,4); // Returns: 12
// quantdn(14,4); // Returns: 12
// quantdn(14.1,4); // Returns: 12
// quantdn(15,4); // Returns: 12
// quantdn(16,4); // Returns: 16
// quantdn(9,3); // Returns: 9
// quantdn(10,3); // Returns: 9
// quantdn(10.4,3); // Returns: 9
// quantdn(10.5,3); // Returns: 9
// quantdn(11,3); // Returns: 9
// quantdn(12,3); // Returns: 12
// quantdn([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,12,12,12,16]
// quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12]
// quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]]
// a = quantdn(12,4); // Returns: 12
// b = quantdn(13,4); // Returns: 12
// c = quantdn(13.1,4); // Returns: 12
// d = quantdn(14,4); // Returns: 12
// e = quantdn(14.1,4); // Returns: 12
// f = quantdn(15,4); // Returns: 12
// g = quantdn(16,4); // Returns: 16
// h = quantdn(9,3); // Returns: 9
// i = quantdn(10,3); // Returns: 9
// j = quantdn(10.4,3); // Returns: 9
// k = quantdn(10.5,3); // Returns: 9
// l = quantdn(11,3); // Returns: 9
// m = quantdn(12,3); // Returns: 12
// n = quantdn([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,12,12,12,16]
// o = quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12]
// p = quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]]
function quantdn(x,y) =
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.")
assert( is_int(y) && y>0, "The quantum `y` must be a non zero integer.")
is_list(x)
? [for (v=x) quantdn(v,y)]
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
? [for (v=x) quantdn(v,y)]
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
floor(x/y)*y;
// Function: quantup()
// Usage:
// num = quantup(x, y);
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding up to the next multiple.
// If `x` is a list, then every item in that list will be recursively quantized up.
// Arguments:
// x = The value to quantize.
// y = The multiple to quantize to.
// y = The non-zero integer quantum of the quantization.
// Examples:
// quantup(12,4); // Returns: 12
// quantup(13,4); // Returns: 16
// quantup(13.1,4); // Returns: 16
// quantup(14,4); // Returns: 16
// quantup(14.1,4); // Returns: 16
// quantup(15,4); // Returns: 16
// quantup(16,4); // Returns: 16
// quantup(9,3); // Returns: 9
// quantup(10,3); // Returns: 12
// quantup(10.4,3); // Returns: 12
// quantup(10.5,3); // Returns: 12
// quantup(11,3); // Returns: 12
// quantup(12,3); // Returns: 12
// quantup([12,13,13.1,14,14.1,15,16],4); // Returns: [12,16,16,16,16,16,16]
// quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12]
// a = quantup(12,4); // Returns: 12
// b = quantup(13,4); // Returns: 16
// c = quantup(13.1,4); // Returns: 16
// d = quantup(14,4); // Returns: 16
// e = quantup(14.1,4); // Returns: 16
// f = quantup(15,4); // Returns: 16
// g = quantup(16,4); // Returns: 16
// h = quantup(9,3); // Returns: 9
// i = quantup(10,3); // Returns: 12
// j = quantup(10.4,3); // Returns: 12
// k = quantup(10.5,3); // Returns: 12
// l = quantup(11,3); // Returns: 12
// m = quantup(12,3); // Returns: 12
// o = quantup([12,13,13.1,14,14.1,15,16],4); // Returns: [12,16,16,16,16,16,16]
// p = quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12]
// quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]]
function quantup(x,y) =
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.")
assert( is_int(y) && y>0, "The quantum `y` must be a non zero integer.")
is_list(x)
? [for (v=x) quantup(v,y)]
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
? [for (v=x) quantup(v,y)]
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
ceil(x/y)*y;
@ -403,7 +409,7 @@ function quantup(x,y) =
// Function: constrain()
// Usage:
// constrain(v, minval, maxval);
// val = constrain(v, minval, maxval);
// Description:
// Constrains value to a range of values between minval and maxval, inclusive.
// Arguments:
@ -411,11 +417,11 @@ function quantup(x,y) =
// minval = minimum value to return, if out of range.
// maxval = maximum value to return, if out of range.
// Example:
// constrain(-5, -1, 1); // Returns: -1
// constrain(5, -1, 1); // Returns: 1
// constrain(0.3, -1, 1); // Returns: 0.3
// constrain(9.1, 0, 9); // Returns: 9
// constrain(-0.1, 0, 9); // Returns: 0
// a = constrain(-5, -1, 1); // Returns: -1
// b = constrain(5, -1, 1); // Returns: 1
// c = constrain(0.3, -1, 1); // Returns: 0.3
// d = constrain(9.1, 0, 9); // Returns: 9
// e = constrain(-0.1, 0, 9); // Returns: 0
function constrain(v, minval, maxval) =
assert( is_finite(v+minval+maxval), "Input must be finite number(s).")
min(maxval, max(minval, v));
@ -423,20 +429,20 @@ function constrain(v, minval, maxval) =
// Function: posmod()
// Usage:
// posmod(x,m)
// mod = posmod(x, m)
// Description:
// Returns the positive modulo `m` of `x`. Value returned will be in the range 0 ... `m`-1.
// Arguments:
// x = The value to constrain.
// m = Modulo value.
// Example:
// posmod(-700,360); // Returns: 340
// posmod(-270,360); // Returns: 90
// posmod(-120,360); // Returns: 240
// posmod(120,360); // Returns: 120
// posmod(270,360); // Returns: 270
// posmod(700,360); // Returns: 340
// posmod(3,2.5); // Returns: 0.5
// a = posmod(-700,360); // Returns: 340
// b = posmod(-270,360); // Returns: 90
// c = posmod(-120,360); // Returns: 240
// d = posmod(120,360); // Returns: 120
// e = posmod(270,360); // Returns: 270
// f = posmod(700,360); // Returns: 340
// g = posmod(3,2.5); // Returns: 0.5
function posmod(x,m) =
assert( is_finite(x) && is_finite(m) && !approx(m,0) , "Input must be finite numbers. The divisor cannot be zero.")
(x%m+m)%m;
@ -444,16 +450,16 @@ function posmod(x,m) =
// Function: modang()
// Usage:
// ang = modang(x)
// ang = modang(x);
// Description:
// Takes an angle in degrees and normalizes it to an equivalent angle value between -180 and 180.
// Example:
// modang(-700,360); // Returns: 20
// modang(-270,360); // Returns: 90
// modang(-120,360); // Returns: -120
// modang(120,360); // Returns: 120
// modang(270,360); // Returns: -90
// modang(700,360); // Returns: -20
// a1 = modang(-700,360); // Returns: 20
// a2 = modang(-270,360); // Returns: 90
// a3 = modang(-120,360); // Returns: -120
// a4 = modang(120,360); // Returns: 120
// a5 = modang(270,360); // Returns: -90
// a6 = modang(700,360); // Returns: -20
function modang(x) =
assert( is_finite(x), "Input must be a finite number.")
let(xx = posmod(x,360)) xx<180? xx : xx-360;
@ -463,7 +469,7 @@ function modang(x) =
// Function: rand_int()
// Usage:
// rand_int(minval,maxval,N,[seed]);
// rand_int(minval, maxval, N, [seed]);
// Description:
// Return a list of random integers in the range of minval to maxval, inclusive.
// Arguments:
@ -483,7 +489,7 @@ function rand_int(minval, maxval, N, seed=undef) =
// Function: gaussian_rands()
// Usage:
// gaussian_rands(mean, stddev, [N], [seed])
// arr = gaussian_rands(mean, stddev, [N], [seed]);
// Description:
// Returns a random number with a gaussian/normal distribution.
// Arguments:
@ -499,7 +505,7 @@ function gaussian_rands(mean, stddev, N=1, seed=undef) =
// Function: log_rands()
// Usage:
// log_rands(minval, maxval, factor, [N], [seed]);
// num = log_rands(minval, maxval, factor, [N], [seed]);
// Description:
// Returns a single random number, with a logarithmic distribution.
// Arguments:
@ -526,7 +532,7 @@ function log_rands(minval, maxval, factor, N=1, seed=undef) =
// Function: gcd()
// Usage:
// gcd(a,b)
// x = gcd(a,b)
// Description:
// Computes the Greatest Common Divisor/Factor of `a` and `b`.
function gcd(a,b) =
@ -537,7 +543,7 @@ function gcd(a,b) =
// Computes lcm for two integers
function _lcm(a,b) =
assert(is_int(a) && is_int(b), "Invalid non-integer parameters to lcm")
assert(a!=0 && b!=0, "Arguments to lcm must be non zero")
assert(a!=0 && b!=0, "Arguments to lcm should not be zero")
abs(a*b) / gcd(a,b);
@ -549,8 +555,8 @@ function _lcmlist(a) =
// Function: lcm()
// Usage:
// lcm(a,b)
// lcm(list)
// div = lcm(a, b);
// divs = lcm(list);
// Description:
// Computes the Least Common Multiple of the two arguments or a list of arguments. Inputs should
// be non-zero integers. The output is always a positive integer. It is an error to pass zero
@ -791,17 +797,13 @@ function _med3(a,b,c) =
// d = convolve([[1,1],[2,2],[3,1]],[[1,2],[2,1]])); // Returns: [3,9,11,7]
function convolve(p,q) =
p==[] || q==[] ? [] :
assert(
(is_vector(p) || is_matrix(p))
assert( (is_vector(p) || is_matrix(p))
&& ( is_vector(q) || (is_matrix(q) && ( !is_vector(p[0]) || (len(p[0])==len(q[0])) ) ) ) ,
"The inputs should be vectors or paths all of the same dimension."
)
let(
n = len(p),
m = len(q)
) [
for (i=[0:n+m-2], k1 = max(0,i-n+1), k2 = min(i,m-1) )
sum([for(j=[k1:k2]) p[i-j]*q[j] ])
"The inputs should be vectors or paths all of the same dimension.")
let( n = len(p),
m = len(q))
[for(i=[0:n+m-2], k1 = max(0,i-n+1), k2 = min(i,m-1) )
sum([for(j=[k1:k2]) p[i-j]*q[j] ])
];
@ -1012,7 +1014,7 @@ function determinant(M) =
// Function: is_matrix()
// Usage:
// is_matrix(A,[m],[n],[square])
// test = is_matrix(A, [m], [n], [square])
// Description:
// Returns true if A is a numeric matrix of height m and width n. If m or n
// are omitted or set to undef then true is returned for any positive dimension.
@ -1064,10 +1066,10 @@ function matrix_trace(M) =
// x = The value to check.
// eps = The maximum allowed variance. Default: `EPSILON` (1e-9)
// Example:
// all_zero(0); // Returns: true.
// all_zero(1e-3); // Returns: false.
// all_zero([0,0,0]); // Returns: true.
// all_zero([0,0,1e-3]); // Returns: false.
// a = all_zero(0); // Returns: true.
// b = all_zero(1e-3); // Returns: false.
// c = all_zero([0,0,0]); // Returns: true.
// d = all_zero([0,0,1e-3]); // Returns: false.
function all_zero(x, eps=EPSILON) =
is_finite(x)? approx(x,eps) :
is_list(x)? (x != [] && [for (xx=x) if(!all_zero(xx,eps=eps)) 1] == []) :
@ -1076,7 +1078,7 @@ function all_zero(x, eps=EPSILON) =
// Function: all_nonzero()
// Usage:
// x = all_nonzero(x, [eps]);
// test = all_nonzero(x, [eps]);
// Description:
// Returns true if the finite number passed to it is not almost zero, to within `eps`.
// If passed a list, recursively checks if all items in the list are not almost zero.
@ -1085,11 +1087,11 @@ function all_zero(x, eps=EPSILON) =
// x = The value to check.
// eps = The maximum allowed variance. Default: `EPSILON` (1e-9)
// Example:
// all_nonzero(0); // Returns: false.
// all_nonzero(1e-3); // Returns: true.
// all_nonzero([0,0,0]); // Returns: false.
// all_nonzero([0,0,1e-3]); // Returns: false.
// all_nonzero([1e-3,1e-3,1e-3]); // Returns: true.
// a = all_nonzero(0); // Returns: false.
// b = all_nonzero(1e-3); // Returns: true.
// c = all_nonzero([0,0,0]); // Returns: false.
// d = all_nonzero([0,0,1e-3]); // Returns: false.
// e = all_nonzero([1e-3,1e-3,1e-3]); // Returns: true.
function all_nonzero(x, eps=EPSILON) =
is_finite(x)? !approx(x,eps) :
is_list(x)? (x != [] && [for (xx=x) if(!all_nonzero(xx,eps=eps)) 1] == []) :
@ -1098,7 +1100,7 @@ function all_nonzero(x, eps=EPSILON) =
// Function: all_positive()
// Usage:
// all_positive(x);
// test = all_positive(x);
// Description:
// Returns true if the finite number passed to it is greater than zero.
// If passed a list, recursively checks if all items in the list are positive.
@ -1106,13 +1108,13 @@ function all_nonzero(x, eps=EPSILON) =
// Arguments:
// x = The value to check.
// Example:
// all_positive(-2); // Returns: false.
// all_positive(0); // Returns: false.
// all_positive(2); // Returns: true.
// all_positive([0,0,0]); // Returns: false.
// all_positive([0,1,2]); // Returns: false.
// all_positive([3,1,2]); // Returns: true.
// all_positive([3,-1,2]); // Returns: false.
// a = all_positive(-2); // Returns: false.
// b = all_positive(0); // Returns: false.
// c = all_positive(2); // Returns: true.
// d = all_positive([0,0,0]); // Returns: false.
// e = all_positive([0,1,2]); // Returns: false.
// f = all_positive([3,1,2]); // Returns: true.
// g = all_positive([3,-1,2]); // Returns: false.
function all_positive(x) =
is_num(x)? x>0 :
is_list(x)? (x != [] && [for (xx=x) if(!all_positive(xx)) 1] == []) :
@ -1121,7 +1123,7 @@ function all_positive(x) =
// Function: all_negative()
// Usage:
// all_negative(x);
// test = all_negative(x);
// Description:
// Returns true if the finite number passed to it is less than zero.
// If passed a list, recursively checks if all items in the list are negative.
@ -1129,14 +1131,14 @@ function all_positive(x) =
// Arguments:
// x = The value to check.
// Example:
// all_negative(-2); // Returns: true.
// all_negative(0); // Returns: false.
// all_negative(2); // Returns: false.
// all_negative([0,0,0]); // Returns: false.
// all_negative([0,1,2]); // Returns: false.
// all_negative([3,1,2]); // Returns: false.
// all_negative([3,-1,2]); // Returns: false.
// all_negative([-3,-1,-2]); // Returns: true.
// a = all_negative(-2); // Returns: true.
// b = all_negative(0); // Returns: false.
// c = all_negative(2); // Returns: false.
// d = all_negative([0,0,0]); // Returns: false.
// e = all_negative([0,1,2]); // Returns: false.
// f = all_negative([3,1,2]); // Returns: false.
// g = all_negative([3,-1,2]); // Returns: false.
// h = all_negative([-3,-1,-2]); // Returns: true.
function all_negative(x) =
is_num(x)? x<0 :
is_list(x)? (x != [] && [for (xx=x) if(!all_negative(xx)) 1] == []) :
@ -1153,14 +1155,14 @@ function all_negative(x) =
// Arguments:
// x = The value to check.
// Example:
// all_nonpositive(-2); // Returns: true.
// all_nonpositive(0); // Returns: true.
// all_nonpositive(2); // Returns: false.
// all_nonpositive([0,0,0]); // Returns: true.
// all_nonpositive([0,1,2]); // Returns: false.
// all_nonpositive([3,1,2]); // Returns: false.
// all_nonpositive([3,-1,2]); // Returns: false.
// all_nonpositive([-3,-1,-2]); // Returns: true.
// a = all_nonpositive(-2); // Returns: true.
// b = all_nonpositive(0); // Returns: true.
// c = all_nonpositive(2); // Returns: false.
// d = all_nonpositive([0,0,0]); // Returns: true.
// e = all_nonpositive([0,1,2]); // Returns: false.
// f = all_nonpositive([3,1,2]); // Returns: false.
// g = all_nonpositive([3,-1,2]); // Returns: false.
// h = all_nonpositive([-3,-1,-2]); // Returns: true.
function all_nonpositive(x) =
is_num(x)? x<=0 :
is_list(x)? (x != [] && [for (xx=x) if(!all_nonpositive(xx)) 1] == []) :
@ -1177,15 +1179,15 @@ function all_nonpositive(x) =
// Arguments:
// x = The value to check.
// Example:
// all_nonnegative(-2); // Returns: false.
// all_nonnegative(0); // Returns: true.
// all_nonnegative(2); // Returns: true.
// all_nonnegative([0,0,0]); // Returns: true.
// all_nonnegative([0,1,2]); // Returns: true.
// all_nonnegative([0,-1,-2]); // Returns: false.
// all_nonnegative([3,1,2]); // Returns: true.
// all_nonnegative([3,-1,2]); // Returns: false.
// all_nonnegative([-3,-1,-2]); // Returns: false.
// a = all_nonnegative(-2); // Returns: false.
// b = all_nonnegative(0); // Returns: true.
// c = all_nonnegative(2); // Returns: true.
// d = all_nonnegative([0,0,0]); // Returns: true.
// e = all_nonnegative([0,1,2]); // Returns: true.
// f = all_nonnegative([0,-1,-2]); // Returns: false.
// g = all_nonnegative([3,1,2]); // Returns: true.
// h = all_nonnegative([3,-1,2]); // Returns: false.
// i = all_nonnegative([-3,-1,-2]); // Returns: false.
function all_nonnegative(x) =
is_num(x)? x>=0 :
is_list(x)? (x != [] && [for (xx=x) if(!all_nonnegative(xx)) 1] == []) :
@ -1194,7 +1196,7 @@ function all_nonnegative(x) =
// Function all_equal()
// Usage:
// b = all_equal(vec,[eps]);
// b = all_equal(vec, [eps]);
// Description:
// Returns true if all of the entries in vec are equal to each other, or approximately equal to each other if eps is set.
// Arguments:
@ -1231,7 +1233,7 @@ function all_integer(x) =
// Function: approx()
// Usage:
// b = approx(a,b,[eps])
// test = approx(a, b, [eps])
// Description:
// Compares two numbers or vectors, and returns true if they are closer than `eps` to each other.
// Arguments:
@ -1239,11 +1241,11 @@ function all_integer(x) =
// b = Second value.
// eps = The maximum allowed difference between `a` and `b` that will return true.
// Example:
// approx(-0.3333333333,-1/3); // Returns: true
// approx(0.3333333333,1/3); // Returns: true
// approx(0.3333,1/3); // Returns: false
// approx(0.3333,1/3,eps=1e-3); // Returns: true
// approx(PI,3.1415926536); // Returns: true
// test1 = approx(-0.3333333333,-1/3); // Returns: true
// test2 = approx(0.3333333333,1/3); // Returns: true
// test3 = approx(0.3333,1/3); // Returns: false
// test4 = approx(0.3333,1/3,eps=1e-3); // Returns: true
// test5 = approx(PI,3.1415926536); // Returns: true
function approx(a,b,eps=EPSILON) =
(a==b && is_bool(a) == is_bool(b)) ||
(is_num(a) && is_num(b) && abs(a-b) <= eps) ||
@ -1261,7 +1263,7 @@ function _type_num(x) =
// Function: compare_vals()
// Usage:
// b = compare_vals(a, b);
// test = compare_vals(a, b);
// Description:
// Compares two values. Lists are compared recursively.
// Returns <0 if a<b. Returns >0 if a>b. Returns 0 if a==b.
@ -1279,7 +1281,7 @@ function compare_vals(a, b) =
// Function: compare_lists()
// Usage:
// b = compare_lists(a, b)
// test = compare_lists(a, b)
// Description:
// Compare contents of two lists using `compare_vals()`.
// Returns <0 if `a`<`b`.
@ -1303,7 +1305,7 @@ function compare_lists(a, b) =
// Function: any()
// Usage:
// bool = any(l);
// bool = any(l,func); // Requires OpenSCAD 2021.01 or later.
// bool = any(l, func); // Requires OpenSCAD 2021.01 or later.
// Requirements:
// Requires OpenSCAD 2021.01 or later to use the `func=` argument.
// Description:
@ -1336,7 +1338,7 @@ function _any_bool(l, i=0, out=false) =
// Function: all()
// Usage:
// bool = all(l);
// bool = all(l,func); // Requires OpenSCAD 2021.01 or later.
// bool = all(l, func); // Requires OpenSCAD 2021.01 or later.
// Requirements:
// Requires OpenSCAD 2021.01 or later to use the `func=` argument.
// Description:
@ -1346,12 +1348,12 @@ function _any_bool(l, i=0, out=false) =
// l = The list to test for true items.
// func = An optional function literal of signature (x), returning bool, to test each list item with.
// Example:
// all([0,false,undef]); // Returns false.
// all([1,false,undef]); // Returns false.
// all([1,5,true]); // Returns true.
// all([[0,0], [0,0]]); // Returns true.
// all([[0,0], [1,0]]); // Returns true.
// all([[1,1], [1,1]]); // Returns true.
// test1 = all([0,false,undef]); // Returns false.
// test2 = all([1,false,undef]); // Returns false.
// test3 = all([1,5,true]); // Returns true.
// test4 = all([[0,0], [0,0]]); // Returns true.
// test5 = all([[0,0], [1,0]]); // Returns true.
// test6 = all([[1,1], [1,1]]); // Returns true.
function all(l, func) =
assert(is_list(l), "The input is not a list.")
assert(func==undef || is_func(func))
@ -1370,8 +1372,8 @@ function _all_bool(l, i=0, out=true) =
// Function: count_true()
// Usage:
// n = count_true(l,[nmax=]);
// n = count_true(l,func,[nmax=]); // Requires OpenSCAD 2021.01 or later.
// seq = count_true(l, [nmax=]);
// seq = count_true(l, func, [nmax=]); // Requires OpenSCAD 2021.01 or later.
// Requirements:
// Requires OpenSCAD 2021.01 or later to use the `func=` argument.
// Description:
@ -1385,14 +1387,14 @@ function _all_bool(l, i=0, out=true) =
// ---
// nmax = Max number of true items to count. Default: `undef` (no limit)
// Example:
// count_true([0,false,undef]); // Returns 0.
// count_true([1,false,undef]); // Returns 1.
// count_true([1,5,false]); // Returns 2.
// count_true([1,5,true]); // Returns 3.
// count_true([[0,0], [0,0]]); // Returns 2.
// count_true([[0,0], [1,0]]); // Returns 2.
// count_true([[1,1], [1,1]]); // Returns 2.
// count_true([[1,1], [1,1]], nmax=1); // Returns 1.
// num1 = count_true([0,false,undef]); // Returns 0.
// num2 = count_true([1,false,undef]); // Returns 1.
// num3 = count_true([1,5,false]); // Returns 2.
// num4 = count_true([1,5,true]); // Returns 3.
// num5 = count_true([[0,0], [0,0]]); // Returns 2.
// num6 = count_true([[0,0], [1,0]]); // Returns 2.
// num7 = count_true([[1,1], [1,1]]); // Returns 2.
// num8 = count_true([[1,1], [1,1]], nmax=1); // Returns 1.
function count_true(l, func, nmax) =
assert(is_list(l))
assert(func==undef || is_func(func))
@ -1593,29 +1595,31 @@ function complex(list) =
// Arguments:
// z1 = First complex number, vector or matrix
// z2 = Second complex number, vector or matrix
function c_mul(z1,z2) =
is_matrix([z1,z2],2,2) ? _c_mul(z1,z2) :
_combine_complex(_c_mul(_split_complex(z1), _split_complex(z2)));
function _split_complex(data) =
is_vector(data,2) ? data
: is_num(data[0][0]) ? [data*[1,0], data*[0,1]]
: [
[for(vec=data) vec * [1,0]],
[for(vec=data) vec * [0,1]]
];
is_vector(data,2) ? data
: is_num(data[0][0]) ? [data*[1,0], data*[0,1]]
: [
[for(vec=data) vec * [1,0]],
[for(vec=data) vec * [0,1]]
];
function _combine_complex(data) =
is_vector(data,2) ? data
: is_num(data[0][0]) ? [for(i=[0:len(data[0])-1]) [data[0][i],data[1][i]]]
: [for(i=[0:1:len(data[0])-1])
[for(j=[0:1:len(data[0][0])-1])
[data[0][i][j], data[1][i][j]]]];
: is_num(data[0][0]) ? [for(i=[0:len(data[0])-1]) [data[0][i],data[1][i]]]
: [for(i=[0:1:len(data[0])-1])
[for(j=[0:1:len(data[0][0])-1])
[data[0][i][j], data[1][i][j]]]];
function _c_mul(z1,z2) =
[ z1.x*z2.x - z1.y*z2.y, z1.x*z2.y + z1.y*z2.x ];
function c_mul(z1,z2) =
is_matrix([z1,z2],2,2) ? _c_mul(z1,z2) :
_combine_complex(_c_mul(_split_complex(z1), _split_complex(z2)));
// Function: c_div()
// Usage:
@ -1643,6 +1647,7 @@ function c_conj(z) =
is_vector(z,2) ? [z.x,-z.y] :
[for(entry=z) c_conj(entry)];
// Function: c_real()
// Usage:
// x = c_real(z)
@ -1653,6 +1658,7 @@ function c_real(z) =
: is_num(z[0][0]) ? z*[1,0]
: [for(vec=z) vec * [1,0]];
// Function: c_imag()
// Usage:
// x = c_imag(z)
@ -1671,6 +1677,7 @@ function c_imag(z) =
// Produce an n by n complex identity matrix
function c_ident(n) = [for (i = [0:1:n-1]) [for (j = [0:1:n-1]) (i==j)?[1,0]:[0,0]]];
// Function: c_norm()
// Usage:
// n = c_norm(z)
@ -1678,11 +1685,12 @@ function c_ident(n) = [for (i = [0:1:n-1]) [for (j = [0:1:n-1]) (i==j)?[1,0]:[0,
// Compute the norm of a complex number or vector.
function c_norm(z) = norm_fro(z);
// Section: Polynomials
// Function: quadratic_roots()
// Usage:
// roots = quadratic_roots(a,b,c,[real])
// roots = quadratic_roots(a, b, c, [real])
// Description:
// Computes roots of the quadratic equation a*x^2+b*x+c==0, where the
// coefficients are real numbers. If real is true then returns only the
@ -1778,7 +1786,7 @@ function _poly_div(n,d,q) =
/// Internal Function: _poly_trim()
/// Usage:
/// _poly_trim(p,[eps])
/// _poly_trim(p, [eps])
/// Description:
/// Removes leading zero terms of a polynomial. By default zeros must be exact,
/// or give epsilon for approximate zeros. Returns [0] for a zero polynomial.
@ -1804,7 +1812,7 @@ function poly_add(p,q) =
// Function: poly_roots()
// Usage:
// poly_roots(p,[tol])
// roots = poly_roots(p, [tol]);
// Description:
// Returns all complex roots of the specified real polynomial p.
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
@ -1874,7 +1882,7 @@ function _poly_roots(p, pderiv, s, z, tol, i=0) =
// Function: real_roots()
// Usage:
// real_roots(p, [eps], [tol])
// roots = real_roots(p, [eps], [tol])
// Description:
// Returns the real roots of the specified real polynomial p.
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
@ -1926,7 +1934,7 @@ function real_roots(p,eps=undef,tol=1e-14) =
// This function can only find roots that cross the x axis: it cannot find the
// the root of x^2.
// Arguments:
// f = function literal for a single variable function
// f = function literal for a scalar-valued single variable function
// x0 = endpoint of interval to search for root
// x1 = second endpoint of interval to search for root
// tol = tolerance for solution. Default: 1e-15