diff --git a/arrays.scad b/arrays.scad index 3d96a86..c5ccc96 100644 --- a/arrays.scad +++ b/arrays.scad @@ -38,7 +38,7 @@ function is_homogeneous(l, depth=10) = !is_list(l) || l==[] ? false : let( l0=l[0] ) - [] == [for(i=[1:len(l)-1]) if( ! _same_type(l[i],l0, depth+1) ) 0 ]; + [] == [for(i=[1:1:len(l)-1]) if( ! _same_type(l[i],l0, depth+1) ) 0 ]; function is_homogenous(l, depth=10) = is_homogeneous(l, depth); @@ -63,8 +63,8 @@ function _same_type(a,b, depth) = // a list of indices or a range. // Usage: // item = select(list, start); -// item = select(list, RANGE); -// item = select(list, INDEXLIST); +// item = select(list, [s:d:e]); +// item = select(list, [i0,i1...,ik]); // list = select(list, start, end); // Arguments: // list = The list to get the portion of. @@ -342,7 +342,7 @@ function min_index(vals, all=false) = // Function: max_index() // Usage: // idx = max_index(vals); -// idxlist = max_index(vals,all=true); +// idxlist = max_index(vals, all=true); // Topics: List Handling // See Also: min_index(), list_increasing(), list_decreasing() // Description: @@ -964,14 +964,15 @@ function _group_sort_by_index(l,idx) = [equal], _group_sort_by_index(greater,idx) ); + function _group_sort(l) = len(l) == 0 ? [] : len(l) == 1 ? [l] : let( pivot = l[floor(len(l)/2)], - equal = [ for(li=l) if( li==pivot) li ] , - lesser = [ for(li=l) if( li< pivot) li ] , + equal = [ for(li=l) if( li==pivot) li ], + lesser = [ for(li=l) if( li< pivot) li ], greater = [ for(li=l) if( li> pivot) li ] ) concat( @@ -1207,16 +1208,16 @@ function unique(list) = : let( sorted = sort(list)) [ for (i=[0:1:len(sorted)-1]) - if (i==0 || (sorted[i] != sorted[i-1])) - sorted[i] + if (i==0 || (sorted[i] != sorted[i-1])) + sorted[i] ]; function _unique_sort(l) = len(l) <= 1 ? l : let( pivot = l[floor(len(l)/2)], - equal = [ for(li=l) if( li==pivot) li ] , - lesser = [ for(li=l) if( lipivot) li ] ) concat( @@ -1242,23 +1243,15 @@ function unique_count(list) = assert(is_list(list) || is_string(list), "Invalid input." ) list == [] ? [[],[]] : is_homogeneous(list,1) && ! is_list(list[0]) - ? let( sorted = _group_sort(list) ) [ - [for(s=sorted) s[0] ], - [for(s=sorted) len(s) ] - ] - : let( - list=sort(list), - ind = [ - 0, - for(i=[1:1:len(list)-1]) - if (list[i]!=list[i-1]) i - ] - ) [ - select(list,ind), - deltas( concat(ind,[len(list)]) ) - ]; - + ? let( sorted = _group_sort(list) ) + [ [for(s=sorted) s[0] ], [for(s=sorted) len(s) ] ] + : let( + list = sort(list), + ind = [0, for(i=[1:1:len(list)-1]) if (list[i]!=list[i-1]) i] + ) + [ select(list,ind), deltas( concat(ind,[len(list)]) ) ]; + // Section: List Iteration Helpers // Function: idx() diff --git a/geometry.scad b/geometry.scad index 305609e..055d796 100644 --- a/geometry.scad +++ b/geometry.scad @@ -2381,9 +2381,9 @@ function is_convex_polygon(poly,eps=EPSILON) = // should have the same dimension, either 2D or 3D. // A zero result means the hulls intercept whithin a tolerance `eps`. // Arguments: -// points1 - first list of 2d or 3d points. -// points2 - second list of 2d or 3d points. -// eps - tolerance in distance evaluations. Default: EPSILON. +// points1 = first list of 2d or 3d points. +// points2 = second list of 2d or 3d points. +// eps = tolerance in distance evaluations. Default: EPSILON. // Example(2D): // pts1 = move([-3,0], p=square(3,center=true)); // pts2 = rot(a=45, p=square(2,center=true)); @@ -2440,8 +2440,8 @@ function _GJK_distance(points1, points2, eps=EPSILON, lbd, d, simplex=[]) = // All the points in the lists should have the same dimension, either 2D or 3D. // This function is tipically faster than `convex_distance` to find a non-collision. // Arguments: -// points1 - first list of 2d or 3d points. -// points2 - second list of 2d or 3d points. +// points1 = first list of 2d or 3d points. +// points2 = second list of 2d or 3d points. // eps - tolerance for the intersection tests. Default: EPSILON. // Example(2D): // pts1 = move([-3,0], p=square(3,center=true)); diff --git a/math.scad b/math.scad index 319f449..45755f5 100644 --- a/math.scad +++ b/math.scad @@ -30,7 +30,7 @@ NAN = acos(2); // Function: sqr() // Usage: -// sqr(x); +// x2 = sqr(x); // Description: // If given a number, returns the square of that number, // If given a vector, returns the sum-of-squares/dot product of the vector elements. @@ -62,7 +62,7 @@ function log2(x) = // Function: hypot() // Usage: -// l = hypot(x,y,[z]); +// l = hypot(x, y, [z]); // Description: // Calculate hypotenuse length of a 2D or 3D triangle. // Arguments: @@ -79,7 +79,7 @@ function hypot(x,y,z=0) = // Function: factorial() // Usage: -// x = factorial(n,[d]); +// x = factorial(n, [d]); // Description: // Returns the factorial of the given integer value, or n!/d! if d is given. // Arguments: @@ -116,7 +116,7 @@ function binomial(n) = // Function: binomial_coefficient() // Usage: -// x = binomial_coefficient(n,k); +// x = binomial_coefficient(n, k); // Description: // Returns the k-th binomial coefficient of the integer `n`. // Arguments: @@ -304,98 +304,104 @@ function atanh(x) = // Section: Quantization // Function: quant() +// Usage: +// num = quant(x, y); // Description: // Quantize a value `x` to an integer multiple of `y`, rounding to the nearest multiple. // If `x` is a list, then every item in that list will be recursively quantized. // Arguments: // x = The value to quantize. -// y = The multiple to quantize to. +// y = The non-zero integer quantum of the quantization. // Example: -// quant(12,4); // Returns: 12 -// quant(13,4); // Returns: 12 -// quant(13.1,4); // Returns: 12 -// quant(14,4); // Returns: 16 -// quant(14.1,4); // Returns: 16 -// quant(15,4); // Returns: 16 -// quant(16,4); // Returns: 16 -// quant(9,3); // Returns: 9 -// quant(10,3); // Returns: 9 -// quant(10.4,3); // Returns: 9 -// quant(10.5,3); // Returns: 12 -// quant(11,3); // Returns: 12 -// quant(12,3); // Returns: 12 -// quant([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,16,16,16,16] -// quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12] -// quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]] +// a = quant(12,4); // Returns: 12 +// b = quant(13,4); // Returns: 12 +// c = quant(13.1,4); // Returns: 12 +// d = quant(14,4); // Returns: 16 +// e = quant(14.1,4); // Returns: 16 +// f = quant(15,4); // Returns: 16 +// g = quant(16,4); // Returns: 16 +// h = quant(9,3); // Returns: 9 +// i = quant(10,3); // Returns: 9 +// j = quant(10.4,3); // Returns: 9 +// k = quant(10.5,3); // Returns: 12 +// l = quant(11,3); // Returns: 12 +// m = quant(12,3); // Returns: 12 +// n = quant([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,16,16,16,16] +// o = quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12] +// p = quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]] function quant(x,y) = - assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.") + assert( is_int(y) && y>0, "The quantum `y` must be a non zero integer.") is_list(x) ? [for (v=x) quant(v,y)] - : assert( is_finite(x), "The input to quantize must be a number or a list of numbers.") + : assert( is_finite(x), "The input to quantize is not a number nor a list of numbers.") floor(x/y+0.5)*y; // Function: quantdn() +// Usage: +// num = quantdn(x, y); // Description: // Quantize a value `x` to an integer multiple of `y`, rounding down to the previous multiple. // If `x` is a list, then every item in that list will be recursively quantized down. // Arguments: // x = The value to quantize. -// y = The multiple to quantize to. +// y = The non-zero integer quantum of the quantization. // Examples: -// quantdn(12,4); // Returns: 12 -// quantdn(13,4); // Returns: 12 -// quantdn(13.1,4); // Returns: 12 -// quantdn(14,4); // Returns: 12 -// quantdn(14.1,4); // Returns: 12 -// quantdn(15,4); // Returns: 12 -// quantdn(16,4); // Returns: 16 -// quantdn(9,3); // Returns: 9 -// quantdn(10,3); // Returns: 9 -// quantdn(10.4,3); // Returns: 9 -// quantdn(10.5,3); // Returns: 9 -// quantdn(11,3); // Returns: 9 -// quantdn(12,3); // Returns: 12 -// quantdn([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,12,12,12,16] -// quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12] -// quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]] +// a = quantdn(12,4); // Returns: 12 +// b = quantdn(13,4); // Returns: 12 +// c = quantdn(13.1,4); // Returns: 12 +// d = quantdn(14,4); // Returns: 12 +// e = quantdn(14.1,4); // Returns: 12 +// f = quantdn(15,4); // Returns: 12 +// g = quantdn(16,4); // Returns: 16 +// h = quantdn(9,3); // Returns: 9 +// i = quantdn(10,3); // Returns: 9 +// j = quantdn(10.4,3); // Returns: 9 +// k = quantdn(10.5,3); // Returns: 9 +// l = quantdn(11,3); // Returns: 9 +// m = quantdn(12,3); // Returns: 12 +// n = quantdn([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,12,12,12,16] +// o = quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12] +// p = quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]] function quantdn(x,y) = - assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.") + assert( is_int(y) && y>0, "The quantum `y` must be a non zero integer.") is_list(x) - ? [for (v=x) quantdn(v,y)] - : assert( is_finite(x), "The input to quantize must be a number or a list of numbers.") + ? [for (v=x) quantdn(v,y)] + : assert( is_finite(x), "The input to quantize must be a number or a list of numbers.") floor(x/y)*y; // Function: quantup() +// Usage: +// num = quantup(x, y); // Description: // Quantize a value `x` to an integer multiple of `y`, rounding up to the next multiple. // If `x` is a list, then every item in that list will be recursively quantized up. // Arguments: // x = The value to quantize. -// y = The multiple to quantize to. +// y = The non-zero integer quantum of the quantization. // Examples: -// quantup(12,4); // Returns: 12 -// quantup(13,4); // Returns: 16 -// quantup(13.1,4); // Returns: 16 -// quantup(14,4); // Returns: 16 -// quantup(14.1,4); // Returns: 16 -// quantup(15,4); // Returns: 16 -// quantup(16,4); // Returns: 16 -// quantup(9,3); // Returns: 9 -// quantup(10,3); // Returns: 12 -// quantup(10.4,3); // Returns: 12 -// quantup(10.5,3); // Returns: 12 -// quantup(11,3); // Returns: 12 -// quantup(12,3); // Returns: 12 -// quantup([12,13,13.1,14,14.1,15,16],4); // Returns: [12,16,16,16,16,16,16] -// quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12] +// a = quantup(12,4); // Returns: 12 +// b = quantup(13,4); // Returns: 16 +// c = quantup(13.1,4); // Returns: 16 +// d = quantup(14,4); // Returns: 16 +// e = quantup(14.1,4); // Returns: 16 +// f = quantup(15,4); // Returns: 16 +// g = quantup(16,4); // Returns: 16 +// h = quantup(9,3); // Returns: 9 +// i = quantup(10,3); // Returns: 12 +// j = quantup(10.4,3); // Returns: 12 +// k = quantup(10.5,3); // Returns: 12 +// l = quantup(11,3); // Returns: 12 +// m = quantup(12,3); // Returns: 12 +// o = quantup([12,13,13.1,14,14.1,15,16],4); // Returns: [12,16,16,16,16,16,16] +// p = quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12] // quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]] function quantup(x,y) = - assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.") + assert( is_int(y) && y>0, "The quantum `y` must be a non zero integer.") is_list(x) - ? [for (v=x) quantup(v,y)] - : assert( is_finite(x), "The input to quantize must be a number or a list of numbers.") + ? [for (v=x) quantup(v,y)] + : assert( is_finite(x), "The input to quantize must be a number or a list of numbers.") ceil(x/y)*y; @@ -403,7 +409,7 @@ function quantup(x,y) = // Function: constrain() // Usage: -// constrain(v, minval, maxval); +// val = constrain(v, minval, maxval); // Description: // Constrains value to a range of values between minval and maxval, inclusive. // Arguments: @@ -411,11 +417,11 @@ function quantup(x,y) = // minval = minimum value to return, if out of range. // maxval = maximum value to return, if out of range. // Example: -// constrain(-5, -1, 1); // Returns: -1 -// constrain(5, -1, 1); // Returns: 1 -// constrain(0.3, -1, 1); // Returns: 0.3 -// constrain(9.1, 0, 9); // Returns: 9 -// constrain(-0.1, 0, 9); // Returns: 0 +// a = constrain(-5, -1, 1); // Returns: -1 +// b = constrain(5, -1, 1); // Returns: 1 +// c = constrain(0.3, -1, 1); // Returns: 0.3 +// d = constrain(9.1, 0, 9); // Returns: 9 +// e = constrain(-0.1, 0, 9); // Returns: 0 function constrain(v, minval, maxval) = assert( is_finite(v+minval+maxval), "Input must be finite number(s).") min(maxval, max(minval, v)); @@ -423,20 +429,20 @@ function constrain(v, minval, maxval) = // Function: posmod() // Usage: -// posmod(x,m) +// mod = posmod(x, m) // Description: // Returns the positive modulo `m` of `x`. Value returned will be in the range 0 ... `m`-1. // Arguments: // x = The value to constrain. // m = Modulo value. // Example: -// posmod(-700,360); // Returns: 340 -// posmod(-270,360); // Returns: 90 -// posmod(-120,360); // Returns: 240 -// posmod(120,360); // Returns: 120 -// posmod(270,360); // Returns: 270 -// posmod(700,360); // Returns: 340 -// posmod(3,2.5); // Returns: 0.5 +// a = posmod(-700,360); // Returns: 340 +// b = posmod(-270,360); // Returns: 90 +// c = posmod(-120,360); // Returns: 240 +// d = posmod(120,360); // Returns: 120 +// e = posmod(270,360); // Returns: 270 +// f = posmod(700,360); // Returns: 340 +// g = posmod(3,2.5); // Returns: 0.5 function posmod(x,m) = assert( is_finite(x) && is_finite(m) && !approx(m,0) , "Input must be finite numbers. The divisor cannot be zero.") (x%m+m)%m; @@ -444,16 +450,16 @@ function posmod(x,m) = // Function: modang() // Usage: -// ang = modang(x) +// ang = modang(x); // Description: // Takes an angle in degrees and normalizes it to an equivalent angle value between -180 and 180. // Example: -// modang(-700,360); // Returns: 20 -// modang(-270,360); // Returns: 90 -// modang(-120,360); // Returns: -120 -// modang(120,360); // Returns: 120 -// modang(270,360); // Returns: -90 -// modang(700,360); // Returns: -20 +// a1 = modang(-700,360); // Returns: 20 +// a2 = modang(-270,360); // Returns: 90 +// a3 = modang(-120,360); // Returns: -120 +// a4 = modang(120,360); // Returns: 120 +// a5 = modang(270,360); // Returns: -90 +// a6 = modang(700,360); // Returns: -20 function modang(x) = assert( is_finite(x), "Input must be a finite number.") let(xx = posmod(x,360)) xx<180? xx : xx-360; @@ -463,7 +469,7 @@ function modang(x) = // Function: rand_int() // Usage: -// rand_int(minval,maxval,N,[seed]); +// rand_int(minval, maxval, N, [seed]); // Description: // Return a list of random integers in the range of minval to maxval, inclusive. // Arguments: @@ -483,7 +489,7 @@ function rand_int(minval, maxval, N, seed=undef) = // Function: gaussian_rands() // Usage: -// gaussian_rands(mean, stddev, [N], [seed]) +// arr = gaussian_rands(mean, stddev, [N], [seed]); // Description: // Returns a random number with a gaussian/normal distribution. // Arguments: @@ -499,7 +505,7 @@ function gaussian_rands(mean, stddev, N=1, seed=undef) = // Function: log_rands() // Usage: -// log_rands(minval, maxval, factor, [N], [seed]); +// num = log_rands(minval, maxval, factor, [N], [seed]); // Description: // Returns a single random number, with a logarithmic distribution. // Arguments: @@ -526,7 +532,7 @@ function log_rands(minval, maxval, factor, N=1, seed=undef) = // Function: gcd() // Usage: -// gcd(a,b) +// x = gcd(a,b) // Description: // Computes the Greatest Common Divisor/Factor of `a` and `b`. function gcd(a,b) = @@ -537,7 +543,7 @@ function gcd(a,b) = // Computes lcm for two integers function _lcm(a,b) = assert(is_int(a) && is_int(b), "Invalid non-integer parameters to lcm") - assert(a!=0 && b!=0, "Arguments to lcm must be non zero") + assert(a!=0 && b!=0, "Arguments to lcm should not be zero") abs(a*b) / gcd(a,b); @@ -549,8 +555,8 @@ function _lcmlist(a) = // Function: lcm() // Usage: -// lcm(a,b) -// lcm(list) +// div = lcm(a, b); +// divs = lcm(list); // Description: // Computes the Least Common Multiple of the two arguments or a list of arguments. Inputs should // be non-zero integers. The output is always a positive integer. It is an error to pass zero @@ -791,17 +797,13 @@ function _med3(a,b,c) = // d = convolve([[1,1],[2,2],[3,1]],[[1,2],[2,1]])); // Returns: [3,9,11,7] function convolve(p,q) = p==[] || q==[] ? [] : - assert( - (is_vector(p) || is_matrix(p)) + assert( (is_vector(p) || is_matrix(p)) && ( is_vector(q) || (is_matrix(q) && ( !is_vector(p[0]) || (len(p[0])==len(q[0])) ) ) ) , - "The inputs should be vectors or paths all of the same dimension." - ) - let( - n = len(p), - m = len(q) - ) [ - for (i=[0:n+m-2], k1 = max(0,i-n+1), k2 = min(i,m-1) ) - sum([for(j=[k1:k2]) p[i-j]*q[j] ]) + "The inputs should be vectors or paths all of the same dimension.") + let( n = len(p), + m = len(q)) + [for(i=[0:n+m-2], k1 = max(0,i-n+1), k2 = min(i,m-1) ) + sum([for(j=[k1:k2]) p[i-j]*q[j] ]) ]; @@ -1012,7 +1014,7 @@ function determinant(M) = // Function: is_matrix() // Usage: -// is_matrix(A,[m],[n],[square]) +// test = is_matrix(A, [m], [n], [square]) // Description: // Returns true if A is a numeric matrix of height m and width n. If m or n // are omitted or set to undef then true is returned for any positive dimension. @@ -1064,10 +1066,10 @@ function matrix_trace(M) = // x = The value to check. // eps = The maximum allowed variance. Default: `EPSILON` (1e-9) // Example: -// all_zero(0); // Returns: true. -// all_zero(1e-3); // Returns: false. -// all_zero([0,0,0]); // Returns: true. -// all_zero([0,0,1e-3]); // Returns: false. +// a = all_zero(0); // Returns: true. +// b = all_zero(1e-3); // Returns: false. +// c = all_zero([0,0,0]); // Returns: true. +// d = all_zero([0,0,1e-3]); // Returns: false. function all_zero(x, eps=EPSILON) = is_finite(x)? approx(x,eps) : is_list(x)? (x != [] && [for (xx=x) if(!all_zero(xx,eps=eps)) 1] == []) : @@ -1076,7 +1078,7 @@ function all_zero(x, eps=EPSILON) = // Function: all_nonzero() // Usage: -// x = all_nonzero(x, [eps]); +// test = all_nonzero(x, [eps]); // Description: // Returns true if the finite number passed to it is not almost zero, to within `eps`. // If passed a list, recursively checks if all items in the list are not almost zero. @@ -1085,11 +1087,11 @@ function all_zero(x, eps=EPSILON) = // x = The value to check. // eps = The maximum allowed variance. Default: `EPSILON` (1e-9) // Example: -// all_nonzero(0); // Returns: false. -// all_nonzero(1e-3); // Returns: true. -// all_nonzero([0,0,0]); // Returns: false. -// all_nonzero([0,0,1e-3]); // Returns: false. -// all_nonzero([1e-3,1e-3,1e-3]); // Returns: true. +// a = all_nonzero(0); // Returns: false. +// b = all_nonzero(1e-3); // Returns: true. +// c = all_nonzero([0,0,0]); // Returns: false. +// d = all_nonzero([0,0,1e-3]); // Returns: false. +// e = all_nonzero([1e-3,1e-3,1e-3]); // Returns: true. function all_nonzero(x, eps=EPSILON) = is_finite(x)? !approx(x,eps) : is_list(x)? (x != [] && [for (xx=x) if(!all_nonzero(xx,eps=eps)) 1] == []) : @@ -1098,7 +1100,7 @@ function all_nonzero(x, eps=EPSILON) = // Function: all_positive() // Usage: -// all_positive(x); +// test = all_positive(x); // Description: // Returns true if the finite number passed to it is greater than zero. // If passed a list, recursively checks if all items in the list are positive. @@ -1106,13 +1108,13 @@ function all_nonzero(x, eps=EPSILON) = // Arguments: // x = The value to check. // Example: -// all_positive(-2); // Returns: false. -// all_positive(0); // Returns: false. -// all_positive(2); // Returns: true. -// all_positive([0,0,0]); // Returns: false. -// all_positive([0,1,2]); // Returns: false. -// all_positive([3,1,2]); // Returns: true. -// all_positive([3,-1,2]); // Returns: false. +// a = all_positive(-2); // Returns: false. +// b = all_positive(0); // Returns: false. +// c = all_positive(2); // Returns: true. +// d = all_positive([0,0,0]); // Returns: false. +// e = all_positive([0,1,2]); // Returns: false. +// f = all_positive([3,1,2]); // Returns: true. +// g = all_positive([3,-1,2]); // Returns: false. function all_positive(x) = is_num(x)? x>0 : is_list(x)? (x != [] && [for (xx=x) if(!all_positive(xx)) 1] == []) : @@ -1121,7 +1123,7 @@ function all_positive(x) = // Function: all_negative() // Usage: -// all_negative(x); +// test = all_negative(x); // Description: // Returns true if the finite number passed to it is less than zero. // If passed a list, recursively checks if all items in the list are negative. @@ -1129,14 +1131,14 @@ function all_positive(x) = // Arguments: // x = The value to check. // Example: -// all_negative(-2); // Returns: true. -// all_negative(0); // Returns: false. -// all_negative(2); // Returns: false. -// all_negative([0,0,0]); // Returns: false. -// all_negative([0,1,2]); // Returns: false. -// all_negative([3,1,2]); // Returns: false. -// all_negative([3,-1,2]); // Returns: false. -// all_negative([-3,-1,-2]); // Returns: true. +// a = all_negative(-2); // Returns: true. +// b = all_negative(0); // Returns: false. +// c = all_negative(2); // Returns: false. +// d = all_negative([0,0,0]); // Returns: false. +// e = all_negative([0,1,2]); // Returns: false. +// f = all_negative([3,1,2]); // Returns: false. +// g = all_negative([3,-1,2]); // Returns: false. +// h = all_negative([-3,-1,-2]); // Returns: true. function all_negative(x) = is_num(x)? x<0 : is_list(x)? (x != [] && [for (xx=x) if(!all_negative(xx)) 1] == []) : @@ -1153,14 +1155,14 @@ function all_negative(x) = // Arguments: // x = The value to check. // Example: -// all_nonpositive(-2); // Returns: true. -// all_nonpositive(0); // Returns: true. -// all_nonpositive(2); // Returns: false. -// all_nonpositive([0,0,0]); // Returns: true. -// all_nonpositive([0,1,2]); // Returns: false. -// all_nonpositive([3,1,2]); // Returns: false. -// all_nonpositive([3,-1,2]); // Returns: false. -// all_nonpositive([-3,-1,-2]); // Returns: true. +// a = all_nonpositive(-2); // Returns: true. +// b = all_nonpositive(0); // Returns: true. +// c = all_nonpositive(2); // Returns: false. +// d = all_nonpositive([0,0,0]); // Returns: true. +// e = all_nonpositive([0,1,2]); // Returns: false. +// f = all_nonpositive([3,1,2]); // Returns: false. +// g = all_nonpositive([3,-1,2]); // Returns: false. +// h = all_nonpositive([-3,-1,-2]); // Returns: true. function all_nonpositive(x) = is_num(x)? x<=0 : is_list(x)? (x != [] && [for (xx=x) if(!all_nonpositive(xx)) 1] == []) : @@ -1177,15 +1179,15 @@ function all_nonpositive(x) = // Arguments: // x = The value to check. // Example: -// all_nonnegative(-2); // Returns: false. -// all_nonnegative(0); // Returns: true. -// all_nonnegative(2); // Returns: true. -// all_nonnegative([0,0,0]); // Returns: true. -// all_nonnegative([0,1,2]); // Returns: true. -// all_nonnegative([0,-1,-2]); // Returns: false. -// all_nonnegative([3,1,2]); // Returns: true. -// all_nonnegative([3,-1,2]); // Returns: false. -// all_nonnegative([-3,-1,-2]); // Returns: false. +// a = all_nonnegative(-2); // Returns: false. +// b = all_nonnegative(0); // Returns: true. +// c = all_nonnegative(2); // Returns: true. +// d = all_nonnegative([0,0,0]); // Returns: true. +// e = all_nonnegative([0,1,2]); // Returns: true. +// f = all_nonnegative([0,-1,-2]); // Returns: false. +// g = all_nonnegative([3,1,2]); // Returns: true. +// h = all_nonnegative([3,-1,2]); // Returns: false. +// i = all_nonnegative([-3,-1,-2]); // Returns: false. function all_nonnegative(x) = is_num(x)? x>=0 : is_list(x)? (x != [] && [for (xx=x) if(!all_nonnegative(xx)) 1] == []) : @@ -1194,7 +1196,7 @@ function all_nonnegative(x) = // Function all_equal() // Usage: -// b = all_equal(vec,[eps]); +// b = all_equal(vec, [eps]); // Description: // Returns true if all of the entries in vec are equal to each other, or approximately equal to each other if eps is set. // Arguments: @@ -1231,7 +1233,7 @@ function all_integer(x) = // Function: approx() // Usage: -// b = approx(a,b,[eps]) +// test = approx(a, b, [eps]) // Description: // Compares two numbers or vectors, and returns true if they are closer than `eps` to each other. // Arguments: @@ -1239,11 +1241,11 @@ function all_integer(x) = // b = Second value. // eps = The maximum allowed difference between `a` and `b` that will return true. // Example: -// approx(-0.3333333333,-1/3); // Returns: true -// approx(0.3333333333,1/3); // Returns: true -// approx(0.3333,1/3); // Returns: false -// approx(0.3333,1/3,eps=1e-3); // Returns: true -// approx(PI,3.1415926536); // Returns: true +// test1 = approx(-0.3333333333,-1/3); // Returns: true +// test2 = approx(0.3333333333,1/3); // Returns: true +// test3 = approx(0.3333,1/3); // Returns: false +// test4 = approx(0.3333,1/3,eps=1e-3); // Returns: true +// test5 = approx(PI,3.1415926536); // Returns: true function approx(a,b,eps=EPSILON) = (a==b && is_bool(a) == is_bool(b)) || (is_num(a) && is_num(b) && abs(a-b) <= eps) || @@ -1261,7 +1263,7 @@ function _type_num(x) = // Function: compare_vals() // Usage: -// b = compare_vals(a, b); +// test = compare_vals(a, b); // Description: // Compares two values. Lists are compared recursively. // Returns <0 if a0 if a>b. Returns 0 if a==b. @@ -1279,7 +1281,7 @@ function compare_vals(a, b) = // Function: compare_lists() // Usage: -// b = compare_lists(a, b) +// test = compare_lists(a, b) // Description: // Compare contents of two lists using `compare_vals()`. // Returns <0 if `a`<`b`. @@ -1303,7 +1305,7 @@ function compare_lists(a, b) = // Function: any() // Usage: // bool = any(l); -// bool = any(l,func); // Requires OpenSCAD 2021.01 or later. +// bool = any(l, func); // Requires OpenSCAD 2021.01 or later. // Requirements: // Requires OpenSCAD 2021.01 or later to use the `func=` argument. // Description: @@ -1336,7 +1338,7 @@ function _any_bool(l, i=0, out=false) = // Function: all() // Usage: // bool = all(l); -// bool = all(l,func); // Requires OpenSCAD 2021.01 or later. +// bool = all(l, func); // Requires OpenSCAD 2021.01 or later. // Requirements: // Requires OpenSCAD 2021.01 or later to use the `func=` argument. // Description: @@ -1346,12 +1348,12 @@ function _any_bool(l, i=0, out=false) = // l = The list to test for true items. // func = An optional function literal of signature (x), returning bool, to test each list item with. // Example: -// all([0,false,undef]); // Returns false. -// all([1,false,undef]); // Returns false. -// all([1,5,true]); // Returns true. -// all([[0,0], [0,0]]); // Returns true. -// all([[0,0], [1,0]]); // Returns true. -// all([[1,1], [1,1]]); // Returns true. +// test1 = all([0,false,undef]); // Returns false. +// test2 = all([1,false,undef]); // Returns false. +// test3 = all([1,5,true]); // Returns true. +// test4 = all([[0,0], [0,0]]); // Returns true. +// test5 = all([[0,0], [1,0]]); // Returns true. +// test6 = all([[1,1], [1,1]]); // Returns true. function all(l, func) = assert(is_list(l), "The input is not a list.") assert(func==undef || is_func(func)) @@ -1370,8 +1372,8 @@ function _all_bool(l, i=0, out=true) = // Function: count_true() // Usage: -// n = count_true(l,[nmax=]); -// n = count_true(l,func,[nmax=]); // Requires OpenSCAD 2021.01 or later. +// seq = count_true(l, [nmax=]); +// seq = count_true(l, func, [nmax=]); // Requires OpenSCAD 2021.01 or later. // Requirements: // Requires OpenSCAD 2021.01 or later to use the `func=` argument. // Description: @@ -1385,14 +1387,14 @@ function _all_bool(l, i=0, out=true) = // --- // nmax = Max number of true items to count. Default: `undef` (no limit) // Example: -// count_true([0,false,undef]); // Returns 0. -// count_true([1,false,undef]); // Returns 1. -// count_true([1,5,false]); // Returns 2. -// count_true([1,5,true]); // Returns 3. -// count_true([[0,0], [0,0]]); // Returns 2. -// count_true([[0,0], [1,0]]); // Returns 2. -// count_true([[1,1], [1,1]]); // Returns 2. -// count_true([[1,1], [1,1]], nmax=1); // Returns 1. +// num1 = count_true([0,false,undef]); // Returns 0. +// num2 = count_true([1,false,undef]); // Returns 1. +// num3 = count_true([1,5,false]); // Returns 2. +// num4 = count_true([1,5,true]); // Returns 3. +// num5 = count_true([[0,0], [0,0]]); // Returns 2. +// num6 = count_true([[0,0], [1,0]]); // Returns 2. +// num7 = count_true([[1,1], [1,1]]); // Returns 2. +// num8 = count_true([[1,1], [1,1]], nmax=1); // Returns 1. function count_true(l, func, nmax) = assert(is_list(l)) assert(func==undef || is_func(func)) @@ -1593,29 +1595,31 @@ function complex(list) = // Arguments: // z1 = First complex number, vector or matrix // z2 = Second complex number, vector or matrix +function c_mul(z1,z2) = + is_matrix([z1,z2],2,2) ? _c_mul(z1,z2) : + _combine_complex(_c_mul(_split_complex(z1), _split_complex(z2))); + function _split_complex(data) = - is_vector(data,2) ? data - : is_num(data[0][0]) ? [data*[1,0], data*[0,1]] - : [ - [for(vec=data) vec * [1,0]], - [for(vec=data) vec * [0,1]] - ]; + is_vector(data,2) ? data + : is_num(data[0][0]) ? [data*[1,0], data*[0,1]] + : [ + [for(vec=data) vec * [1,0]], + [for(vec=data) vec * [0,1]] + ]; + function _combine_complex(data) = is_vector(data,2) ? data - : is_num(data[0][0]) ? [for(i=[0:len(data[0])-1]) [data[0][i],data[1][i]]] - : [for(i=[0:1:len(data[0])-1]) - [for(j=[0:1:len(data[0][0])-1]) - [data[0][i][j], data[1][i][j]]]]; + : is_num(data[0][0]) ? [for(i=[0:len(data[0])-1]) [data[0][i],data[1][i]]] + : [for(i=[0:1:len(data[0])-1]) + [for(j=[0:1:len(data[0][0])-1]) + [data[0][i][j], data[1][i][j]]]]; + function _c_mul(z1,z2) = [ z1.x*z2.x - z1.y*z2.y, z1.x*z2.y + z1.y*z2.x ]; -function c_mul(z1,z2) = - is_matrix([z1,z2],2,2) ? _c_mul(z1,z2) : - _combine_complex(_c_mul(_split_complex(z1), _split_complex(z2))); - // Function: c_div() // Usage: @@ -1643,6 +1647,7 @@ function c_conj(z) = is_vector(z,2) ? [z.x,-z.y] : [for(entry=z) c_conj(entry)]; + // Function: c_real() // Usage: // x = c_real(z) @@ -1653,6 +1658,7 @@ function c_real(z) = : is_num(z[0][0]) ? z*[1,0] : [for(vec=z) vec * [1,0]]; + // Function: c_imag() // Usage: // x = c_imag(z) @@ -1671,6 +1677,7 @@ function c_imag(z) = // Produce an n by n complex identity matrix function c_ident(n) = [for (i = [0:1:n-1]) [for (j = [0:1:n-1]) (i==j)?[1,0]:[0,0]]]; + // Function: c_norm() // Usage: // n = c_norm(z) @@ -1678,11 +1685,12 @@ function c_ident(n) = [for (i = [0:1:n-1]) [for (j = [0:1:n-1]) (i==j)?[1,0]:[0, // Compute the norm of a complex number or vector. function c_norm(z) = norm_fro(z); + // Section: Polynomials // Function: quadratic_roots() // Usage: -// roots = quadratic_roots(a,b,c,[real]) +// roots = quadratic_roots(a, b, c, [real]) // Description: // Computes roots of the quadratic equation a*x^2+b*x+c==0, where the // coefficients are real numbers. If real is true then returns only the @@ -1778,7 +1786,7 @@ function _poly_div(n,d,q) = /// Internal Function: _poly_trim() /// Usage: -/// _poly_trim(p,[eps]) +/// _poly_trim(p, [eps]) /// Description: /// Removes leading zero terms of a polynomial. By default zeros must be exact, /// or give epsilon for approximate zeros. Returns [0] for a zero polynomial. @@ -1804,7 +1812,7 @@ function poly_add(p,q) = // Function: poly_roots() // Usage: -// poly_roots(p,[tol]) +// roots = poly_roots(p, [tol]); // Description: // Returns all complex roots of the specified real polynomial p. // The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0] @@ -1874,7 +1882,7 @@ function _poly_roots(p, pderiv, s, z, tol, i=0) = // Function: real_roots() // Usage: -// real_roots(p, [eps], [tol]) +// roots = real_roots(p, [eps], [tol]) // Description: // Returns the real roots of the specified real polynomial p. // The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0] @@ -1926,7 +1934,7 @@ function real_roots(p,eps=undef,tol=1e-14) = // This function can only find roots that cross the x axis: it cannot find the // the root of x^2. // Arguments: -// f = function literal for a single variable function +// f = function literal for a scalar-valued single variable function // x0 = endpoint of interval to search for root // x1 = second endpoint of interval to search for root // tol = tolerance for solution. Default: 1e-15