Added Topics and docs cleanups to linalg.scad

This commit is contained in:
Revar Desmera 2023-03-15 17:44:15 -07:00
parent 4326838c51
commit 627255a5ad

View file

@ -33,6 +33,7 @@
// Function: is_matrix() // Function: is_matrix()
// Usage: // Usage:
// test = is_matrix(A, [m], [n], [square]) // test = is_matrix(A, [m], [n], [square])
// Topics: Matrices
// Description: // Description:
// Returns true if A is a numeric matrix of height m and width n with finite entries. If m or n // Returns true if A is a numeric matrix of height m and width n with finite entries. If m or n
// are omitted or set to undef then true is returned for any positive dimension. // are omitted or set to undef then true is returned for any positive dimension.
@ -52,6 +53,7 @@ function is_matrix(A,m,n,square=false) =
// Function: is_matrix_symmetric() // Function: is_matrix_symmetric()
// Usage: // Usage:
// b = is_matrix_symmetric(A, [eps]) // b = is_matrix_symmetric(A, [eps])
// Topics: Matrices
// Description: // Description:
// Returns true if the input matrix is symmetric, meaning it approximately equals its transpose. // Returns true if the input matrix is symmetric, meaning it approximately equals its transpose.
// The matrix can have arbitrary entries. // The matrix can have arbitrary entries.
@ -65,6 +67,7 @@ function is_matrix_symmetric(A,eps=1e-12) =
// Function: is_rotation() // Function: is_rotation()
// Usage: // Usage:
// b = is_rotation(A, [dim], [centered]) // b = is_rotation(A, [dim], [centered])
// Topics: Affine, Matrices, Transforms
// Description: // Description:
// Returns true if the input matrix is a square affine matrix that is a rotation around any point, // Returns true if the input matrix is a square affine matrix that is a rotation around any point,
// or around the origin if `centered` is true. // or around the origin if `centered` is true.
@ -93,6 +96,7 @@ function is_rotation(A,dim,centered=false) =
// Usage: // Usage:
// echo_matrix(M, [description], [sig], [sep], [eps]); // echo_matrix(M, [description], [sig], [sep], [eps]);
// dummy = echo_matrix(M, [description], [sig], [sep], [eps]), // dummy = echo_matrix(M, [description], [sig], [sep], [eps]),
// Topics: Matrices
// Description: // Description:
// Display a numerical matrix in a readable columnar format with `sig` significant // Display a numerical matrix in a readable columnar format with `sig` significant
// digits. Values smaller than eps display as zero. If you give a description // digits. Values smaller than eps display as zero. If you give a description
@ -129,7 +133,7 @@ module echo_matrix(M,description,sig=4,sep=1,eps=1e-9)
// Function: column() // Function: column()
// Usage: // Usage:
// list = column(M, i); // list = column(M, i);
// Topics: Matrices, List Handling // Topics: Matrices, List Handling, Arrays
// See Also: select(), slice() // See Also: select(), slice()
// Description: // Description:
// Extracts entry `i` from each list in M, or equivalently column i from the matrix M, and returns it as a vector. // Extracts entry `i` from each list in M, or equivalently column i from the matrix M, and returns it as a vector.
@ -155,7 +159,7 @@ function column(M, i) =
// Function: submatrix() // Function: submatrix()
// Usage: // Usage:
// mat = submatrix(M, idx1, idx2); // mat = submatrix(M, idx1, idx2);
// Topics: Matrices // Topics: Matrices, Arrays
// See Also: column(), block_matrix(), submatrix_set() // See Also: column(), block_matrix(), submatrix_set()
// Description: // Description:
// The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columns listed in idx2. // The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columns listed in idx2.
@ -188,7 +192,7 @@ function submatrix(M,idx1,idx2) =
// Function: ident() // Function: ident()
// Usage: // Usage:
// mat = ident(n); // mat = ident(n);
// Topics: Affine, Matrices // Topics: Affine, Matrices, Transforms
// Description: // Description:
// Create an `n` by `n` square identity matrix. // Create an `n` by `n` square identity matrix.
// Arguments: // Arguments:
@ -220,7 +224,7 @@ function ident(n) = [
// Function: diagonal_matrix() // Function: diagonal_matrix()
// Usage: // Usage:
// mat = diagonal_matrix(diag, [offdiag]); // mat = diagonal_matrix(diag, [offdiag]);
// Topics: Matrices // Topics: Affine, Matrices
// See Also: column(), submatrix() // See Also: column(), submatrix()
// Description: // Description:
// Creates a square matrix with the items in the list `diag` on // Creates a square matrix with the items in the list `diag` on
@ -237,7 +241,7 @@ function diagonal_matrix(diag, offdiag=0) =
// Function: transpose() // Function: transpose()
// Usage: // Usage:
// M = transpose(M, [reverse]); // M = transpose(M, [reverse]);
// Topics: Matrices // Topics: Linear Algebra, Matrices
// See Also: submatrix(), block_matrix(), hstack(), flatten() // See Also: submatrix(), block_matrix(), hstack(), flatten()
// Description: // Description:
// Returns the transpose of the given input matrix. The input can be a matrix with arbitrary entries or // Returns the transpose of the given input matrix. The input can be a matrix with arbitrary entries or
@ -315,6 +319,7 @@ function transpose(M, reverse=false) =
// Function: outer_product() // Function: outer_product()
// Usage: // Usage:
// x = outer_product(u,v); // x = outer_product(u,v);
// Topics: Linear Algebra, Matrices
// Description: // Description:
// Compute the outer product of two vectors, a matrix. // Compute the outer product of two vectors, a matrix.
// Usage: // Usage:
@ -326,7 +331,7 @@ function outer_product(u,v) =
// Function: submatrix_set() // Function: submatrix_set()
// Usage: // Usage:
// mat = submatrix_set(M, A, [m], [n]); // mat = submatrix_set(M, A, [m], [n]);
// Topics: Matrices // Topics: Matrices, Arrays
// See Also: column(), submatrix() // See Also: column(), submatrix()
// Description: // Description:
// Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but // Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but
@ -356,7 +361,7 @@ function submatrix_set(M,A,m=0,n=0) =
// A = hstack(M1, M2) // A = hstack(M1, M2)
// A = hstack(M1, M2, M3) // A = hstack(M1, M2, M3)
// A = hstack([M1, M2, M3, ...]) // A = hstack([M1, M2, M3, ...])
// Topics: Matrices // Topics: Matrices, Arrays
// See Also: column(), submatrix(), block_matrix() // See Also: column(), submatrix(), block_matrix()
// Description: // Description:
// Constructs a matrix by horizontally "stacking" together compatible matrices or vectors. Vectors are treated as columsn in the stack. // Constructs a matrix by horizontally "stacking" together compatible matrices or vectors. Vectors are treated as columsn in the stack.
@ -408,7 +413,7 @@ function hstack(M1, M2, M3) =
// Function: block_matrix() // Function: block_matrix()
// Usage: // Usage:
// bmat = block_matrix([[M11, M12,...],[M21, M22,...], ... ]); // bmat = block_matrix([[M11, M12,...],[M21, M22,...], ... ]);
// Topics: Matrices // Topics: Matrices, Arrays
// See Also: column(), submatrix() // See Also: column(), submatrix()
// Description: // Description:
// Create a block matrix by supplying a matrix of matrices, which will // Create a block matrix by supplying a matrix of matrices, which will
@ -455,6 +460,7 @@ function block_matrix(M) =
// Function: linear_solve() // Function: linear_solve()
// Usage: // Usage:
// solv = linear_solve(A,b,[pivot]) // solv = linear_solve(A,b,[pivot])
// Topics: Matrices, Linear Algebra
// Description: // Description:
// Solves the linear system Ax=b. If `A` is square and non-singular the unique solution is returned. If `A` is overdetermined // Solves the linear system Ax=b. If `A` is square and non-singular the unique solution is returned. If `A` is overdetermined
// the least squares solution is returned. If `A` is underdetermined, the minimal norm solution is returned. // the least squares solution is returned. If `A` is underdetermined, the minimal norm solution is returned.
@ -463,7 +469,7 @@ function block_matrix(M) =
// want to solve Ax=b1 and Ax=b2 that you need to form the matrix `transpose([b1,b2])` for the right hand side and then // want to solve Ax=b1 and Ax=b2 that you need to form the matrix `transpose([b1,b2])` for the right hand side and then
// transpose the returned value. The solution is computed using QR factorization. If `pivot` is set to true (the default) then // transpose the returned value. The solution is computed using QR factorization. If `pivot` is set to true (the default) then
// pivoting is used in the QR factorization, which is slower but expected to be more accurate. // pivoting is used in the QR factorization, which is slower but expected to be more accurate.
// Usage: // Arguments:
// A = Matrix describing the linear system, which need not be square // A = Matrix describing the linear system, which need not be square
// b = right hand side for linear system, which can be a matrix to solve several cases simultaneously. Must be consistent with A. // b = right hand side for linear system, which can be a matrix to solve several cases simultaneously. Must be consistent with A.
// pivot = if true use pivoting when computing the QR factorization. Default: true // pivot = if true use pivoting when computing the QR factorization. Default: true
@ -491,6 +497,7 @@ function linear_solve(A,b,pivot=true) =
// Function: linear_solve3() // Function: linear_solve3()
// Usage: // Usage:
// x = linear_solve3(A,b) // x = linear_solve3(A,b)
// Topics: Matrices, Linear Algebra
// Description: // Description:
// Fast solution to a 3x3 linear system using Cramer's rule (which appears to be the fastest // Fast solution to a 3x3 linear system using Cramer's rule (which appears to be the fastest
// method in OpenSCAD). The input `A` must be a 3x3 matrix. Returns undef if `A` is singular. // method in OpenSCAD). The input `A` must be a 3x3 matrix. Returns undef if `A` is singular.
@ -515,6 +522,7 @@ function linear_solve3(A,b) =
// Function: matrix_inverse() // Function: matrix_inverse()
// Usage: // Usage:
// mat = matrix_inverse(A) // mat = matrix_inverse(A)
// Topics: Matrices, Linear Algebra
// Description: // Description:
// Compute the matrix inverse of the square matrix `A`. If `A` is singular, returns `undef`. // Compute the matrix inverse of the square matrix `A`. If `A` is singular, returns `undef`.
// Note that if you just want to solve a linear system of equations you should NOT use this function. // Note that if you just want to solve a linear system of equations you should NOT use this function.
@ -528,6 +536,7 @@ function matrix_inverse(A) =
// Function: rot_inverse() // Function: rot_inverse()
// Usage: // Usage:
// B = rot_inverse(A) // B = rot_inverse(A)
// Topics: Matrices, Linear Algebra, Affine
// Description: // Description:
// Inverts a 2d (3x3) or 3d (4x4) rotation matrix. The matrix can be a rotation around any center, // Inverts a 2d (3x3) or 3d (4x4) rotation matrix. The matrix can be a rotation around any center,
// so it may include a translation. This is faster and likely to be more accurate than using `matrix_inverse()`. // so it may include a translation. This is faster and likely to be more accurate than using `matrix_inverse()`.
@ -548,6 +557,7 @@ function rot_inverse(T) =
// Function: null_space() // Function: null_space()
// Usage: // Usage:
// x = null_space(A) // x = null_space(A)
// Topics: Matrices, Linear Algebra
// Description: // Description:
// Returns an orthonormal basis for the null space of `A`, namely the vectors {x} such that Ax=0. // Returns an orthonormal basis for the null space of `A`, namely the vectors {x} such that Ax=0.
// If the null space is just the origin then returns an empty list. // If the null space is just the origin then returns an empty list.
@ -564,6 +574,7 @@ function null_space(A,eps=1e-12) =
// Function: qr_factor() // Function: qr_factor()
// Usage: // Usage:
// qr = qr_factor(A,[pivot]); // qr = qr_factor(A,[pivot]);
// Topics: Matrices, Linear Algebra
// Description: // Description:
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R,P]. This factorization can be // Calculates the QR factorization of the input matrix A and returns it as the list [Q,R,P]. This factorization can be
// used to solve linear systems of equations. The factorization is `A = Q*R*transpose(P)`. If pivot is false (the default) // used to solve linear systems of equations. The factorization is `A = Q*R*transpose(P)`. If pivot is false (the default)
@ -614,6 +625,7 @@ function _swap_matrix(n,i,j) =
// Function: back_substitute() // Function: back_substitute()
// Usage: // Usage:
// x = back_substitute(R, b, [transpose]); // x = back_substitute(R, b, [transpose]);
// Topics: Matrices, Linear Algebra
// Description: // Description:
// Solves the problem Rx=b where R is an upper triangular square matrix. The lower triangular entries of R are // Solves the problem Rx=b where R is an upper triangular square matrix. The lower triangular entries of R are
// ignored. If transpose==true then instead solve transpose(R)*x=b. // ignored. If transpose==true then instead solve transpose(R)*x=b.
@ -645,6 +657,7 @@ function _back_substitute(R, b, x=[]) =
// Function: cholesky() // Function: cholesky()
// Usage: // Usage:
// L = cholesky(A); // L = cholesky(A);
// Topics: Matrices, Linear Algebra
// Description: // Description:
// Compute the cholesky factor, L, of the symmetric positive definite matrix A. // Compute the cholesky factor, L, of the symmetric positive definite matrix A.
// The matrix L is lower triangular and `L * transpose(L) = A`. If the A is // The matrix L is lower triangular and `L * transpose(L) = A`. If the A is
@ -680,6 +693,7 @@ function _cholesky(A,L,n) =
// Function: det2() // Function: det2()
// Usage: // Usage:
// d = det2(M); // d = det2(M);
// Topics: Matrices, Linear Algebra
// Description: // Description:
// Rturns the determinant for the given 2x2 matrix. // Rturns the determinant for the given 2x2 matrix.
// Arguments: // Arguments:
@ -695,6 +709,7 @@ function det2(M) =
// Function: det3() // Function: det3()
// Usage: // Usage:
// d = det3(M); // d = det3(M);
// Topics: Matrices, Linear Algebra
// Description: // Description:
// Returns the determinant for the given 3x3 matrix. // Returns the determinant for the given 3x3 matrix.
// Arguments: // Arguments:
@ -711,6 +726,7 @@ function det3(M) =
// Function: det4() // Function: det4()
// Usage: // Usage:
// d = det4(M); // d = det4(M);
// Topics: Matrices, Linear Algebra
// Description: // Description:
// Returns the determinant for the given 4x4 matrix. // Returns the determinant for the given 4x4 matrix.
// Arguments: // Arguments:
@ -732,6 +748,7 @@ function det4(M) =
// Function: determinant() // Function: determinant()
// Usage: // Usage:
// d = determinant(M); // d = determinant(M);
// Topics: Matrices, Linear Algebra
// Description: // Description:
// Returns the determinant for the given square matrix. // Returns the determinant for the given square matrix.
// Arguments: // Arguments:
@ -764,6 +781,7 @@ function determinant(M) =
// Function: norm_fro() // Function: norm_fro()
// Usage: // Usage:
// norm_fro(A) // norm_fro(A)
// Topics: Matrices, Linear Algebra
// Description: // Description:
// Computes frobenius norm of input matrix. The frobenius norm is the square root of the sum of the // Computes frobenius norm of input matrix. The frobenius norm is the square root of the sum of the
// squares of all of the entries of the matrix. On vectors it is the same as the usual 2-norm. // squares of all of the entries of the matrix. On vectors it is the same as the usual 2-norm.
@ -776,8 +794,14 @@ function norm_fro(A) =
// Function: matrix_trace() // Function: matrix_trace()
// Usage: // Usage:
// matrix_trace(M) // matrix_trace(M)
// Topics: Matrices, Linear Algebra
// Description: // Description:
// Computes the trace of a square matrix, the sum of the entries on the diagonal. // Computes the trace of a square matrix, the sum of the entries on the diagonal.
function matrix_trace(M) = function matrix_trace(M) =
assert(is_matrix(M,square=true), "Input to trace must be a square matrix") assert(is_matrix(M,square=true), "Input to trace must be a square matrix")
[for(i=[0:1:len(M)-1])1] * [for(i=[0:1:len(M)-1]) M[i][i]]; [for(i=[0:1:len(M)-1])1] * [for(i=[0:1:len(M)-1]) M[i][i]];
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap