Added linear_solve()

This commit is contained in:
Adrian Mariano 2020-02-28 17:40:52 -05:00
parent f8fc8cb544
commit 629d1c00b2

View file

@ -530,8 +530,94 @@ function product(v, i=0, tot=undef) = i>=len(v)? tot : product(v, i+1, ((tot==un
function mean(v) = sum(v)/len(v); function mean(v) = sum(v)/len(v);
// Section: Matrix math
// Function: qr_factor()
// Usage: qr = qr_factor(A)
// Description:
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R]. This factorization can be
// used to solve linear systems of equations.
function qr_factor(A) =
let(
dim = array_dim(A),
m = dim[0],
n = dim[1]
)
assert(len(dim)==2)
let(
qr =_qr_factor(A, column=0, m = m, n=m, Q=ident(m)),
Rzero = [for(i=[0:m-1]) [for(j=[0:n-1]) i>j ? 0 : qr[1][i][j]]]
)
[qr[0],Rzero];
function _qr_factor(A,Q, column, m, n) =
column >= min(m-1,n) ? [Q,A] :
let(
x = [for(i=[column:1:m-1]) A[i][column]],
alpha = (x[0]<=0 ? 1 : -1) * norm(x),
u = x - concat([alpha],replist(0,m-1)),
v = u / norm(u),
Qc = ident(len(x)) - 2*transpose([v])*[v],
Qf = [for(i=[0:m-1]) [for(j=[0:m-1]) i<column || j<column ? (i==j ? 1 : 0) : Qc[i-column][j-column]]]
)
_qr_factor(Qf*A, Q*Qf, column+1, m, n);
// Function: submatrix()
// Usage: submatrix(M, ind1, ind2)
// Description:
// Returns a submatrix with the specified index ranges or index sets.
function submatrix(M,ind1,ind2) =
[for(i=ind1)
[for(j=ind2)
M[i][j]
]
];
// Function: linear_solve()
// Usage: linear_solve(A,b)
// Description:
// Solves the linear system Ax=b. If A is square and non-singular the unique solution is returned. If A is overdetermined
// the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned.
// If A is rank deficient or singular then linear_solve returns `undef`.
function linear_solve(A,b) =
let(
dim = array_dim(A),
m=dim[0], n=dim[1]
)
assert(len(b)==m,str("Incompatible matrix and vector",dim,len(b)))
let (
qr = m<n ? qr_factor(transpose(A)) : qr_factor(A),
maxdim = max(n,m),
mindim = min(n,m),
Q = submatrix(qr[0],[0:maxdim-1], [0:mindim-1]),
R = submatrix(qr[1],[0:mindim-1], [0:mindim-1]),
zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i]
)
zeros != [] ? undef :
m<n ? Q*back_substitute(R,b,transpose=true) :
back_substitute(R, transpose(Q)*b);
// Function: back_substitute()
// Usage: back_substitute(R, b, [transpose])
// Description:
// Solves the problem Rx=b where R is an upper triangular square matrix. No check is made that the lower triangular entries
// are actually zero. If transpose==true then instead solve transpose(R)*x=b.
function back_substitute(R, b, x=[],transpose = false) =
let(n=len(b))
transpose ?
reverse(back_substitute(
[for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
reverse(b), x, false)) :
len(x) == n ? x :
let(
ind = n - len(x) - 1,
newvalue = len(x)==0 ? b[ind]/R[ind][ind] :
(b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
)
back_substitute(R, b, concat([newvalue],x));
// Section: Determinants
// Function: det2() // Function: det2()
// Description: // Description: