diff --git a/beziers.scad b/beziers.scad index 79ecac8..d6c2eb7 100644 --- a/beziers.scad +++ b/beziers.scad @@ -577,7 +577,7 @@ function bezier_line_intersection(curve, line) = // p2 = [30, 30]; // trace_path([p0,p1,p2], showpts=true, size=0.5, color="green"); // fbez = fillet3pts(p0,p1,p2, 10); -// trace_bezier(select(fbez,1,-2), size=1); +// trace_bezier(slice(fbez, 1, -2), size=1); function fillet3pts(p0, p1, p2, r, d, maxerr=0.1, w=0.5, dw=0.25) = let( r = get_radius(r=r,d=d), v0 = unit(p0-p1), diff --git a/common.scad b/common.scad index ba05fc8..e24c744 100644 --- a/common.scad +++ b/common.scad @@ -38,7 +38,6 @@ function typeof(x) = "invalid"; - // Function: is_type() // Usage: // bool = is_type(x, types); @@ -274,7 +273,8 @@ function is_bool_list(list, length) = // Topics: Undef Handling // See Also: first_defined(), one_defined(), num_defined() // Description: -// Returns the value given as `v` if it is not `undef`. Otherwise, returns the value of `dflt`. +// Returns the value given as `v` if it is not `undef`. +// Otherwise, returns the value of `dflt`. // Arguments: // v = Value to pass through if not `undef`. // dflt = Value to return if `v` *is* `undef`. @@ -292,6 +292,8 @@ function default(v,dflt=undef) = is_undef(v)? dflt : v; // Arguments: // v = The list whose items are being checked. // recursive = If true, sublists are checked recursively for defined values. The first sublist that has a defined item is returned. +// Examples: +// val = first_defined([undef,7,undef,true]); // Returns: 1 function first_defined(v,recursive=false,_i=0) = _i=0, "The tolerance should be a positive number." ) + assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) assert( _valid_line(edge,2,eps=eps), "Invalid segment." ) let( dp = point-edge[0], de = edge[1]-edge[0], @@ -74,12 +74,12 @@ function point_left_of_line2d(point, line) = // a = First point or list of points. // b = Second point or undef; it should be undef if `c` is undef // c = Third point or undef. -// eps = Acceptable variance. Default: `EPSILON` (1e-9) +// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function collinear(a, b, c, eps=EPSILON) = assert( is_path([a,b,c],dim=undef) || ( is_undef(b) && is_undef(c) && is_path(a,dim=undef) ), "Input should be 3 points or a list of points with same dimension.") - assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) + assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) let( points = is_def(c) ? [a,b,c]: a ) len(points)<3 ? true : noncollinear_triple(points,error=false,eps=eps)==[]; @@ -151,10 +151,11 @@ function _general_line_intersection(s1,s2,eps=EPSILON) = // Arguments: // l1 = First 2D line, given as a list of two 2D points on the line. // l2 = Second 2D line, given as a list of two 2D points on the line. -// eps = Acceptable variance. Default: `EPSILON` (1e-9) +// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function line_intersection(l1,l2,eps=EPSILON) = assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) assert( _valid_line(l1,dim=2,eps=eps) &&_valid_line(l2,dim=2,eps=eps), "Invalid line(s)." ) + assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) let(isect = _general_line_intersection(l1,l2,eps=eps)) isect[0]; @@ -168,9 +169,9 @@ function line_intersection(l1,l2,eps=EPSILON) = // Arguments: // line = The unbounded 2D line, defined by two 2D points on the line. // ray = The 2D ray, given as a list `[START,POINT]` of the 2D start-point START, and a 2D point POINT on the ray. -// eps = Acceptable variance. Default: `EPSILON` (1e-9) +// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function line_ray_intersection(line,ray,eps=EPSILON) = - assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) + assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) assert( _valid_line(line,dim=2,eps=eps) && _valid_line(ray,dim=2,eps=eps), "Invalid line or ray." ) let( isect = _general_line_intersection(line,ray,eps=eps) @@ -188,9 +189,9 @@ function line_ray_intersection(line,ray,eps=EPSILON) = // Arguments: // line = The unbounded 2D line, defined by two 2D points on the line. // segment = The bounded 2D line segment, given as a list of the two 2D endpoints of the segment. -// eps = Acceptable variance. Default: `EPSILON` (1e-9) +// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function line_segment_intersection(line,segment,eps=EPSILON) = - assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) + assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) assert( _valid_line(line, dim=2,eps=eps) &&_valid_line(segment,dim=2,eps=eps), "Invalid line or segment." ) let( isect = _general_line_intersection(line,segment,eps=eps) @@ -209,9 +210,9 @@ function line_segment_intersection(line,segment,eps=EPSILON) = // Arguments: // r1 = First 2D ray, given as a list `[START,POINT]` of the 2D start-point START, and a 2D point POINT on the ray. // r2 = Second 2D ray, given as a list `[START,POINT]` of the 2D start-point START, and a 2D point POINT on the ray. -// eps = Acceptable variance. Default: `EPSILON` (1e-9) +// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function ray_intersection(r1,r2,eps=EPSILON) = - assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) + assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) assert( _valid_line(r1,dim=2,eps=eps) && _valid_line(r2,dim=2,eps=eps), "Invalid ray(s)." ) let( isect = _general_line_intersection(r1,r2,eps=eps) @@ -229,10 +230,10 @@ function ray_intersection(r1,r2,eps=EPSILON) = // Arguments: // ray = The 2D ray, given as a list `[START,POINT]` of the 2D start-point START, and a 2D point POINT on the ray. // segment = The bounded 2D line segment, given as a list of the two 2D endpoints of the segment. -// eps = Acceptable variance. Default: `EPSILON` (1e-9) +// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function ray_segment_intersection(ray,segment,eps=EPSILON) = assert( _valid_line(ray,dim=2,eps=eps) && _valid_line(segment,dim=2,eps=eps), "Invalid ray or segment." ) - assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) + assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) let( isect = _general_line_intersection(ray,segment,eps=eps) ) @@ -250,10 +251,10 @@ function ray_segment_intersection(ray,segment,eps=EPSILON) = // Arguments: // s1 = First 2D segment, given as a list of the two 2D endpoints of the line segment. // s2 = Second 2D segment, given as a list of the two 2D endpoints of the line segment. -// eps = Acceptable variance. Default: `EPSILON` (1e-9) +// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function segment_intersection(s1,s2,eps=EPSILON) = assert( _valid_line(s1,dim=2,eps=eps) && _valid_line(s2,dim=2,eps=eps), "Invalid segment(s)." ) - assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) + assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) let( isect = _general_line_intersection(s1,s2,eps=eps) ) @@ -461,7 +462,7 @@ function segment_closest_point(seg,pt) = // eps = How much variance is allowed in testing each point against the line. Default: `EPSILON` (1e-9) function line_from_points(points, fast=false, eps=EPSILON) = assert( is_path(points,dim=undef), "Improper point list." ) - assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) + assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) let( pb = furthest_point(points[0],points) ) approx(norm(points[pb]-points[0]),0) ? undef : fast || collinear(points) ? [points[pb], points[0]] : undef; @@ -810,6 +811,10 @@ function adj_opp_to_ang(adj,opp) = // Description: // Returns the area of a triangle formed between three 2D or 3D vertices. // Result will be negative if the points are 2D and in clockwise order. +// Arguments: +// a = The first vertex of the triangle. +// b = The second vertex of the triangle. +// c = The third vertex of the triangle. // Examples: // triangle_area([0,0], [5,10], [10,0]); // Returns -50 // triangle_area([10,0], [5,10], [0,0]); // Returns 50 @@ -877,6 +882,9 @@ function plane3pt_indexed(points, i1, i2, i3) = // plane_from_normal(normal, [pt]) // Description: // Returns a plane defined by a normal vector and a point. +// Arguments: +// normal = Normal vector to the plane to find. +// pt = Point 3D on the plane to find. // Example: // plane_from_normal([0,0,1], [2,2,2]); // Returns the xy plane passing through the point (2,2,2) function plane_from_normal(normal, pt=[0,0,0]) = @@ -896,7 +904,7 @@ function plane_from_normal(normal, pt=[0,0,0]) = // Arguments: // points = The list of points to find the plane of. // fast = If true, don't verify that all points in the list are coplanar. Default: false -// eps = How much variance is allowed in testing that each point is on the same plane. Default: `EPSILON` (1e-9) +// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) // Example(3D): // xyzpath = rot(45, v=[-0.3,1,0], p=path3d(star(n=6,id=70,d=100), 70)); // plane = plane_from_points(xyzpath); @@ -905,9 +913,8 @@ function plane_from_normal(normal, pt=[0,0,0]) = // move(cp) rot(from=UP,to=plane_normal(plane)) anchor_arrow(); function plane_from_points(points, fast=false, eps=EPSILON) = assert( is_path(points,dim=3), "Improper 3d point list." ) - assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) + assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) let( - points = deduplicate(points), indices = noncollinear_triple(points,error=false) ) indices==[] ? undef : @@ -931,7 +938,7 @@ function plane_from_points(points, fast=false, eps=EPSILON) = // Arguments: // poly = The planar 3D polygon to find the plane of. // fast = If true, doesn't verify that all points in the polygon are coplanar. Default: false -// eps = How much variance is allowed in testing that each point is on the same plane. Default: `EPSILON` (1e-9) +// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) // Example(3D): // xyzpath = rot(45, v=[0,1,0], p=path3d(star(n=5,step=2,d=100), 70)); // plane = plane_from_polygon(xyzpath); @@ -940,7 +947,7 @@ function plane_from_points(points, fast=false, eps=EPSILON) = // move(cp) rot(from=UP,to=plane_normal(plane)) anchor_arrow(); function plane_from_polygon(poly, fast=false, eps=EPSILON) = assert( is_path(poly,dim=3), "Invalid polygon." ) - assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) + assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) let( poly = deduplicate(poly), n = polygon_normal(poly), @@ -954,6 +961,8 @@ function plane_from_polygon(poly, fast=false, eps=EPSILON) = // plane_normal(plane); // Description: // Returns the unit length normal vector for the given plane. +// Arguments: +// plane = The `[A,B,C,D]` plane definition where `Ax+By+Cz=D` is the formula of the plane. function plane_normal(plane) = assert( _valid_plane(plane), "Invalid input plane." ) unit([plane.x, plane.y, plane.z]); @@ -966,6 +975,8 @@ function plane_normal(plane) = // Returns coeficient D of the normalized plane equation `Ax+By+Cz=D`, or the scalar offset of the plane from the origin. // This value may be negative. // The absolute value of this coefficient is the distance of the plane from the origin. +// Arguments: +// plane = The `[A,B,C,D]` plane definition where `Ax+By+Cz=D` is the formula of the plane. function plane_offset(plane) = assert( _valid_plane(plane), "Invalid input plane." ) plane[3]/norm([plane.x, plane.y, plane.z]); @@ -1037,6 +1048,8 @@ function projection_on_plane(plane, points) = // pt = plane_point_nearest_origin(plane); // Description: // Returns the point on the plane that is closest to the origin. +// Arguments: +// plane = The `[A,B,C,D]` plane definition where `Ax+By+Cz=D` is the formula of the plane. function plane_point_nearest_origin(plane) = let( plane = normalize_plane(plane) ) point3d(plane) * plane[3]; @@ -1053,7 +1066,7 @@ function plane_point_nearest_origin(plane) = // towards. If the point is behind the plane, then the distance returned // will be negative. The normal of the plane is the same as [A,B,C]. // Arguments: -// plane = The [A,B,C,D] values for the equation of the plane. +// plane = The `[A,B,C,D]` plane definition where `Ax+By+Cz=D` is the formula of the plane. // point = The distance evaluation point. function distance_from_plane(plane, point) = assert( _valid_plane(plane), "Invalid input plane." ) @@ -1061,8 +1074,6 @@ function distance_from_plane(plane, point) = let( plane = normalize_plane(plane) ) point3d(plane)* point - plane[3]; - - // Returns [POINT, U] if line intersects plane at one point. // Returns [LINE, undef] if the line is on the plane. // Returns undef if line is parallel to, but not on the given plane. @@ -1119,7 +1130,7 @@ function plane_line_angle(plane, line) = // plane = The [A,B,C,D] values for the equation of the plane. // line = A list of two distinct 3D points that are on the line. // bounded = If false, the line is considered unbounded. If true, it is treated as a bounded line segment. If given as `[true, false]` or `[false, true]`, the boundedness of the points are specified individually, allowing the line to be treated as a half-bounded ray. Default: false (unbounded) -// eps = The tolerance value in determining whether the line is parallel to the plane. Default: `EPSILON` (1e-9) +// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) assert(_valid_plane(plane,eps=eps) && _valid_line(line,dim=3,eps=eps), "Invalid plane and/or line.") @@ -1148,7 +1159,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // poly = The 3D planar polygon to find the intersection with. // line = A list of two distinct 3D points on the line. // bounded = If false, the line is considered unbounded. If true, it is treated as a bounded line segment. If given as `[true, false]` or `[false, true]`, the boundedness of the points are specified individually, allowing the line to be treated as a half-bounded ray. Default: false (unbounded) -// eps = The tolerance value in determining whether the line is parallel to the plane. Default: `EPSILON` (1e-9) +// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function polygon_line_intersection(poly, line, bounded=false, eps=EPSILON) = assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) assert(is_path(poly,dim=3), "Invalid polygon." ) @@ -1203,6 +1214,10 @@ function polygon_line_intersection(poly, line, bounded=false, eps=EPSILON) = // If you give three planes the intersection is returned as a point. If you give two planes the intersection // is returned as a list of two points on the line of intersection. If any two input planes are parallel // or coincident then returns undef. +// Arguments: +// plane1 = The [A,B,C,D] coefficients for the first plane equation `Ax+By+Cz=D`. +// plane2 = The [A,B,C,D] coefficients for the second plane equation `Ax+By+Cz=D`. +// plane3 = The [A,B,C,D] coefficients for the third plane equation `Ax+By+Cz=D`. function plane_intersection(plane1,plane2,plane3) = assert( _valid_plane(plane1) && _valid_plane(plane2) && (is_undef(plane3) ||_valid_plane(plane3)), "The input must be 2 or 3 planes." ) @@ -1229,10 +1244,10 @@ function plane_intersection(plane1,plane2,plane3) = // Returns true if the given 3D points are non-collinear and are on a plane. // Arguments: // points = The points to test. -// eps = How much variance is allowed in the planarity test. Default: `EPSILON` (1e-9) +// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function coplanar(points, eps=EPSILON) = assert( is_path(points,dim=3) , "Input should be a list of 3D points." ) - assert( is_finite(eps) && eps>=0, "The tolerance should be a non-negative number." ) + assert( is_finite(eps) && eps>=0, "The tolerance should be a non-negative value." ) len(points)<=2 ? false : let( ip = noncollinear_triple(points,error=false,eps=eps) ) ip == [] ? false : @@ -1249,7 +1264,7 @@ function coplanar(points, eps=EPSILON) = // Arguments: // plane = The plane to test the points on. // points = The list of 3D points to test. -// eps = How much variance is allowed in the planarity testing. Default: `EPSILON` (1e-9) +// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) function points_on_plane(points, plane, eps=EPSILON) = assert( _valid_plane(plane), "Invalid plane." ) assert( is_matrix(points,undef,3) && len(points)>0, "Invalid pointlist." ) // using is_matrix it accepts len(points)==1 @@ -1268,7 +1283,7 @@ function points_on_plane(points, plane, eps=EPSILON) = // plane that the normal points towards. The normal of the plane is the // same as [A,B,C]. // Arguments: -// plane = The [A,B,C,D] coefficients for the equation of the plane. +// plane = The [A,B,C,D] coefficients for the first plane equation `Ax+By+Cz=D`. // point = The 3D point to test. function in_front_of_plane(plane, point) = distance_from_plane(plane, point) > EPSILON; @@ -1513,6 +1528,13 @@ function circle_point_tangents(r, d, cp, pt) = // returns only two entries. If one circle is inside the other one then no tangents exist // so the function returns the empty set. When the circles are tangent a degenerate tangent line // passes through the point of tangency of the two circles: this degenerate line is NOT returned. +// Arguments: +// c1 = Center of the first circle. +// r1 = Radius of the first circle. +// c2 = Center of the second circle. +// r2 = Radius of the second circle. +// d1 = Diameter of the first circle. +// d2 = Diameter of the second circle. // Example(2D): Four tangents, first in green, second in black, third in blue, last in red. // $fn=32; // c1 = [3,4]; r1 = 2; @@ -1623,11 +1645,15 @@ function circle_line_intersection(c,r,line,d,bounded=false,eps=EPSILON) = // Usage: // noncollinear_triple(points); // Description: -// Finds the indices of three good non-collinear points from the points list `points`. -// If all points are collinear, returns []. +// Finds the indices of three good non-collinear points from the pointlist `points`. +// If all points are collinear returns [] when `error=true` or an error otherwise . +// Arguments: +// points = List of input points. +// error = Defines the behaviour for collinear input points. When `true`, produces an error, otherwise returns []. Default: `true`. +// eps = Tolerance for collinearity test. Default: EPSILON. function noncollinear_triple(points,error=true,eps=EPSILON) = assert( is_path(points), "Invalid input points." ) - assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative number." ) + assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) let( pa = points[0], b = furthest_point(pa, points), @@ -1701,29 +1727,29 @@ function furthest_point(pt, points) = // area = polygon_area(poly); // Description: // Given a 2D or 3D planar polygon, returns the area of that polygon. -// If the polygon is self-crossing, the results are undefined. For non-planar points the result is undef. -// When `signed` is true, a signed area is returned; a positive area indicates a counterclockwise polygon. +// If the polygon is self-crossing, the results are undefined. For non-planar 3D polygon the result is undef. +// When `signed` is true, a signed area is returned; a positive area indicates a clockwise polygon. // Arguments: -// poly = polygon to compute the area of. -// signed = if true, a signed area is returned (default: false) +// poly = Polygon to compute the area of. +// signed = If true, a signed area is returned. Default: false. function polygon_area(poly, signed=false) = assert(is_path(poly), "Invalid polygon." ) len(poly)<3 ? 0 : - let( cpoly = close_path(simplify_path(poly)) ) len(poly[0])==2 - ? sum([for(i=[1:1:len(poly)-2]) cross(poly[i]-poly[0],poly[i+1]-poly[0]) ])/2 + ? let( total = sum([for(i=[1:1:len(poly)-2]) cross(poly[i]-poly[0],poly[i+1]-poly[0]) ])/2 ) + signed ? total : abs(total) : let( plane = plane_from_points(poly) ) plane==undef? undef : let( - n = unit(plane_normal(plane)), + n = plane_normal(plane), total = sum([ - for(i=[1:1:len(cpoly)-2]) - let( - v1 = cpoly[i] - cpoly[0], - v2 = cpoly[i+1] - cpoly[0] - ) - cross(v1,v2) * n - ])/2 + for(i=[1:1:len(poly)-2]) + let( + v1 = poly[i] - poly[0], + v2 = poly[i+1] - poly[0] + ) + cross(v1,v2) * n + ])/2 ) signed ? total : abs(total); @@ -1734,6 +1760,8 @@ function polygon_area(poly, signed=false) = // Description: // Returns true if the given 2D polygon is convex. The result is meaningless if the polygon is not simple (self-intersecting). // If the points are collinear the result is true. +// Arguments: +// poly = Polygon to check. // Example: // is_convex_polygon(circle(d=50)); // Returns: true // Example: @@ -1773,6 +1801,9 @@ function polygon_shift(poly, i) = // polygon_shift_to_closest_point(path, pt); // Description: // Given a polygon `poly`, rotates the point ordering so that the first point in the path is the one closest to the given point `pt`. +// Arguments: +// poly = The list of points in the polygon path. +// pt = The reference point. function polygon_shift_to_closest_point(poly, pt) = assert(is_vector(pt), "Invalid point." ) assert(is_path(poly,dim=len(pt)), "Invalid polygon or incompatible dimension with the point." ) @@ -1876,32 +1907,35 @@ function align_polygon(reference, poly, angles, cp) = // Description: // Given a simple 2D polygon, returns the 2D coordinates of the polygon's centroid. // Given a simple 3D planar polygon, returns the 3D coordinates of the polygon's centroid. -// If the polygon is self-intersecting, the results are undefined. -function centroid(poly) = +// Collinear points produce an error. The results are meaningless for self-intersecting +// polygons or an error is produced. +// Arguments: +// poly = Points of the polygon from which the centroid is calculated. +// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) +function centroid(poly, eps=EPSILON) = assert( is_path(poly,dim=[2,3]), "The input must be a 2D or 3D polygon." ) - len(poly[0])==2 - ? sum([ - for(i=[0:len(poly)-1]) - let(segment=select(poly,i,i+1)) - det2(segment)*sum(segment) - ]) / 6 / polygon_area(poly) - : let( plane = plane_from_points(poly, fast=true) ) - assert( !is_undef(plane), "The polygon must be planar." ) - let( - n = plane_normal(plane), + assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) + let( + n = len(poly[0])==2 ? 1 : + let( + plane = plane_from_points(poly, fast=true) ) + assert( !is_undef(plane), "The polygon must be planar." ) + plane_normal(plane), + v0 = poly[0] , val = sum([for(i=[1:len(poly)-2]) - let( - v0 = poly[0], - v1 = poly[i], - v2 = poly[i+1], - area = cross(v2-v0,v1-v0)*n - ) - [ area, (v0+v1+v2)*area ] - ] ) + let( + v1 = poly[i], + v2 = poly[i+1], + area = cross(v2-v0,v1-v0)*n + ) + [ area, (v0+v1+v2)*area ] + ] ) ) + assert(!approx(val[0],0, eps), "The polygon is self-intersecting or its points are collinear.") val[1]/val[0]/3; + // Function: point_in_polygon() // Usage: // point_in_polygon(point, poly, ) @@ -1910,7 +1944,7 @@ function centroid(poly) = // the specified 2D polygon using either the Nonzero Winding rule or the Even-Odd rule. // See https://en.wikipedia.org/wiki/Nonzero-rule and https://en.wikipedia.org/wiki/Even–odd_rule. // The polygon is given as a list of 2D points, not including the repeated end point. -// Returns -1 if the point is outside the polyon. +// Returns -1 if the point is outside the polygon. // Returns 0 if the point is on the boundary. // Returns 1 if the point lies in the interior. // The polygon does not need to be simple: it can have self-intersections. @@ -1920,17 +1954,17 @@ function centroid(poly) = // point = The 2D point to check position of. // poly = The list of 2D path points forming the perimeter of the polygon. // nonzero = The rule to use: true for "Nonzero" rule and false for "Even-Odd" (Default: true ) -// eps = Acceptable variance. Default: `EPSILON` (1e-9) -function point_in_polygon(point, poly, eps=EPSILON, nonzero=true) = +// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) +function point_in_polygon(point, poly, nonzero=true, eps=EPSILON) = // Original algorithms from http://geomalgorithms.com/a03-_inclusion.html assert( is_vector(point,2) && is_path(poly,dim=2) && len(poly)>2, "The point and polygon should be in 2D. The polygon should have more that 2 points." ) - assert( is_finite(eps) && eps>=0, "Invalid tolerance." ) + assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) // Does the point lie on any edges? If so return 0. let( on_brd = [for(i=[0:1:len(poly)-1]) let( seg = select(poly,i,i+1) ) - if( !approx(seg[0],seg[1],eps=EPSILON) ) + if( !approx(seg[0],seg[1],eps) ) point_on_segment2d(point, seg, eps=eps)? 1:0 ] ) sum(on_brd) > 0 @@ -1954,12 +1988,12 @@ function point_in_polygon(point, poly, eps=EPSILON, nonzero=true) = p0 = poly[i]-point, p1 = poly[(i+1)%n]-point ) - if( ( (p1.y>eps && p0.y<=0) || (p1.y<=0 && p0.y>eps) ) - && 0 < p0.x - p0.y *(p1.x - p0.x)/(p1.y - p0.y) ) + if( ( (p1.y>eps && p0.y<=eps) || (p1.y<=eps && p0.y>eps) ) + && -eps < p0.x - p0.y *(p1.x - p0.x)/(p1.y - p0.y) ) 1 ] - ) - 2*(len(cross)%2)-1;; + ) + 2*(len(cross)%2)-1; // Function: polygon_is_clockwise() @@ -1980,6 +2014,8 @@ function polygon_is_clockwise(poly) = // clockwise_polygon(poly); // Description: // Given a 2D polygon path, returns the clockwise winding version of that path. +// Arguments: +// poly = The list of 2D path points for the perimeter of the polygon. function clockwise_polygon(poly) = assert(is_path(poly,dim=2), "Input should be a 2d polygon") polygon_area(poly, signed=true)<0 ? poly : reverse_polygon(poly); @@ -1990,6 +2026,8 @@ function clockwise_polygon(poly) = // ccw_polygon(poly); // Description: // Given a 2D polygon poly, returns the counter-clockwise winding version of that poly. +// Arguments: +// poly = The list of 2D path points for the perimeter of the polygon. function ccw_polygon(poly) = assert(is_path(poly,dim=2), "Input should be a 2d polygon") polygon_area(poly, signed=true)<0 ? reverse_polygon(poly) : poly; @@ -2000,6 +2038,8 @@ function ccw_polygon(poly) = // reverse_polygon(poly) // Description: // Reverses a polygon's winding direction, while still using the same start point. +// Arguments: +// poly = The list of the path points for the perimeter of the polygon. function reverse_polygon(poly) = assert(is_path(poly), "Input should be a polygon") let(lp=len(poly)) [for (i=idx(poly)) poly[(lp-i)%lp]]; @@ -2010,7 +2050,9 @@ function reverse_polygon(poly) = // n = polygon_normal(poly); // Description: // Given a 3D planar polygon, returns a unit-length normal vector for the -// clockwise orientation of the polygon. +// clockwise orientation of the polygon. If the polygon points are collinear, returns `undef`. +// Arguments: +// poly = The list of 3D path points for the perimeter of the polygon. function polygon_normal(poly) = assert(is_path(poly,dim=3), "Invalid 3D polygon." ) let( @@ -2020,7 +2062,7 @@ function polygon_normal(poly) = for (i=[1:1:len(poly)-2]) cross(poly[i+1]-p0, poly[i]-p0) ]) - ) unit(n); + ) unit(n,undef); function _split_polygon_at_x(poly, x) = diff --git a/polyhedra.scad b/polyhedra.scad index 57cc7eb..ac0d575 100644 --- a/polyhedra.scad +++ b/polyhedra.scad @@ -699,8 +699,7 @@ function regular_polyhedron_info( face_normals, radius_scale*entry[in_radius] ] : - // info == "vnf" ? [move(translation,p=scaled_points), stellate ? faces : face_triangles] : - info == "vnf" ? [move(translation,p=scaled_points), faces] : + info == "vnf" ? [move(translation,p=scaled_points), stellate ? faces : face_triangles] : info == "vertices" ? move(translation,p=scaled_points) : info == "faces" ? faces : info == "face normals" ? face_normals : diff --git a/tests/test_geometry.scad b/tests/test_geometry.scad index 5eb4b68..0e70f31 100644 --- a/tests/test_geometry.scad +++ b/tests/test_geometry.scad @@ -835,7 +835,8 @@ module test_cleanup_path() { module test_polygon_area() { assert(approx(polygon_area([[1,1],[-1,1],[-1,-1],[1,-1]]), 4)); - assert(approx(polygon_area(circle(r=50,$fn=1000)), -PI*50*50, eps=0.1)); + assert(approx(polygon_area(circle(r=50,$fn=1000),signed=true), -PI*50*50, eps=0.1)); + assert(approx(polygon_area(rot([13,27,75],p=path3d(circle(r=50,$fn=1000),fill=23)),signed=true), PI*50*50, eps=0.1)); } *test_polygon_area(); @@ -909,8 +910,7 @@ module test_centroid() { assert_approx(centroid(circle(d=100)), [0,0]); assert_approx(centroid(rect([40,60],rounding=10,anchor=LEFT)), [20,0]); assert_approx(centroid(rect([40,60],rounding=10,anchor=FWD)), [0,30]); - poly = [for(a=[0:90:360]) - move([1,2.5,3.1], rot(p=[cos(a),sin(a),0],from=[0,0,1],to=[1,1,1])) ]; + poly = move([1,2.5,3.1],p=rot([12,49,24], p=path3d(circle(10,$fn=33)))); assert_approx(centroid(poly), [1,2.5,3.1]); } *test_centroid(); @@ -936,19 +936,22 @@ module test_point_in_polygon() { poly2 = [ [-3,-3],[2,-3],[2,1],[-1,1],[-1,-1],[1,-1],[1,2],[-3,2] ]; assert(point_in_polygon([0,0], poly) == 1); assert(point_in_polygon([20,0], poly) == -1); - assert(point_in_polygon([20,0], poly,EPSILON,nonzero=false) == -1); + assert(point_in_polygon([20,0], poly,nonzero=false) == -1); assert(point_in_polygon([5,5], poly) == 1); assert(point_in_polygon([-5,5], poly) == 1); assert(point_in_polygon([-5,-5], poly) == 1); assert(point_in_polygon([5,-5], poly) == 1); - assert(point_in_polygon([5,-5], poly,EPSILON,nonzero=false) == 1); + assert(point_in_polygon([5,-5], poly,nonzero=false,eps=EPSILON) == 1); assert(point_in_polygon([-10,-10], poly) == -1); assert(point_in_polygon([10,0], poly) == 0); assert(point_in_polygon([0,10], poly) == 0); assert(point_in_polygon([0,-10], poly) == 0); - assert(point_in_polygon([0,-10], poly,EPSILON,nonzero=false) == 0); - assert(point_in_polygon([0,0], poly2,EPSILON,nonzero=true) == 1); - assert(point_in_polygon([0,0], poly2,EPSILON,nonzero=false) == -1); + assert(point_in_polygon([0,-10], poly,nonzero=false) == 0); + assert(point_in_polygon([0,0], poly2,nonzero=true) == 1); + assert(point_in_polygon([0,1], poly2,nonzero=true) == 0); + assert(point_in_polygon([0,1], poly2,nonzero=false) == 0); + assert(point_in_polygon([1,0], poly2,nonzero=false) == 0); + assert(point_in_polygon([0,0], poly2,nonzero=false,eps=EPSILON) == -1); } *test_point_in_polygon();