diff --git a/affine.scad b/affine.scad index 3d37349..fe695b2 100644 --- a/affine.scad +++ b/affine.scad @@ -17,9 +17,9 @@ function ident(n) = [for (i = [0:1:n-1]) [for (j = [0:1:n-1]) (i==j)?1:0]]; -// Function: affine2d_to_affine3d() +// Function: affine2d_to_3d() // Description: Takes a 3x3 affine2d matrix and returns its 4x4 affine3d equivalent. -function mat3_to_mat4(m) = concat( +function affine2d_to_3d(m) = concat( [for (r = [0:2]) concat( [for (c = [0:2]) m[r][c]], diff --git a/paths.scad b/paths.scad index 3b7af32..cbe5877 100644 --- a/paths.scad +++ b/paths.scad @@ -43,7 +43,7 @@ function simplify3d_path(path, eps=1e-6) = simplify_path(path, eps=eps); // Returns the length of the path. // Arguments: // path = The list of points of the path to measure. -// closed = true if the path is closed. Default: false +// closed = true if the path is closed. Default: false // Example: // path = [[0,0], [5,35], [60,-25], [80,0]]; // echo(path_length(path)); @@ -441,7 +441,7 @@ module debug_polygon(points, paths=undef, convexity=2, size=1) // Uniformly spreads out copies of children along a path. Copies are located based on path length. If you specify `n` but not spacing then `n` copies will be placed // with one at path[0] of `closed` is true, or spanning the entire path from start to end if `closed` is false. // If you specify `spacing` but not `n` then copies will spread out starting from one at path[0] for `closed=true` or at the path center for open paths. -// If you specify `sp` then the copies will start at `sp`. +// If you specify `sp` then the copies will start at `sp`. // // Usage: // path_spread(path), [n], [spacing], [sp], [rotate_children], [closed]) ... @@ -454,10 +454,10 @@ module debug_polygon(points, paths=undef, convexity=2, size=1) // // Side Effects: // `$pos` is set to the center of each copy -// `$idx` is set to the index number of each copy. In the case of closed paths the first copy is at `path[0]` unless you give `sp`. +// `$idx` is set to the index number of each copy. In the case of closed paths the first copy is at `path[0]` unless you give `sp`. // `$dir` is set to the direction vector of the path at the point where the copy is placed. // `$normal` is set to the direction of the normal vector to the path direction that is coplanar with the path at this point -// +// // Example(2D): // spiral = [for(theta=[0:360*8]) theta * [cos(theta), sin(theta)]]/100; // stroke(spiral,width=.25); @@ -466,7 +466,7 @@ module debug_polygon(points, paths=undef, convexity=2, size=1) // circle = regular_ngon(n=64, or=10); // stroke(circle,width=1,closed=true); // color("green")path_spread(circle, n=7, closed=true) circle(r=1+$idx/3); -// Example(2D): +// Example(2D): // heptagon = regular_ngon(n=7, or=10); // stroke(heptagon, width=1, closed=true); // color("purple") path_spread(heptagon, n=9, closed=true) square([0.5,3],anchor=FRONT); @@ -498,7 +498,7 @@ module debug_polygon(points, paths=undef, convexity=2, size=1) // sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]]; // stroke(sinwav,width=.1); // color("red")path_spread(sinwav, n=5, sp=18) square([.2,1.5],anchor=FRONT); -// Example(2D): +// Example(2D): // wedge = arc(angle=[0,100], r=10, $fn=64); // difference(){ // polygon(concat([[0,0]],wedge)); @@ -520,39 +520,47 @@ module debug_polygon(points, paths=undef, convexity=2, size=1) // } module path_spread(path, n, spacing, sp=undef, rotate_children=true, closed=false) { - length = path_length(path,closed); - distances = is_def(sp) ? ( - is_def(n) && is_def(spacing) ? list_range(s=sp, step=spacing, n=n) : - is_def(n) ? list_range(s=sp, e=length, n=n) : - list_range(s=sp, step=spacing, e=length) - ) : - is_def(n) && is_undef(spacing) ? (closed ? let(range=list_range(s=0,e=length, n=n+1)) slice(range,0,-2) : - list_range(s=0, e=length, n=n) - ) : - let( n = is_def(n) ? n : floor(length/spacing)+(closed?0:1), - ptlist = list_range(s=0,step=spacing,n=n), - listcenter = mean(ptlist) - ) - closed ? sort([for(entry=ptlist) posmod(entry-listcenter,length)]) : - [for(entry=ptlist) entry + length/2-listcenter ]; - distOK = min(distances)>=0 && max(distances)<=length; - assert(distOK,"Cannot fit all of the copies"); - cutlist = path_cut(path, distances, closed, direction=true); - planar = len(path[0])==2; - if (true) for(i=[0:1:len(cutlist)-1]) { - $pos = cutlist[i][0]; - $idx = i; - $dir = rotate_children ? (planar?[1,0]:[1,0,0]) : cutlist[i][2]; - $normal = rotate_children? (planar?[0,1]:[0,0,1]) : cutlist[i][3]; - translate($pos) { - if (rotate_children) { - if(planar) rot(from=[0,1],to=cutlist[i][3]) children(); - else multmatrix(mat3_to_mat4(transpose([cutlist[i][2],cross(cutlist[i][3],cutlist[i][2]), cutlist[i][3]]))) children(); - } - else children(); - } - } -} + length = path_length(path,closed); + distances = is_def(sp)? ( + is_def(n) && is_def(spacing)? list_range(s=sp, step=spacing, n=n) : + is_def(n)? list_range(s=sp, e=length, n=n) : + list_range(s=sp, step=spacing, e=length) + ) : is_def(n) && is_undef(spacing)? ( + closed? + let(range=list_range(s=0,e=length, n=n+1)) slice(range,0,-2) : + list_range(s=0, e=length, n=n) + ) : ( + let( + n = is_def(n)? n : floor(length/spacing)+(closed?0:1), + ptlist = list_range(s=0,step=spacing,n=n), + listcenter = mean(ptlist) + ) closed? + sort([for(entry=ptlist) posmod(entry-listcenter,length)]) : + [for(entry=ptlist) entry + length/2-listcenter ] + ); + distOK = min(distances)>=0 && max(distances)<=length; + assert(distOK,"Cannot fit all of the copies"); + cutlist = path_cut(path, distances, closed, direction=true); + planar = len(path[0])==2; + if (true) for(i=[0:1:len(cutlist)-1]) { + $pos = cutlist[i][0]; + $idx = i; + $dir = rotate_children ? (planar?[1,0]:[1,0,0]) : cutlist[i][2]; + $normal = rotate_children? (planar?[0,1]:[0,0,1]) : cutlist[i][3]; + translate($pos) { + if (rotate_children) { + if(planar) { + rot(from=[0,1],to=cutlist[i][3]) children(); + } else { + multmatrix(affine2d_to_3d(transpose([cutlist[i][2],cross(cutlist[i][3],cutlist[i][2]), cutlist[i][3]]))) + children(); + } + } else { + children(); + } + } + } +} // Function: path_cut() @@ -561,17 +569,20 @@ module path_spread(path, n, spacing, sp=undef, rotate_children=true, closed=fals // path_cut(path, dists, [closed], [direction]) // // Description: -// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut points and indices of the next point in the path after that point. -// So for example, a return value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after this point is path[5]. -// If the path is too short then path_cut returns undef. If you set `direction` to true then `path_cut` will also return the tangent vector to the path -// and a normal vector to the path. It tries to find a normal vector that is coplanar to the path near the cut point. If this fails it will return a normal -// vector parallel to the xy plane. The output with direction vectors will be `[point, next_index, tangent, normal]`. +// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut +// points and indices of the next point in the path after that point. So for example, a return +// value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after +// this point is path[5]. If the path is too short then path_cut returns undef. If you set +// `direction` to true then `path_cut` will also return the tangent vector to the path and a normal +// vector to the path. It tries to find a normal vector that is coplanar to the path near the cut +// point. If this fails it will return a normal vector parallel to the xy plane. The output with +// direction vectors will be `[point, next_index, tangent, normal]`. // // Arguments: // path = path to cut -// dists = distances where the path should be cut (a list) or a scalar single distance +// dists = distances where the path should be cut (a list) or a scalar single distance // closed = set to true if the curve is closed. Default: false -// direction = set to true to return direction vectors. Default: false +// direction = set to true to return direction vectors. Default: false // // Example(NORENDER): // square=[[0,0],[1,0],[1,1],[0,1]]; @@ -580,75 +591,76 @@ module path_spread(path, n, spacing, sp=undef, rotate_children=true, closed=fals // path_cut(square, [0,0.8,1.6,2.4,3.2], closed=true); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], [[0, 0.8], 4]] // path_cut(square, [0,0.8,1.6,2.4,3.2]); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], undef] function path_cut(path, dists, closed=false, direction=false) = - let( long_enough = len(path) >= (closed ? 3 : 2)) - assert(long_enough,len(path)<2 ? "Two points needed to define a path" : "Closed path must include three points") - !is_list(dists) ? path_cut(path, [dists],closed, direction)[0] : - let(cuts = _path_cut(path,dists,closed)) - !direction ? cuts : - let( dir = _path_cuts_dir(path, cuts, closed), - normals = _path_cuts_normals(path, cuts, dir, closed) - ) - zip(cuts, array_group(dir,1), array_group(normals,1)); + let(long_enough = len(path) >= (closed ? 3 : 2)) + assert(long_enough,len(path)<2 ? "Two points needed to define a path" : "Closed path must include three points") + !is_list(dists)? path_cut(path, [dists],closed, direction)[0] : + let(cuts = _path_cut(path,dists,closed)) + !direction ? cuts : let( + dir = _path_cuts_dir(path, cuts, closed), + normals = _path_cuts_normals(path, cuts, dir, closed) + ) zip(cuts, array_group(dir,1), array_group(normals,1)); // Main recursive path cut function -function _path_cut(path, dists, closed=false, pind=0, dtotal=0, dind=0, result=[]) = - dind == len(dists) ? result : - let( - lastpt = len(result)>0 ? select(result,-1)[0] : [], - dpartial = len(result)==0 ? 0 : norm(lastpt-path[pind]), - nextpoint = dpartial > dists[dind]-dtotal ? - [lerp(lastpt,path[pind], (dists[dind]-dtotal)/dpartial),pind] - : - _path_cut_single(path, dists[dind]-dtotal-dpartial, closed, pind) - ) - nextpoint == undef ? concat(result, replist(undef,len(dists)-dind)): - _path_cut(path, dists, closed, nextpoint[1], dists[dind],dind+1, concat(result, [nextpoint])); +function _path_cut(path, dists, closed=false, pind=0, dtotal=0, dind=0, result=[]) = + dind == len(dists) ? result : + let( + lastpt = len(result)>0? select(result,-1)[0] : [], + dpartial = len(result)==0? 0 : norm(lastpt-path[pind]), + nextpoint = dpartial > dists[dind]-dtotal? + [lerp(lastpt,path[pind], (dists[dind]-dtotal)/dpartial),pind] : + _path_cut_single(path, dists[dind]-dtotal-dpartial, closed, pind) + ) is_undef(nextpoint)? + concat(result, replist(undef,len(dists)-dind)) : + _path_cut(path, dists, closed, nextpoint[1], dists[dind],dind+1, concat(result, [nextpoint])); // Search for a single cut point in the path -function _path_cut_single(path, dist, closed=false, ind=0, eps=1e-7) = - ind>=len(path) ? undef : - ind==len(path)-1 && !closed ? (dist dist ? [lerp(path[ind],select(path,ind+1),dist/d), ind+1] : - _path_cut_single(path, dist-d,closed, ind+1, eps); +function _path_cut_single(path, dist, closed=false, ind=0, eps=1e-7) = + ind>=len(path)? undef : + ind==len(path)-1 && !closed? (dist dist ? + [lerp(path[ind],select(path,ind+1),dist/d), ind+1] : + _path_cut_single(path, dist-d,closed, ind+1, eps); // Find normal directions to the path, coplanar to local part of the path // Or return a vector parallel to the x-y plane if the above fails function _path_cuts_normals(path, cuts, dirs, closed=false) = - [for(i=[0:len(cuts)-1]) - len(path[0])==2? [-dirs[i].y,dirs[i].x] : - let( - plane = len(path)<3 ? undef : - let( start = max(min(cuts[i][1],len(path)-1),2)) - _path_plane(path, start, start-2) - ) - plane==undef ? normalize([-dirs[i].y, dirs[i].x,0]) : - normalize(cross(dirs[i],cross(plane[0],plane[1]))) - ]; + [for(i=[0:len(cuts)-1]) + len(path[0])==2? [-dirs[i].y, dirs[i].x] : ( + let( + plane = len(path)<3 ? undef : + let(start = max(min(cuts[i][1],len(path)-1),2)) _path_plane(path, start, start-2) + ) + plane==undef? + normalize([-dirs[i].y, dirs[i].x,0]) : + normalize(cross(dirs[i],cross(plane[0],plane[1]))) + ) + ]; // Scan from the specified point (ind) to find a noncoplanar triple to use -// to define the plane of the path. +// to define the plane of the path. function _path_plane(path, ind, i,closed) = - i<(closed?-1:0) ? undef : - !collinear(path[ind],path[ind-1], select(path,i)) ? [select(path,i)-path[ind-1],path[ind]-path[ind-1]] : _path_plane(path, ind, i-1); + i<(closed?-1:0) ? undef : + !collinear(path[ind],path[ind-1], select(path,i))? + [select(path,i)-path[ind-1],path[ind]-path[ind-1]] : + _path_plane(path, ind, i-1); // Find the direction of the path at the cut points function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) = - [for(ind=[0:len(cuts)-1]) - let( - nextind = cuts[ind][1], - nextpath = normalize(select(path, nextind+1)-select(path, nextind)), - thispath = normalize(select(path, nextind) - path[nextind-1]), - lastpath = normalize(path[nextind-1] - select(path, nextind-2)), - nextdir = - nextind==len(path) && !closed ? lastpath : - (nextind<=len(path)-2 || closed) && approx(cuts[ind][0], path[nextind],eps) ? - normalize(nextpath+thispath) : - (nextind>1 || closed) && approx(cuts[ind][0],path[nextind-1],eps) ? - normalize(thispath+lastpath) : - thispath - ) - nextdir]; + [for(ind=[0:len(cuts)-1]) + let( + nextind = cuts[ind][1], + nextpath = normalize(select(path, nextind+1)-select(path, nextind)), + thispath = normalize(select(path, nextind) - path[nextind-1]), + lastpath = normalize(path[nextind-1] - select(path, nextind-2)), + nextdir = + nextind==len(path) && !closed? lastpath : + (nextind<=len(path)-2 || closed) && approx(cuts[ind][0], path[nextind],eps)? + normalize(nextpath+thispath) : + (nextind>1 || closed) && approx(cuts[ind][0],path[nextind-1],eps)? + normalize(thispath+lastpath) : + thispath + ) nextdir + ]; // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap