mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
Added method="convex" to skin()
This commit is contained in:
parent
00bbdedd47
commit
674f276362
2 changed files with 57 additions and 17 deletions
72
skin.scad
72
skin.scad
|
@ -31,8 +31,9 @@ include <vnf.scad>
|
||||||
// If called as a function, returns a [VNF structure](vnf.scad) like `[VERTICES, FACES]`.
|
// If called as a function, returns a [VNF structure](vnf.scad) like `[VERTICES, FACES]`.
|
||||||
// If called as a module, creates a polyhedron of the skinned profiles.
|
// If called as a module, creates a polyhedron of the skinned profiles.
|
||||||
// The vertex matching methods are as follows:
|
// The vertex matching methods are as follows:
|
||||||
// - `"distance"`: Vertices between profiles are matched based on closest next position, relative to the center of each profile.
|
// - `"distance"`: Chooses face configurations with shorter edge lengths.
|
||||||
// - `"angle"`: Vertices between profiles are matched based on closest next polar angle, relative to the center of each profile.
|
// - `"angle"`: Chooses face configurations with edge angles closest to vertical.
|
||||||
|
// - `"convex"`: Chooses the more convex of possible face configurations.
|
||||||
// - `"uniform"`: Vertices are uniformly matched between profiles, such that a point 30% of the way through one profile, will be matched to a vertex 30% of the way through the other profile, based on vertex count.
|
// - `"uniform"`: Vertices are uniformly matched between profiles, such that a point 30% of the way through one profile, will be matched to a vertex 30% of the way through the other profile, based on vertex count.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// profiles = A list of 2D paths that have been moved and/or rotated into 3D-space.
|
// profiles = A list of 2D paths that have been moved and/or rotated into 3D-space.
|
||||||
|
@ -99,6 +100,25 @@ include <vnf.scad>
|
||||||
// scale([2,1,1],p=path3d(circle(d=50),100))
|
// scale([2,1,1],p=path3d(circle(d=50),100))
|
||||||
// ], method=method);
|
// ], method=method);
|
||||||
// }
|
// }
|
||||||
|
// Example(FlatSpin): Method "convex" maximizes convexity.
|
||||||
|
// method = "convex";
|
||||||
|
// xdistribute(150) {
|
||||||
|
// $fn=24;
|
||||||
|
// skin([
|
||||||
|
// yscale(2, p=path3d(circle(d=75))),
|
||||||
|
// [[40,0,100], [35,-15,100], [20,-30,100],[0,-40,100],[-40,0,100],[0,40,100],[20,30,100], [35,15,100]]
|
||||||
|
// ], method=method);
|
||||||
|
// skin([
|
||||||
|
// for (b=[0,90]) [
|
||||||
|
// for (a=[360:-360/$fn:0.01])
|
||||||
|
// point3d(polar_to_xy((100+50*cos((a+b)*2))/2,a),b/90*100)
|
||||||
|
// ]
|
||||||
|
// ], method=method);
|
||||||
|
// skin([
|
||||||
|
// scale([1,2,1],p=path3d(circle(d=50))),
|
||||||
|
// scale([2,1,1],p=path3d(circle(d=50),100))
|
||||||
|
// ], method=method);
|
||||||
|
// }
|
||||||
// Example(FlatSpin): Method "uniform" works well with symmetrical profiles that are regularly spaced.
|
// Example(FlatSpin): Method "uniform" works well with symmetrical profiles that are regularly spaced.
|
||||||
// method = "uniform";
|
// method = "uniform";
|
||||||
// xdistribute(150) {
|
// xdistribute(150) {
|
||||||
|
@ -180,6 +200,7 @@ module skin(profiles, closed=false, caps=true, method="uniform", convexity=2) {
|
||||||
|
|
||||||
function skin(profiles, closed=false, caps=true, method="uniform") =
|
function skin(profiles, closed=false, caps=true, method="uniform") =
|
||||||
assert(is_list(profiles))
|
assert(is_list(profiles))
|
||||||
|
assert(all([for (profile=profiles) is_list(profile) && len(profile[0])==3]), "All profiles must be 3D paths.")
|
||||||
assert(is_bool(closed))
|
assert(is_bool(closed))
|
||||||
assert(is_bool(caps))
|
assert(is_bool(caps))
|
||||||
assert(!closed||!caps)
|
assert(!closed||!caps)
|
||||||
|
@ -192,11 +213,12 @@ function skin(profiles, closed=false, caps=true, method="uniform") =
|
||||||
let(
|
let(
|
||||||
prof1 = profiles[pidx%len(profiles)],
|
prof1 = profiles[pidx%len(profiles)],
|
||||||
prof2 = profiles[(pidx+1)%len(profiles)],
|
prof2 = profiles[(pidx+1)%len(profiles)],
|
||||||
cp1 = mean(prof1),
|
cp1 = centroid(prof1),
|
||||||
cp2 = mean(prof2),
|
cp2 = centroid(prof2),
|
||||||
midpt = (cp1+cp2)/2,
|
midpt = (cp1+cp2)/2,
|
||||||
n1 = plane_normal(plane_from_pointslist(prof1)),
|
n1 = plane_normal(plane_from_pointslist(prof1)),
|
||||||
n2 = plane_normal(plane_from_pointslist(prof2)),
|
n2 = plane_normal(plane_from_pointslist(prof2)),
|
||||||
|
midn = normalize((n1+n2)/2),
|
||||||
vang = vector_angle(n1,n2),
|
vang = vector_angle(n1,n2),
|
||||||
perp = vang>0.01 && vang<179.99? vector_axis(n1,n2) :
|
perp = vang>0.01 && vang<179.99? vector_axis(n1,n2) :
|
||||||
vector_angle(n1,RIGHT)>44? vector_axis(n1,RIGHT) :
|
vector_angle(n1,RIGHT)>44? vector_axis(n1,RIGHT) :
|
||||||
|
@ -217,18 +239,36 @@ function skin(profiles, closed=false, caps=true, method="uniform") =
|
||||||
|
|
||||||
!finished;
|
!finished;
|
||||||
|
|
||||||
dang1 = abs(modang(xy_to_polar(poly1[i%plen1]).y - xy_to_polar(poly2[(j+1)%plen2]).y)),
|
side =
|
||||||
dang2 = abs(modang(xy_to_polar(poly2[j%plen2]).y - xy_to_polar(poly1[(i+1)%plen1]).y)),
|
i>=plen1*2? 0 :
|
||||||
dist1 = norm(poly1[i%plen1] - poly2[(j+1)%plen2]),
|
j>=plen2*2? 1 :
|
||||||
dist2 = norm(poly2[j%plen2] - poly1[(i+1)%plen1]),
|
let(
|
||||||
pctdist1 = abs((i/plen1) - ((j+1)/plen2)),
|
p1a = prof1[(i+0)%plen1],
|
||||||
pctdist2 = abs((j/plen2) - ((i+1)/plen1)),
|
p1b = prof1[(i+1)%plen1],
|
||||||
side = i>=plen1? 0 :
|
p2a = prof2[(j+0)%plen2],
|
||||||
j>=plen2? 1 :
|
p2b = prof2[(j+1)%plen2]
|
||||||
match=="angle"? (dang1>dang2? 1 : 0) :
|
)
|
||||||
match=="distance"? (dist1>dist2? 1 : 0) :
|
match=="distance"? let(
|
||||||
match=="uniform"? (pctdist1>pctdist2? 1 : 0) :
|
dist1 = norm(p1a-p2b),
|
||||||
assert(in_list(method[i],["angle","distance","uniform"]),str("Got `",method,"'")),
|
dist2 = norm(p1b-p2a)
|
||||||
|
) (dist1>dist2? 1 : 0) :
|
||||||
|
match=="angle"? let(
|
||||||
|
delta1 = rot(from=midn, to=UP, p=p2b - p1a),
|
||||||
|
delta2 = rot(from=midn, to=UP, p=p2a - p1b),
|
||||||
|
dist1 = atan2(norm([delta1.x, delta1.y]), abs(delta1.z)),
|
||||||
|
dist2 = atan2(norm([delta2.x, delta2.y]), abs(delta2.z))
|
||||||
|
) (dist1>dist2? 1 : 0) :
|
||||||
|
match=="convex"? let(
|
||||||
|
mid1 = (p2b + p1a)/2,
|
||||||
|
mid2 = (p2a + p1b)/2,
|
||||||
|
dist1 = norm(mid1-midpt),
|
||||||
|
dist2 = norm(mid2-midpt)
|
||||||
|
) (dist1<dist2? 1 : 0) :
|
||||||
|
match=="uniform"? let(
|
||||||
|
pctdist1 = abs((i/plen1) - ((j+1)/plen2)),
|
||||||
|
pctdist2 = abs((j/plen2) - ((i+1)/plen1))
|
||||||
|
) (pctdist1>pctdist2? 1 : 0) :
|
||||||
|
assert(in_list(match,["distance","angle","convex","uniform"]),str("Got `",method,"'")),
|
||||||
p1 = prof1[i%plen1],
|
p1 = prof1[i%plen1],
|
||||||
p2 = prof2[j%plen2],
|
p2 = prof2[j%plen2],
|
||||||
p3 = side? prof1[(i+1)%plen1] : prof2[(j+1)%plen2],
|
p3 = side? prof1[(i+1)%plen1] : prof2[(j+1)%plen2],
|
||||||
|
|
|
@ -8,7 +8,7 @@
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
BOSL_VERSION = [2,0,102];
|
BOSL_VERSION = [2,0,103];
|
||||||
|
|
||||||
|
|
||||||
// Section: BOSL Library Version Functions
|
// Section: BOSL Library Version Functions
|
||||||
|
|
Loading…
Reference in a new issue