Merge pull request #752 from adrianVmariano/master

debug function rename, etc
This commit is contained in:
Revar Desmera 2022-01-09 18:06:14 -08:00 committed by GitHub
commit 676f13cb48
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 279 additions and 403 deletions

View file

@ -528,65 +528,6 @@ module tags(tags)
}
// Module: recolor()
// Usage:
// recolor(c) {...}
// Topics: Attachments
// See Also: tags(), hide(), show(), diff(), intersect()
// Description:
// Sets the color for children that can use the $color special variable. For a more step-by-step
// explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Arguments:
// c = Color name or RGBA vector.
// Example:
// recolor("red") cyl(l=20, d=10);
module recolor(c)
{
$color = c;
children();
}
// Module: hide()
// Usage:
// hide(tags) {...}
// Topics: Attachments
// See Also: tags(), recolor(), show(), diff(), intersect()
// Description:
// Hides all children with the given tags. Overrides any previous `hide()` or `show()` calls.
// For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Example:
// hide("A") cube(50, anchor=CENTER, $tags="Main") {
// attach(LEFT, BOTTOM) cylinder(d=30, l=30, $tags="A");
// attach(RIGHT, BOTTOM) cylinder(d=30, l=30, $tags="B");
// }
module hide(tags="")
{
$tags_hidden = tags==""? [] : str_split(tags, " ");
$tags_shown = [];
children();
}
// Module: show()
// Usage:
// show(tags) {...}
// Topics: Attachments
// See Also: tags(), recolor(), hide(), diff(), intersect()
// Description:
// Shows only children with the given tags. Overrides any previous `hide()` or `show()` calls.
// For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Example:
// show("A B") cube(50, anchor=CENTER, $tags="Main") {
// attach(LEFT, BOTTOM) cylinder(d=30, l=30, $tags="A");
// attach(RIGHT, BOTTOM) cylinder(d=30, l=30, $tags="B");
// }
module show(tags="")
{
$tags_shown = tags==""? [] : str_split(tags, " ");
$tags_hidden = [];
children();
}
// Module: diff()
@ -755,6 +696,67 @@ module hulling(a)
}
// Module: recolor()
// Usage:
// recolor(c) {...}
// Topics: Attachments
// See Also: tags(), hide(), show(), diff(), intersect()
// Description:
// Sets the color for children that can use the $color special variable. For a more step-by-step
// explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Arguments:
// c = Color name or RGBA vector.
// Example:
// recolor("red") cyl(l=20, d=10);
module recolor(c)
{
$color = c;
children();
}
// Module: hide()
// Usage:
// hide(tags) {...}
// Topics: Attachments
// See Also: tags(), recolor(), show(), diff(), intersect()
// Description:
// Hides all children with the given tags. Overrides any previous `hide()` or `show()` calls.
// For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Example:
// hide("A") cube(50, anchor=CENTER, $tags="Main") {
// attach(LEFT, BOTTOM) cylinder(d=30, l=30, $tags="A");
// attach(RIGHT, BOTTOM) cylinder(d=30, l=30, $tags="B");
// }
module hide(tags="")
{
$tags_hidden = tags==""? [] : str_split(tags, " ");
$tags_shown = [];
children();
}
// Module: show()
// Usage:
// show(tags) {...}
// Topics: Attachments
// See Also: tags(), recolor(), hide(), diff(), intersect()
// Description:
// Shows only children with the given tags. Overrides any previous `hide()` or `show()` calls.
// For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Example: Display the attachments but not the parent
// show("A B") cube(50, anchor=CENTER, $tags="Main") {
// attach(LEFT, BOTTOM) cylinder(d=30, l=30, $tags="A");
// attach(RIGHT, BOTTOM) cylinder(d=30, l=30, $tags="B");
// }
module show(tags="")
{
$tags_shown = tags==""? [] : str_split(tags, " ");
$tags_hidden = [];
children();
}
// Section: Attachable Masks

View file

@ -20,7 +20,7 @@
// Degree = The degree of the polynomial used to make the bezier curve. A bezier curve of degree N will have N+1 control points. Most beziers are cubic (degree 3). The higher the degree, the more the curve can wiggle.
// Bezier Parameter = A parameter, usually `u` below, that ranges from 0 to 1 to trace out the bezier curve. When `u=0` you get the first control point and when `u=1` you get the last control point. Intermediate points are traced out *non-uniformly*.
// Bezier Path = A list of bezier control points corresponding to a series of Bezier curves that connect together, end to end. Because they connect, the endpoints are shared between control points and are not repeated, so a degree 3 bezier path representing two bezier curves will have seven entries to represent two sets of four control points. **NOTE:** A "bezier path" is *NOT* a standard path
// Bezier Patch = A two-dimensional arrangement of Bezier control points that generate a bounded curved Bezier surface. A rectangular patch is a (N+1) by (M+1) grid of control points, which define surface with four edges (in the non-degenerate case). A triangular patch is a triangular arrangement of control points and it generates a Bezier surface with 3 edges.
// Bezier Patch = A two-dimensional arrangement of Bezier control points that generate a bounded curved Bezier surface. A Bezier patch is a (N+1) by (M+1) grid of control points, which defines surface with four edges (in the non-degenerate case).
// Bezier Surface = A surface defined by a list of one or more bezier patches.
// Spline Steps = The number of straight-line segments used to approximate a Bezier curve. The more spline steps, the better the approximation to the curve, but the slower it will be to generate. This plays a role analogous to `$fn` for circles. Usually defaults to 16.
@ -40,28 +40,28 @@
// is best when `u` is a long list and the bezier degree is 10 or less. The degree of the bezier
// curve is `len(bezier)-1`.
// Arguments:
// bezier = The list of endpoints and control points for this bezier segment.
// bezier = The list of endpoints and control points for this bezier curve.
// u = Parameter values for evaluating the curve, given as a single value, a list or a range.
// Example(2D): Quadratic (Degree 2) Bezier.
// bez = [[0,0], [30,30], [80,0]];
// trace_bezier(bez, N=len(bez)-1);
// debug_bezier(bez, N=len(bez)-1);
// translate(bezier_points(bez, 0.3)) color("red") sphere(1);
// Example(2D): Cubic (Degree 3) Bezier
// bez = [[0,0], [5,35], [60,-25], [80,0]];
// trace_bezier(bez, N=len(bez)-1);
// debug_bezier(bez, N=len(bez)-1);
// translate(bezier_points(bez, 0.4)) color("red") sphere(1);
// Example(2D): Degree 4 Bezier.
// bez = [[0,0], [5,15], [40,20], [60,-15], [80,0]];
// trace_bezier(bez, N=len(bez)-1);
// debug_bezier(bez, N=len(bez)-1);
// translate(bezier_points(bez, 0.8)) color("red") sphere(1);
// Example(2D): Giving a List of `u`
// bez = [[0,0], [5,35], [60,-25], [80,0]];
// trace_bezier(bez, N=len(bez)-1);
// debug_bezier(bez, N=len(bez)-1);
// pts = bezier_points(bez, [0, 0.2, 0.3, 0.7, 0.8, 1]);
// rainbow(pts) move($item) sphere(1.5, $fn=12);
// Example(2D): Giving a Range of `u`
// bez = [[0,0], [5,35], [60,-25], [80,0]];
// trace_bezier(bez, N=len(bez)-1);
// debug_bezier(bez, N=len(bez)-1);
// pts = bezier_points(bez, [0:0.2:1]);
// rainbow(pts) move($item) sphere(1.5, $fn=12);
@ -177,35 +177,36 @@ function _bezier_matrix(N) =
// Function: bezier_curve()
// Usage:
// path = bezier_curve(bezier, n, [endpoint]);
// path = bezier_curve(bezier, [splinesteps], [endpoint]);
// Topics: Bezier Curves
// See Also: bezier_curvature(), bezier_tangent(), bezier_derivative(), bezier_points()
// Description:
// Takes a list of bezier control points and generates n points along the bezier curve they define.
// Takes a list of bezier control points and generates splinesteps segments (splinesteps+1 points)
// along the bezier curve they define.
// Points start at the first control point and are sampled uniformly along the bezier parameter.
// The endpoints of the output will be *exactly* equal to the first and last bezier control points
// when endpoint is true. If endpoint is false the sampling stops one step before the final point
// of the bezier curve, but you still get n, more tightly spaced, points.
// of the bezier curve, but you still get the same number of (more tightly spaced) points.
// The distance between the points will *not* be equidistant.
// The degree of the bezier curve is one less than the number of points in `curve`.
// Arguments:
// bezier = The list of control points that define the Bezier curve.
// n = The number of points to generate along the bezier curve.
// splinesteps = The number of segments to create on the bezier curve. Default: 16
// endpoint = if false then exclude the endpoint. Default: True
// Example(2D): Quadratic (Degree 2) Bezier.
// bez = [[0,0], [30,30], [80,0]];
// move_copies(bezier_curve(bez, 8)) sphere(r=1.5, $fn=12);
// trace_bezier(bez, N=len(bez)-1);
// debug_bezier(bez, N=len(bez)-1);
// Example(2D): Cubic (Degree 3) Bezier
// bez = [[0,0], [5,35], [60,-25], [80,0]];
// move_copies(bezier_curve(bez, 8)) sphere(r=1.5, $fn=12);
// trace_bezier(bez, N=len(bez)-1);
// debug_bezier(bez, N=len(bez)-1);
// Example(2D): Degree 4 Bezier.
// bez = [[0,0], [5,15], [40,20], [60,-15], [80,0]];
// move_copies(bezier_curve(bez, 8)) sphere(r=1.5, $fn=12);
// trace_bezier(bez, N=len(bez)-1);
function bezier_curve(bezier,n,endpoint=true) =
bezier_points(bezier, lerpn(0,1,n,endpoint));
// debug_bezier(bez, N=len(bez)-1);
function bezier_curve(bezier,splinesteps=16,endpoint=true) =
bezier_points(bezier, lerpn(0,1,splinesteps+1,endpoint));
// Function: bezier_derivative()
@ -288,9 +289,9 @@ function bezier_curvature(bezier, u) =
// Topics: Bezier Curves
// See Also: bezier_points()
// Description:
// Finds the closest part of the given bezier segment to point `pt`.
// Finds the closest part of the given bezier curve to point `pt`.
// The degree of the curve, N, is one less than the number of points in `curve`.
// Returns `u` for the shortest position on the bezier segment to the given point `pt`.
// Returns `u` for the closest position on the bezier curve to the given point `pt`.
// Arguments:
// bezier = The list of control points that define the Bezier curve.
// pt = The point to find the closest curve point to.
@ -299,7 +300,7 @@ function bezier_curvature(bezier, u) =
// pt = [40,15];
// bez = [[0,0], [20,40], [60,-25], [80,0]];
// u = bezier_closest_point(bez, pt);
// trace_bezier(bez, N=len(bez)-1);
// debug_bezier(bez, N=len(bez)-1);
// color("red") translate(pt) sphere(r=1);
// color("blue") translate(bezier_points(bez,u)) sphere(r=1);
function bezier_closest_point(bezier, pt, max_err=0.01, u=0, end_u=1) =
@ -395,28 +396,31 @@ function bezier_line_intersection(bezier, line) =
// Section: Bezier Path Functions
// To contruct more complicated curves you can connect a sequence of Bezier curves end to end.
// A Bezier path is a flattened list of control points that, along with the degree, represents such a sequence of bezier curves where all of the curves have the same degree.
// A Bezier path looks like a regular path, since it is just a list of points, but it is not a regular path. Use {{bezpath_curve()} to convert a Bezier path to a regular path.
// A Bezier path looks like a regular path, since it is just a list of points, but it is not a regular path. Use {{bezpath_curve()}} to convert a Bezier path to a regular path.
// We interpret a degree N Bezier path as groups of N+1 control points that
// share endpoints, so they overlap by one point. So if you have an order 3 bezier path `[p0,p1,p2,p3,p4,p5,p6]` then the first
// Bezier curve control point set is `[p0,p1,p2,p3]` and the second one is `[p3,p4,p5,p6]`. The endpoint, `p3`, is shared between the control point sets.
// The Bezier degree, which must be known to interpret the Bezier path, defaults to 3.
// Function: bezpath_points()
// Usage:
// pt = bezpath_points(bezpath, seg, u, [N]);
// ptlist = bezpath_points(bezpath, seg, LIST, [N]);
// path = bezpath_path_points(bezpath, seg, RANGE, [N]);
// pt = bezpath_points(bezpath, curveind, u, [N]);
// ptlist = bezpath_points(bezpath, curveind, LIST, [N]);
// path = bezpath_points(bezpath, curveind, RANGE, [N]);
// Topics: Bezier Paths
// See Also: bezier_points(), bezier_curve()
// Description:
// Returns the coordinates of Bezier path path segment `seg` at parameter `u`.
// Extracts from the Bezier path `bezpath` the control points for the Bezier curve whose index is `curveind` and
// computes the point or points on the corresponding Bezier curve specified by `u`. If `curveind` is zero you
// get the first curve. The number of curves is `(len(bezpath)-1)/N` so the maximum index is that number minus one.
// Arguments:
// path = A Bezier path path to approximate.
// seg = Segment number along the path. Each segment is N points long.
// bezpath = A Bezier path path to approximate.
// curveind = Curve number along the path.
// u = Parameter values for evaluating the curve, given as a single value, a list or a range.
// N = The degree of the Bezier path curves. Cubic Bezier paths have N=3. Default: 3
function bezpath_points(bezpath, seg, u, N=3) =
bezier_points(select(bezpath,seg*N,(seg+1)*N), u);
// N = The degree of the Bezier path curves. Default: 3
function bezpath_points(bezpath, curveind, u, N=3) =
bezier_points(select(bezpath,curveind*N,(curveind+1)*N), u);
// Function: bezpath_curve()
@ -428,7 +432,7 @@ function bezpath_points(bezpath, seg, u, N=3) =
// Takes a bezier path and converts it into a path of points.
// Arguments:
// bezpath = A bezier path to approximate.
// splinesteps = Number of straight lines to split each bezier segment into. default=16
// splinesteps = Number of straight lines to split each bezier curve into. default=16
// N = The degree of the bezier curves. Cubic beziers have N=3. Default: 3
// endpoint = If true, include the very last point of the bezier path. Default: true
// Example(2D):
@ -438,7 +442,7 @@ function bezpath_points(bezpath, seg, u, N=3) =
// [60,25], [70,0], [80,-25],
// [80,-50], [50,-50]
// ];
// trace_bezier(bez, N=3, width=2);
// debug_bezier(bez, N=3, width=2);
function bezpath_curve(bezpath, splinesteps=16, N=3, endpoint=true) =
assert(is_path(bezpath))
assert(is_int(N))
@ -473,7 +477,7 @@ function bezpath_curve(bezpath, splinesteps=16, N=3, endpoint=true) =
// [100,25], [140,25], [160,0]];
// pos = bezpath_closest_point(bez, pt);
// xy = bezpath_points(bez,pos[0],pos[1]);
// trace_bezier(bez, N=3);
// debug_bezier(bez, N=3);
// color("red") translate(pt) sphere(r=1);
// color("blue") translate(xy) sphere(r=1);
function bezpath_closest_point(bezpath, pt, N=3, max_err=0.01, seg=0, min_seg=undef, min_u=undef, min_dist=undef) =
@ -626,12 +630,12 @@ function path_to_bezpath(path, closed, tangents, uniform=false, size, relsize) =
// bez = [[50,30], [40,10], [10,50], [0,30],
// [-10, 10], [-30,10], [-50,20]];
// closed = bezpath_close_to_axis(bez);
// trace_bezier(closed);
// debug_bezier(closed);
// Example(2D):
// bez = [[30,50], [10,40], [50,10], [30,0],
// [10, -10], [10,-30], [20,-50]];
// closed = bezpath_close_to_axis(bez, axis="Y");
// trace_bezier(closed);
// debug_bezier(closed);
function bezpath_close_to_axis(bezpath, axis="X", N=3) =
assert(is_path(bezpath,2), "bezpath_close_to_axis() can only work on 2D bezier paths.")
assert(is_int(N))
@ -668,11 +672,11 @@ function bezpath_close_to_axis(bezpath, axis="X", N=3) =
// Example(2D):
// bez = [[50,30], [40,10], [10,50], [0,30], [-10, 10], [-30,10], [-50,20]];
// closed = bezpath_offset([0,-5], bez);
// trace_bezier(closed);
// debug_bezier(closed);
// Example(2D):
// bez = [[30,50], [10,40], [50,10], [30,0], [10, -10], [10,-30], [20,-50]];
// closed = bezpath_offset([-5,0], bez);
// trace_bezier(closed);
// debug_bezier(closed);
function bezpath_offset(offset, bezier, N=3) =
assert(is_vector(offset,2))
assert(is_path(bezier,2), "bezpath_offset() can only work on 2D bezier paths.")
@ -712,7 +716,7 @@ function bezpath_offset(offset, bezier, N=3) =
// bez_joint([ 20,-25], 135, 90, 10, 15),
// bez_end ([ 50, 0], -90,20),
// ]);
// trace_bezier(bezpath);
// debug_bezier(bezpath);
// Example(2D): 2D Bezier Path by Vector
// bezpath = flatten([
// bez_begin([-50,0],[0,-20]),
@ -720,7 +724,7 @@ function bezpath_offset(offset, bezier, N=3) =
// bez_joint([ 20,-25], [-10,10], [0,15]),
// bez_end ([ 50,0],[0, 20]),
// ]);
// trace_bezier(bezpath);
// debug_bezier(bezpath);
// Example(2D): 2D Bezier Path by Vector and Distance
// bezpath = flatten([
// bez_begin([-30,0],FWD, 30),
@ -728,7 +732,7 @@ function bezpath_offset(offset, bezier, N=3) =
// bez_joint([ 20,-25], 135, 90, 10, 15),
// bez_end ([ 30,0],BACK,30),
// ]);
// trace_bezier(bezpath);
// debug_bezier(bezpath);
// Example(3D,FlatSpin,VPD=200): 3D Bezier Path by Angle
// bezpath = flatten([
// bez_begin([-30,0,0],90,20,p=135),
@ -736,7 +740,7 @@ function bezpath_offset(offset, bezier, N=3) =
// bez_joint([20,-25,0], 135, 90, 15, 10, p1=135, p2=45),
// bez_end ([ 30,0,0],-90,20,p=45),
// ]);
// trace_bezier(bezpath);
// debug_bezier(bezpath);
// Example(3D,FlatSpin,VPD=225): 3D Bezier Path by Vector
// bezpath = flatten([
// bez_begin([-30,0,0],[0,-20, 20]),
@ -744,7 +748,7 @@ function bezpath_offset(offset, bezier, N=3) =
// bez_joint([20,-25,0],[0,10,-10],[0,15,15]),
// bez_end ([ 30,0,0],[0,-20,-20]),
// ]);
// trace_bezier(bezpath);
// debug_bezier(bezpath);
// Example(3D,FlatSpin,VPD=225): 3D Bezier Path by Vector and Distance
// bezpath = flatten([
// bez_begin([-30,0,0],FWD, 20),
@ -752,7 +756,7 @@ function bezpath_offset(offset, bezier, N=3) =
// bez_joint([20,-25,0],LEFT,DOWN,r1=20,r2=15),
// bez_end ([ 30,0,0],DOWN,20),
// ]);
// trace_bezier(bezpath);
// debug_bezier(bezpath);
function bez_begin(pt,a,r,p) =
assert(is_finite(r) || is_vector(a))
assert(len(pt)==3 || is_undef(p))
@ -857,19 +861,70 @@ function bez_end(pt,a,r,p) =
// Section: Bezier Surfaces
// Function: is_bezier_patch()
// Usage:
// bool = is_bezier_patch(x);
// Topics: Bezier Patches, Type Checking
// Description:
// Returns true if the given item is a bezier patch.
// Arguments:
// x = The value to check the type of.
function is_bezier_patch(x) =
is_list(x) && is_list(x[0]) && is_vector(x[0][0]) && len(x[0]) == len(x[len(x)-1]);
// Function: bezier_patch_flat()
// Usage:
// patch = bezier_patch_flat(size, [N=], [spin=], [orient=], [trans=]);
// Topics: Bezier Patches
// See Also: bezier_patch_points()
// Description:
// Returns a flat rectangular bezier patch of degree `N`, centered on the XY plane.
// Arguments:
// size = 2D XY size of the patch.
// ---
// N = Degree of the patch to generate. Since this is flat, a degree of 1 should usually be sufficient.
// orient = The orientation to rotate the edge patch into. Given as an [X,Y,Z] rotation angle list.
// trans = Amount to translate patch, after rotating to `orient`.
// Example(3D):
// patch = bezier_patch_flat(size=[100,100], N=3);
// debug_bezier_patches([patch], size=1, showcps=true);
function bezier_patch_flat(size=[100,100], N=4, spin=0, orient=UP, trans=[0,0,0]) =
let(
patch = [
for (x=[0:1:N]) [
for (y=[0:1:N])
v_mul(point3d(size), [x/N-0.5, 0.5-y/N, 0])
]
],
m = move(trans) * rot(a=spin, from=UP, to=orient)
) [for (row=patch) apply(m, row)];
// Function: bezier_patch_reverse()
// Usage:
// rpatch = bezier_patch_reverse(patch);
// Topics: Bezier Patches
// See Also: bezier_patch_points(), bezier_patch_flat()
// Description:
// Reverses the patch, so that the faces generated from it are flipped back to front.
// Arguments:
// patch = The patch to reverse.
function bezier_patch_reverse(patch) =
[for (row=patch) reverse(row)];
// Function: bezier_patch_points()
// Usage:
// pt = bezier_patch_points(patch, u, v);
// ptgrid = bezier_patch_points(patch, LIST, LIST);
// ptgrid = bezier_patch_points(patch, RANGE, RANGE);
// Topics: Bezier Patches
// See Also: bezier_points(), bezier_curve(), bezpath_curve(), bezier_triangle_point()
// See Also: bezier_points(), bezier_curve(), bezpath_curve()
// Description:
// Given a square 2-dimensional array of (N+1) by (N+1) points size, that represents a Bezier Patch
// of degree N, returns a point on that surface, at positions `u`, and `v`. A cubic bezier patch
@ -886,7 +941,7 @@ function bez_end(pt,a,r,p) =
// [[-50,-16, 20], [-16,-16, 40], [ 16,-16, 40], [50,-16, 20]],
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]]
// ];
// trace_bezier_patches(patches=[patch], size=1, showcps=true);
// debug_bezier_patches(patches=[patch], size=1, showcps=true);
// pt = bezier_patch_points(patch, 0.6, 0.75);
// translate(pt) color("magenta") sphere(d=3, $fn=12);
// Example(3D): Getting Multiple Points at Once
@ -896,7 +951,7 @@ function bez_end(pt,a,r,p) =
// [[-50,-16, 20], [-16,-16, 40], [ 16,-16, 40], [50,-16, 20]],
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]]
// ];
// trace_bezier_patches(patches=[patch], size=1, showcps=true);
// debug_bezier_patches(patches=[patch], size=1, showcps=true);
// pts = bezier_patch_points(patch, [0:0.2:1], [0:0.2:1]);
// for (row=pts) move_copies(row) color("magenta") sphere(d=3, $fn=12);
function bezier_patch_points(patch, u, v) =
@ -909,94 +964,30 @@ function bezier_patch_points(patch, u, v) =
[for (i = idx(vbezes[0])) bezier_points(column(vbezes,i), is_num(v)? [v] : v)];
// Function: bezier_triangle_point()
// Usage:
// pt = bezier_triangle_point(tri, u, v);
// Topics: Bezier Patches
// See Also: bezier_points(), bezier_curve(), bezpath_curve(), bezier_patch_points()
// Description:
// Given a triangular 2-dimensional array of N+1 by (for the first row) N+1 points,
// that represents a Bezier triangular patch of degree N, returns a point on
// that surface, at positions `u`, and `v`. A cubic bezier triangular patch
// will have a list of 4 points in the first row, 3 in the second, 2 in the
// third, and 1 in the last row.
// Arguments:
// tri = Triangular bezier patch to get point on.
// u = The proportion of the way along the first dimension of the triangular patch to find the point of. 0<=`u`<=1
// v = The proportion of the way along the second dimension of the triangular patch to find the point of. 0<=`v`<=(1-`u`)
// Example(3D):
// tri = [
// [[-50,-33,0], [-25,16,40], [20,66,20]],
// [[0,-33,30], [25,16,30]],
// [[50,-33,0]]
// ];
// trace_bezier_patches(patches=[tri], size=1, showcps=true);
// pt = bezier_triangle_point(tri, 0.5, 0.2);
// translate(pt) color("magenta") sphere(d=3, $fn=12);
function bezier_triangle_point(tri, u, v) =
len(tri) == 1 ? tri[0][0] :
function _bezier_rectangle(patch, splinesteps=16, style="default") =
let(
n = len(tri)-1,
Pu = [for(i=[0:1:n-1]) [for (j=[1:1:len(tri[i])-1]) tri[i][j]]],
Pv = [for(i=[0:1:n-1]) [for (j=[0:1:len(tri[i])-2]) tri[i][j]]],
Pw = [for(i=[1:1:len(tri)-1]) tri[i]]
uvals = lerpn(0,1,splinesteps.x+1),
vvals = lerpn(1,0,splinesteps.y+1),
pts = bezier_patch_points(patch, uvals, vvals)
)
bezier_triangle_point(u*Pu + v*Pv + (1-u-v)*Pw, u, v);
vnf_vertex_array(pts, style=style, reverse=false);
// Function: is_tripatch()
// Function: bezier_vnf()
// Usage:
// bool = is_tripatch(x);
// Topics: Bezier Patches, Type Checking
// See Also: is_rectpatch(), is_patch()
// Description:
// Returns true if the given item is a triangular bezier patch.
// Arguments:
// x = The value to check the type of.
function is_tripatch(x) =
is_list(x) && is_list(x[0]) && is_vector(x[0][0]) && len(x[0])>1 && len(x[len(x)-1])==1;
// Function: is_rectpatch()
// Usage:
// bool = is_rectpatch(x);
// Topics: Bezier Patches, Type Checking
// See Also: is_tripatch(), is_patch()
// Description:
// Returns true if the given item is a rectangular bezier patch.
// Arguments:
// x = The value to check the type of.
function is_rectpatch(x) =
is_list(x) && is_list(x[0]) && is_vector(x[0][0]) && len(x[0]) == len(x[len(x)-1]);
// Function: is_patch()
// Usage:
// bool = is_patch(x);
// Topics: Bezier Patches, Type Checking
// See Also: is_tripatch(), is_rectpatch()
// Description:
// Returns true if the given item is a bezier patch.
// Arguments:
// x = The value to check the type of.
function is_patch(x) =
is_tripatch(x) || is_rectpatch(x);
// Function: bezier_patch()
// Usage:
// vnf = bezier_patch(patch, [splinesteps], [style=]);
// vnf = bezier_vnf(patches, [splinesteps], [style]);
// Topics: Bezier Patches
// See Also: bezier_points(), bezier_curve(), bezpath_curve(), bezier_patch_points(), bezier_triangle_point()
// See Also: bezier_patch_points(), bezier_patch_flat()
// Description:
// Calculate vertices and faces for forming a partial polyhedron from the given bezier rectangular
// or triangular patch. Returns a [VNF structure](vnf.scad): a list containing two elements. The first is the
// list of unique vertices. The second is the list of faces, where each face is a list of indices into the
// list of vertices. You can use {{vnf_join()}} to stitch together multiple bezier patches or other VNFs into a complete polyhedron.
// Convert a patch or list of patches into the corresponding Bezier surface, representing the
// result as a [VNF structure](vnf.scad). The `splinesteps` argument specifies the sampling grid of
// the surface for each patch by specifying the number of segments on the borders of the surface.
// It can be a scalar, which gives a uniform grid, or
// it can be [USTEPS, VSTEPS], which gives difference spacing in the U and V parameters.
// Note that the surface you produce may be disconnected and is not necessarily a valid manifold in OpenSCAD.
// Arguments:
// patch = The rectangular or triangular array of endpoints and control points for this bezier patch.
// splinesteps = Number of steps to divide each bezier segment into. For rectangular patches you can specify [XSTEPS,YSTEPS]. Default: 16
// ---
// patches = The bezier patch or list of bezier patches to convert into a vnf.
// splinesteps = Number of segments on the border of the bezier surface. You can specify [USTEPS,VSTEPS]. Default: 16
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", "min_edge", "quincunx", "convex" and "concave". See {{vnf_vertex_array()}}. Default: "default"
// Example(3D):
// patch = [
@ -1007,17 +998,9 @@ function is_patch(x) =
// [[-50, 50, 0], [-16, 50, -20], [ 16, 50, 20], [50, 50, 0]],
// // u=0,v=1 u=1,v=1
// ];
// vnf = bezier_patch(patch, splinesteps=16);
// vnf = bezier_vnf(patch, splinesteps=16);
// vnf_polyhedron(vnf);
// Example(3D):
// tri = [
// [[-50,-33,0], [-25,16,50], [0,66,0]],
// [[0,-33,50], [25,16,50]],
// [[50,-33,0]]
// ];
// vnf = bezier_patch(tri, splinesteps=16);
// vnf_polyhedron(vnf);
// Example(3D,FlatSpin,VPD=444): Merging multiple patches
// Example(3D,FlatSpin,VPD=444): Combining multiple patches
// patch = [
// // u=0,v=0 u=1,v=0
// [[0, 0,0], [33, 0, 0], [67, 0, 0], [100, 0,0]],
@ -1027,15 +1010,30 @@ function is_patch(x) =
// // u=0,v=1 u=1,v=1
// ];
// tpatch = translate([-50,-50,50], patch);
// vnf = vnf_join([
// bezier_patch(tpatch),
// bezier_patch(xrot(90, tpatch)),
// bezier_patch(xrot(-90, tpatch)),
// bezier_patch(xrot(180, tpatch)),
// bezier_patch(yrot(90, tpatch)),
// bezier_patch(yrot(-90, tpatch))]);
// vnf = bezier_vnf([
// tpatch,
// xrot(90, tpatch),
// xrot(-90, tpatch),
// xrot(180, tpatch),
// yrot(90, tpatch),
// yrot(-90, tpatch)]);
// vnf_polyhedron(vnf);
// Example(3D): Connecting Patches with Asymmetric Splinesteps
// Example(3D):
// patch1 = [
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
// [[ 0,40,0], [ 0, 0,100], [100, 0, 20], [100, 40,0]],
// [[ 0,60,0], [ 0,100,100], [100,100, 20], [100, 60,0]],
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
// ];
// patch2 = [
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
// [[ 0,60,0], [ 0,100,-50], [100,100,-50], [100, 60,0]],
// [[ 0,40,0], [ 0, 0,-50], [100, 0,-50], [100, 40,0]],
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
// ];
// vnf = bezier_vnf(patches=[patch1, patch2], splinesteps=16);
// vnf_polyhedron(vnf);
// Example(3D): Connecting Patches with asymmetric splinesteps. Note it is fastest to join all the VNFs at once, which happens in vnf_polyhedron, rather than generating intermediate joined partial surfaces.
// steps = 8;
// edge_patch = [
// // u=0, v=0 u=1,v=0
@ -1054,65 +1052,58 @@ function is_patch(x) =
// face_patch = bezier_patch_flat([120,120],orient=LEFT);
// edges = [
// for (axrot=[[0,0,0],[0,90,0],[0,0,90]], xang=[-90:90:180])
// bezier_patch(
// splinesteps=[steps,1],
// rot(a=axrot,
// p=rot(a=[xang,0,0],
// p=translate(v=[0,-100,100],p=edge_patch)
// bezier_vnf(
// splinesteps=[steps,1],
// rot(a=axrot,
// p=rot(a=[xang,0,0],
// p=translate(v=[0,-100,100],p=edge_patch)
// )
// )
// )
// )
// ];
// corners = [
// for (xang=[0,180], zang=[-90:90:180])
// bezier_patch(
// splinesteps=steps,
// rot(a=[xang,0,zang],
// p=translate(v=[-100,-100,100],p=corner_patch)
// bezier_vnf(
// splinesteps=steps,
// rot(a=[xang,0,zang],
// p=translate(v=[-100,-100,100],p=corner_patch)
// )
// )
// )
// ];
// faces = [
// for (axrot=[[0,0,0],[0,90,0],[0,0,90]], zang=[0,180])
// bezier_patch(
// splinesteps=1,
// rot(a=axrot,
// p=rot(a=[0,0,zang],
// p=move([-100,0,0], p=face_patch)
// bezier_vnf(
// splinesteps=1,
// rot(a=axrot,
// p=zrot(zang,move([-100,0,0], face_patch))
// )
// )
// )
// ];
// vnf_polyhedron(concat(edges,corners,faces));
function bezier_patch(patch, splinesteps=16, style="default") =
function bezier_vnf(patches=[], splinesteps=16, style="default") =
assert(is_num(splinesteps) || is_vector(splinesteps,2))
assert(all_positive(splinesteps))
is_tripatch(patch)? _bezier_triangle(patch, splinesteps=splinesteps) :
let(
splinesteps = is_list(splinesteps) ? splinesteps : [splinesteps,splinesteps],
uvals = [
for(step=[0:1:splinesteps.x])
step/splinesteps.x
],
vvals = [
for(step=[0:1:splinesteps.y])
1-step/splinesteps.y
],
pts = bezier_patch_points(patch, uvals, vvals),
vnf = vnf_vertex_array(pts, style=style, reverse=false)
) vnf;
let(splinesteps = force_list(splinesteps,2))
is_bezier_patch(patches)? _bezier_rectangle(patches, splinesteps=splinesteps,style=style)
: assert(is_list(patches),"Invalid patch list")
vnf_join(
[
for (patch=patches)
is_bezier_patch(patch)? _bezier_rectangle(patch, splinesteps=splinesteps,style=style)
: assert(false,"Invalid patch list")
]
);
// Function: bezier_patch_degenerate()
// Function: bezier_vnf_degenerate_patch()
// Usage:
// vnf = bezier_patch_degenerate(patch, [splinesteps], [reverse]);
// vnf_edges = bezier_patch_degenerate(patch, [splinesteps], [reverse], return_edges=true);
// vnf = bezier_vnf_degenerate_patch(patch, [splinesteps], [reverse]);
// vnf_edges = bezier_vnf_degenerate_patch(patch, [splinesteps], [reverse], return_edges=true);
// Description:
// Returns a VNF for a degenerate rectangular bezier patch where some of the corners of the patch are
// equal. If the resulting patch has no faces then returns an empty VNF. Note that due to the degeneracy,
// the shape of the patch can be triangular even though the actual underlying patch is a rectangle. This is
// a different method for creating triangular bezier patches than the triangular patch.
// the shape of the surface can be triangular even though the underlying patch is a rectangle.
// If you specify return_edges then the return is a list whose first element is the vnf and whose second
// element lists the edges in the order [left, right, top, bottom], where each list is a list of the actual
// point values, but possibly only a single point if that edge is degenerate.
@ -1133,9 +1124,9 @@ function bezier_patch(patch, splinesteps=16, style="default") =
// [[0, 10, 8.75], [0, 5, 8.75], [0, 0, 8.75], [-5, 0, 8.75], [-10, 0, 8.75]],
// [[0, 10, 2.5], [0, 5, 2.5], [0, 0, 2.5], [-5, 0, 2.5], [-10, 0, 2.5]]
// ];
// vnf_wireframe((bezier_patch(patch, splinesteps)),width=0.1);
// vnf_wireframe((bezier_vnf(patch, splinesteps)),width=0.1);
// color("red")move_copies(flatten(patch)) sphere(r=0.3,$fn=9);
// Example(3D,NoAxes): With bezier_patch_degenerate the degenerate point does not have excess triangles. The top half of the patch decreases the number of sampled points by 2 for each row.
// Example(3D,NoAxes): With bezier_vnf_degenerate_patch the degenerate point does not have excess triangles. The top half of the patch decreases the number of sampled points by 2 for each row.
// splinesteps=8;
// patch=[
// repeat([-12.5, 12.5, 15],5),
@ -1144,7 +1135,7 @@ function bezier_patch(patch, splinesteps=16, style="default") =
// [[0, 10, 8.75], [0, 5, 8.75], [0, 0, 8.75], [-5, 0, 8.75], [-10, 0, 8.75]],
// [[0, 10, 2.5], [0, 5, 2.5], [0, 0, 2.5], [-5, 0, 2.5], [-10, 0, 2.5]]
// ];
// vnf_wireframe(bezier_patch_degenerate(patch, splinesteps),width=0.1);
// vnf_wireframe(bezier_vnf_degenerate_patch(patch, splinesteps),width=0.1);
// color("red")move_copies(flatten(patch)) sphere(r=0.3,$fn=9);
// Example(3D,NoAxes): With splinesteps odd you get one "odd" row where the point count decreases by 1 instead of 2. You may prefer even values for splinesteps to avoid this.
// splinesteps=7;
@ -1155,7 +1146,7 @@ function bezier_patch(patch, splinesteps=16, style="default") =
// [[0, 10, 8.75], [0, 5, 8.75], [0, 0, 8.75], [-5, 0, 8.75], [-10, 0, 8.75]],
// [[0, 10, 2.5], [0, 5, 2.5], [0, 0, 2.5], [-5, 0, 2.5], [-10, 0, 2.5]]
// ];
// vnf_wireframe(bezier_patch_degenerate(patch, splinesteps),width=0.1);
// vnf_wireframe(bezier_vnf_degenerate_patch(patch, splinesteps),width=0.1);
// color("red")move_copies(flatten(patch)) sphere(r=0.3,$fn=9);
// Example(3D,NoAxes): A more extreme degeneracy occurs when the top half of a patch is degenerate to a line. (For odd length patches the middle row must be degenerate to trigger this style.) In this case the number of points in each row decreases by 1 for every row. It doesn't matter of splinesteps is odd or even.
// splinesteps=8;
@ -1165,7 +1156,7 @@ function bezier_patch(patch, splinesteps=16, style="default") =
// repeat([0,0,5],5),
// repeat([0,0,10],5)
// ];
// vnf_wireframe(bezier_patch_degenerate(patch, splinesteps),width=0.1);
// vnf_wireframe(bezier_vnf_degenerate_patch(patch, splinesteps),width=0.1);
// color("red")move_copies(flatten(patch)) sphere(r=0.3,$fn=9);
// Example(3D,NoScales): Here is a degenerate cubic patch.
// splinesteps=8;
@ -1175,7 +1166,7 @@ function bezier_patch(patch, splinesteps=16, style="default") =
// repeat([0,0,30],4)
// ];
// color("red")move_copies(flatten(patch)) sphere(r=0.3,$fn=9);
// vnf_wireframe(bezier_patch_degenerate(patch, splinesteps),width=0.1);
// vnf_wireframe(bezier_vnf_degenerate_patch(patch, splinesteps),width=0.1);
// Example(3D,NoScales): A more extreme degenerate cubic patch, where two rows are equal.
// splinesteps=8;
// patch = [ [ [-20,0,0], [-10,0,0],[0,10,0],[0,20,0] ],
@ -1184,13 +1175,13 @@ function bezier_patch(patch, splinesteps=16, style="default") =
// repeat([-10,10,30],4)
// ];
// color("red")move_copies(flatten(patch)) sphere(r=0.3,$fn=9);
// vnf_wireframe(bezier_patch_degenerate(patch, splinesteps),width=0.1);
// vnf_wireframe(bezier_vnf_degenerate_patch(patch, splinesteps),width=0.1);
// Example(3D,NoScales): Quadratic patch degenerate at the right side:
// splinesteps=8;
// patch = [[[0, -10, 0],[10, -5, 0],[20, 0, 0]],
// [[0, 0, 0], [10, 0, 0], [20, 0, 0]],
// [[0, 0, 10], [10, 0, 5], [20, 0, 0]]];
// vnf_wireframe(bezier_patch_degenerate(patch, splinesteps),width=0.1);
// vnf_wireframe(bezier_vnf_degenerate_patch(patch, splinesteps),width=0.1);
// color("red")move_copies(flatten(patch)) sphere(r=0.3,$fn=9);
// Example(3D,NoAxes): Cubic patch degenerate at both ends. In this case the point count changes by 2 at every row.
// splinesteps=8;
@ -1200,11 +1191,11 @@ function bezier_patch(patch, splinesteps=16, style="default") =
// [ [-20,0,10], [-10,0,10],[0,10,10],[0,20,10] ],
// repeat([-10,10,20],4),
// ];
// vnf_wireframe(bezier_patch_degenerate(patch, splinesteps),width=0.1);
// vnf_wireframe(bezier_vnf_degenerate_patch(patch, splinesteps),width=0.1);
// color("red")move_copies(flatten(patch)) sphere(r=0.3,$fn=9);
function bezier_patch_degenerate(patch, splinesteps=16, reverse=false, return_edges=false) =
!return_edges ? bezier_patch_degenerate(patch, splinesteps, reverse, true)[0] :
assert(is_rectpatch(patch), "Must supply rectangular bezier patch")
function bezier_vnf_degenerate_patch(patch, splinesteps=16, reverse=false, return_edges=false) =
!return_edges ? bezier_vnf_degenerate_patch(patch, splinesteps, reverse, true)[0] :
assert(is_bezier_patch(patch), "Input is not a Bezier patch")
assert(is_int(splinesteps) && splinesteps>0, "splinesteps must be a positive integer")
let(
row_degen = [for(row=patch) all_equal(row)],
@ -1254,7 +1245,7 @@ function bezier_patch_degenerate(patch, splinesteps=16, reverse=false, return_ed
] :
bot_degen ? // only bottom is degenerate
let(
result = bezier_patch_degenerate(reverse(patch), splinesteps=splinesteps, reverse=!reverse, return_edges=true)
result = bezier_vnf_degenerate_patch(reverse(patch), splinesteps=splinesteps, reverse=!reverse, return_edges=true)
)
[
result[0],
@ -1282,129 +1273,21 @@ function bezier_patch_degenerate(patch, splinesteps=16, reverse=false, return_ed
] :
// must have left or right degeneracy, so transpose and recurse
let(
result = bezier_patch_degenerate(transpose(patch), splinesteps=splinesteps, reverse=!reverse, return_edges=true)
result = bezier_vnf_degenerate_patch(transpose(patch), splinesteps=splinesteps, reverse=!reverse, return_edges=true)
)
[result[0],
select(result[1],[2,3,0,1])
];
function _tri_count(n) = (n*(1+n))/2;
function _bezier_triangle(tri, splinesteps=16) =
assert(is_num(splinesteps))
let(
pts = [
for (
u=[0:1:splinesteps],
v=[0:1:splinesteps-u]
) bezier_triangle_point(tri, u/splinesteps, v/splinesteps)
],
tricnt = _tri_count(splinesteps+1),
faces = [
for (
u=[0:1:splinesteps-1],
v=[0:1:splinesteps-u-1]
) let (
v1 = v + (tricnt - _tri_count(splinesteps+1-u)),
v2 = v1 + 1,
v3 = v + (tricnt - _tri_count(splinesteps-u)),
v4 = v3 + 1,
allfaces = concat(
[[v1,v2,v3]],
((u<splinesteps-1 && v<splinesteps-u-1)? [[v2,v4,v3]] : [])
)
) for (face=allfaces) face
]
) [pts, faces];
// Function: bezier_patch_flat()
// Usage:
// patch = bezier_patch_flat(size, [N=], [spin=], [orient=], [trans=]);
// Topics: Bezier Patches
// See Also: bezier_patch_points()
// Description:
// Returns a flat rectangular bezier patch of degree `N`, centered on the XY plane.
// Arguments:
// size = 2D XY size of the patch.
// ---
// N = Degree of the patch to generate. Since this is flat, a degree of 1 should usually be sufficient.
// orient = The orientation to rotate the edge patch into. Given as an [X,Y,Z] rotation angle list.
// trans = Amount to translate patch, after rotating to `orient`.
// Example(3D):
// patch = bezier_patch_flat(size=[100,100], N=3);
// trace_bezier_patches([patch], size=1, showcps=true);
function bezier_patch_flat(size=[100,100], N=4, spin=0, orient=UP, trans=[0,0,0]) =
let(
patch = [
for (x=[0:1:N]) [
for (y=[0:1:N])
v_mul(point3d(size), [x/N-0.5, 0.5-y/N, 0])
]
],
m = move(trans) * rot(a=spin, from=UP, to=orient)
) [for (row=patch) apply(m, row)];
// Function: patch_reverse()
// Usage:
// rpatch = patch_reverse(patch);
// Topics: Bezier Patches
// See Also: bezier_patch_points(), bezier_patch_flat()
// Description:
// Reverses the patch, so that the faces generated from it are flipped back to front.
// Arguments:
// patch = The patch to reverse.
function patch_reverse(patch) =
[for (row=patch) reverse(row)];
// Section: Bezier Surface Modules
// Function: bezier_surface()
// Usage:
// vnf = bezier_surface(patches, [splinesteps], [style]);
// Topics: Bezier Patches
// See Also: bezier_patch_points(), bezier_patch_flat()
// Description:
// Calculate vertices and faces for forming a (possibly partial) polyhedron from the given
// rectangular and/or triangular bezier patches. Returns a [VNF structure](vnf.scad): a list
// containing two elements. The first is the the list of vertices. The second is the list
// of faces, where each face is a list of indices into the list of vertices.
// Arguments:
// patches = A list of triangular and/or rectangular bezier patches.
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", and "quincunx".
// Example(3D):
// patch1 = [
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
// [[ 0,40,0], [ 0, 0,100], [100, 0, 20], [100, 40,0]],
// [[ 0,60,0], [ 0,100,100], [100,100, 20], [100, 60,0]],
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
// ];
// patch2 = [
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
// [[ 0,60,0], [ 0,100,-50], [100,100,-50], [100, 60,0]],
// [[ 0,40,0], [ 0, 0,-50], [100, 0,-50], [100, 40,0]],
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
// ];
// vnf = bezier_surface(patches=[patch1, patch2], splinesteps=16);
// polyhedron(points=vnf[0], faces=vnf[1]);
function bezier_surface(patches=[], splinesteps=16, style="default") =
vnf_join([for(patch=patches) bezier_patch(patch, splinesteps=splinesteps, style=style)]);
// Section: Debugging Beziers
// Module: trace_bezier()
// Module: debug_bezier()
// Usage:
// trace_bezier(bez, [size], [N=]);
// debug_bezier(bez, [size], [N=]);
// Topics: Bezier Paths, Debugging
// See Also: bezpath_curve()
// Description:
@ -1422,8 +1305,8 @@ function bezier_surface(patches=[], splinesteps=16, style="default") =
// [ 14, -5], [ 15, 0], [16, 5],
// [ 5, 10], [ 0, 10]
// ];
// trace_bezier(bez, N=3, width=0.5);
module trace_bezier(bezpath, width=1, N=3) {
// debug_bezier(bez, N=3, width=0.5);
module debug_bezier(bezpath, width=1, N=3) {
assert(is_path(bezpath));
assert(is_int(N));
assert(len(bezpath)%N == 1, str("A degree ",N," bezier path shound have a multiple of ",N," points in it, plus 1."));
@ -1453,17 +1336,17 @@ module trace_bezier(bezpath, width=1, N=3) {
}
// Module: trace_bezier_patches()
// Module: debug_bezier_patches()
// Usage:
// trace_bezier_patches(patches, [size=], [splinesteps=], [showcps=], [showdots=], [showpatch=], [convexity=], [style=]);
// debug_bezier_patches(patches, [size=], [splinesteps=], [showcps=], [showdots=], [showpatch=], [convexity=], [style=]);
// Topics: Bezier Patches, Debugging
// See Also: bezier_patch_points(), bezier_patch_flat(), bezier_surface()
// See Also: bezier_patch_points(), bezier_patch_flat(), bezier_vnf()
// Description:
// Shows the surface, and optionally, control points of a list of bezier patches.
// Arguments:
// patches = A list of rectangular bezier patches.
// ---
// splinesteps = Number of steps to divide each bezier segment into. default=16
// splinesteps = Number of segments to divide each bezier curve into. Default: 16
// showcps = If true, show the controlpoints as well as the surface. Default: true.
// showdots = If true, shows the calculated surface vertices. Default: false.
// showpatch = If true, shows the surface faces. Default: true.
@ -1483,12 +1366,12 @@ module trace_bezier(bezpath, width=1, N=3) {
// [[ 0,33,0], [33, 33,-50], [ 67, 33,-50], [100, 33,0]],
// [[15,15,0], [33, 0, 0], [ 67, 0, 0], [ 85, 15,0]],
// ];
// trace_bezier_patches(patches=[patch1, patch2], splinesteps=8, showcps=true);
module trace_bezier_patches(patches=[], size, splinesteps=16, showcps=true, showdots=false, showpatch=true, convexity=10, style="default")
// debug_bezier_patches(patches=[patch1, patch2], splinesteps=8, showcps=true);
module debug_bezier_patches(patches=[], size, splinesteps=16, showcps=true, showdots=false, showpatch=true, convexity=10, style="default")
{
assert(is_undef(size)||is_num(size));
assert(is_int(splinesteps) && splinesteps>0);
assert(is_list(patches) && all([for (patch=patches) is_patch(patch)]));
assert(is_list(patches) && all([for (patch=patches) is_bezier_patch(patch)]));
assert(is_bool(showcps));
assert(is_bool(showdots));
assert(is_bool(showpatch));
@ -1499,23 +1382,14 @@ module trace_bezier_patches(patches=[], size, splinesteps=16, showcps=true, show
max(bounds[1]-bounds[0])*0.01;
if (showcps) {
move_copies(flatten(patch)) color("red") sphere(d=size*2);
color("cyan") {
if (is_tripatch(patch)) {
for (i=[0:1:len(patch)-2], j=[0:1:len(patch[i])-2]) {
extrude_from_to(patch[i][j], patch[i+1][j]) circle(d=size);
extrude_from_to(patch[i][j], patch[i][j+1]) circle(d=size);
extrude_from_to(patch[i+1][j], patch[i][j+1]) circle(d=size);
}
} else {
for (i=[0:1:len(patch)-1], j=[0:1:len(patch[i])-1]) {
if (i<len(patch)-1) extrude_from_to(patch[i][j], patch[i+1][j]) circle(d=size);
if (j<len(patch[i])-1) extrude_from_to(patch[i][j], patch[i][j+1]) circle(d=size);
}
}
}
color("cyan")
for (i=[0:1:len(patch)-1], j=[0:1:len(patch[i])-1]) {
if (i<len(patch)-1) extrude_from_to(patch[i][j], patch[i+1][j]) circle(d=size);
if (j<len(patch[i])-1) extrude_from_to(patch[i][j], patch[i][j+1]) circle(d=size);
}
}
if (showpatch || showdots){
vnf = bezier_patch(patch, splinesteps=splinesteps, style=style);
vnf = bezier_vnf(patch, splinesteps=splinesteps, style=style);
if (showpatch) vnf_polyhedron(vnf, convexity=convexity);
if (showdots) color("blue") move_copies(vnf[0]) sphere(d=size);
}

View file

@ -1803,21 +1803,21 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
// color("magenta") up(2) stroke(poly,.25,closed=true);
// color("black") up(3) vnf_debug([path3d(poly),[]],faces=false,size=1);
// color("black") up(3) debug_vnf([path3d(poly),[]],faces=false,size=1);
// Example(2D,NoAxes): a polygon with a hole and one "contact" edge; see from above
// poly = [ [-10,0], [10,0], [0,10], [-10,0], [-4,4], [4,4], [0,2], [-4,4] ];
// tris = polygon_triangulate(poly);
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
// color("magenta") up(2) stroke(poly,.25,closed=true);
// color("black") up(3) vnf_debug([path3d(poly),[]],faces=false,size=1);
// color("black") up(3) debug_vnf([path3d(poly),[]],faces=false,size=1);
// Example(2D,NoAxes): a polygon with "touching" vertices and no holes; see from above
// poly = [ [0,0], [5,5], [-5,5], [0,0], [-5,-5], [5,-5] ];
// tris = polygon_triangulate(poly);
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
// color("magenta") up(2) stroke(poly,.25,closed=true);
// color("black") up(3) vnf_debug([path3d(poly),[]],faces=false,size=1);
// color("black") up(3) debug_vnf([path3d(poly),[]],faces=false,size=1);
// Example(2D,NoAxes): a polygon with "contact" edges and no holes; see from above
// poly = [ [0,0], [10,0], [10,10], [0,10], [0,0], [3,3], [7,3],
// [7,7], [7,3], [3,3] ];
@ -1825,7 +1825,7 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
// color("magenta") up(2) stroke(poly,.25,closed=true);
// color("black") up(3) vnf_debug([path3d(poly),[]],faces=false,size=1);
// color("black") up(3) debug_vnf([path3d(poly),[]],faces=false,size=1);
// Example(3D):
// include <BOSL2/polyhedra.scad>
// vnf = regular_polyhedron_info(name="dodecahedron",side=5,info="vnf");

View file

@ -347,7 +347,7 @@ function _bezcorner(points, parm) =
] : _smooth_bez_fill(points,parm),
N = max(3,$fn>0 ?$fn : ceil(bezier_length(P)/$fs))
)
bezier_curve(P,N+1,endpoint=true);
bezier_curve(P,N,endpoint=true);
function _chamfcorner(points, parm) =
let(
@ -1829,7 +1829,7 @@ module rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_bot
{
if (debug){
vnf_polyhedron(vnf, convexity=convexity);
trace_bezier_patches(result[0], showcps=true, splinesteps=splinesteps, $fn=16, showdots=false, showpatch=false);
debug_bezier_patches(result[0], showcps=true, splinesteps=splinesteps, $fn=16, showdots=false, showpatch=false);
}
else vnf_polyhedron(vnf,convexity=convexity);
children();
@ -1918,8 +1918,8 @@ function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_b
let(
// Entries in the next two lists have the form [edges, vnf] where
// edges is a list [leftedge, rightedge, topedge, botedge]
top_samples = [for(patch=top_patch) bezier_patch_degenerate(patch,splinesteps,reverse=false,return_edges=true) ],
bot_samples = [for(patch=bot_patch) bezier_patch_degenerate(patch,splinesteps,reverse=true,return_edges=true) ],
top_samples = [for(patch=top_patch) bezier_vnf_degenerate_patch(patch,splinesteps,reverse=false,return_edges=true) ],
bot_samples = [for(patch=bot_patch) bezier_vnf_degenerate_patch(patch,splinesteps,reverse=true,return_edges=true) ],
leftidx=0,
rightidx=1,
topidx=2,

View file

@ -1240,9 +1240,9 @@ module _show_faces(vertices, faces, size=1) {
// Module: vnf_debug()
// Module: debug_vnf()
// Usage:
// vnf_debug(vnfs, [faces], [vertices], [opacity], [size], [convexity]);
// debug_vnf(vnfs, [faces], [vertices], [opacity], [size], [convexity]);
// Description:
// A drop-in module to replace `vnf_polyhedron()` to help debug vertices and faces.
// Draws all the vertices at their 3D position, numbered in blue by their
@ -1266,8 +1266,8 @@ module _show_faces(vertices, faces, size=1) {
// Example(EdgesMed):
// verts = [for (z=[-10,10], a=[0:120:359.9]) [10*cos(a),10*sin(a),z]];
// faces = [[0,1,2], [5,4,3], [0,3,4], [0,4,1], [1,4,5], [1,5,2], [2,5,3], [2,3,0]];
// vnf_debug([verts,faces], size=2);
module vnf_debug(vnf, faces=true, vertices=true, opacity=0.5, size=1, convexity=6 ) {
// debug_vnf([verts,faces], size=2);
module debug_vnf(vnf, faces=true, vertices=true, opacity=0.5, size=1, convexity=6 ) {
no_children($children);
if (faces)
_show_faces(vertices=vnf[0], faces=vnf[1], size=size);