mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-22 12:29:36 +00:00
commit
68217cd1cf
5 changed files with 238 additions and 110 deletions
|
@ -167,6 +167,7 @@ module stroke(
|
||||||
trim, trim1, trim2,
|
trim, trim1, trim2,
|
||||||
convexity=10, hull=true
|
convexity=10, hull=true
|
||||||
) {
|
) {
|
||||||
|
no_children($children);
|
||||||
module setcolor(clr) {
|
module setcolor(clr) {
|
||||||
if (clr==undef) {
|
if (clr==undef) {
|
||||||
children();
|
children();
|
||||||
|
|
|
@ -1037,6 +1037,8 @@ module HSV(h,s=1,v=1,a=1) color(HSV(h,s,v),a) children();
|
||||||
// list = The list of items to iterate through.
|
// list = The list of items to iterate through.
|
||||||
// stride = Consecutive colors stride around the color wheel divided into this many parts.
|
// stride = Consecutive colors stride around the color wheel divided into this many parts.
|
||||||
// maxhues = max number of hues to use (to prevent lots of indistinguishable hues)
|
// maxhues = max number of hues to use (to prevent lots of indistinguishable hues)
|
||||||
|
// shuffle = if true then shuffle the hues in a random order. Default: false
|
||||||
|
// seed = seed to use for shuffle
|
||||||
// Side Effects:
|
// Side Effects:
|
||||||
// Sets the color to progressive values along the ROYGBIV spectrum for each item.
|
// Sets the color to progressive values along the ROYGBIV spectrum for each item.
|
||||||
// Sets `$idx` to the index of the current item in `list` that we want to show.
|
// Sets `$idx` to the index of the current item in `list` that we want to show.
|
||||||
|
@ -1046,14 +1048,13 @@ module HSV(h,s=1,v=1,a=1) color(HSV(h,s,v),a) children();
|
||||||
// Example(2D):
|
// Example(2D):
|
||||||
// rgn = [circle(d=45,$fn=3), circle(d=75,$fn=4), circle(d=50)];
|
// rgn = [circle(d=45,$fn=3), circle(d=75,$fn=4), circle(d=50)];
|
||||||
// rainbow(rgn) stroke($item, closed=true);
|
// rainbow(rgn) stroke($item, closed=true);
|
||||||
module rainbow(list, stride=1, maxhues)
|
module rainbow(list, stride=1, maxhues, shuffle=false, seed)
|
||||||
{
|
{
|
||||||
ll = len(list);
|
ll = len(list);
|
||||||
maxhues = first_defined([maxhues,ll]);
|
maxhues = first_defined([maxhues,ll]);
|
||||||
huestep = 360 / maxhues;
|
huestep = 360 / maxhues;
|
||||||
hues = [for (i=[0:1:ll-1]) posmod(i*huestep+i*360/stride,360)];
|
huelist = [for (i=[0:1:ll-1]) posmod(i*huestep+i*360/stride,360)];
|
||||||
echo(hues=hues);
|
hues = shuffle ? shuffle(huelist, seed=seed) : huelist;
|
||||||
s = [for (i=[0:1:ll-1]) [.5,.7,1][posmod(i,3)]];
|
|
||||||
for($idx=idx(list)) {
|
for($idx=idx(list)) {
|
||||||
$item = list[$idx];
|
$item = list[$idx];
|
||||||
HSV(h=hues[$idx]) children();
|
HSV(h=hues[$idx]) children();
|
||||||
|
|
|
@ -1170,7 +1170,7 @@ function _assemble_a_path_from_fragments(fragments, rightmost=true, startfrag=0,
|
||||||
/// fragments = List of paths to be assembled into complete polygons.
|
/// fragments = List of paths to be assembled into complete polygons.
|
||||||
/// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
|
/// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
|
||||||
function _assemble_path_fragments(fragments, eps=EPSILON, _finished=[]) =
|
function _assemble_path_fragments(fragments, eps=EPSILON, _finished=[]) =
|
||||||
len(fragments)==0? _finished :
|
len(fragments)==0? _finished :
|
||||||
let(
|
let(
|
||||||
minxidx = min_index([
|
minxidx = min_index([
|
||||||
for (frag=fragments) min(subindex(frag,0))
|
for (frag=fragments) min(subindex(frag,0))
|
||||||
|
|
290
regions.scad
290
regions.scad
|
@ -74,13 +74,22 @@ function check_and_fix_path(path, valid_dim=undef, closed=false, name="path") =
|
||||||
|
|
||||||
// Function: sanitize_region()
|
// Function: sanitize_region()
|
||||||
// Usage:
|
// Usage:
|
||||||
// r_fixed = sanitize_region(r);
|
// r_fixed = sanitize_region(r, [nonzero], [eps]);
|
||||||
// Description:
|
// Description:
|
||||||
// Takes a malformed input region that contains self-intersecting polygons or polygons
|
// Takes a malformed input region that contains self-intersecting polygons or polygons
|
||||||
// that cross each other and converts it into a properly defined region without
|
// that cross each other and converts it into a properly defined region without
|
||||||
// these defects.
|
// these defects.
|
||||||
function sanitize_region(r) = exclusive_or([for(poly=r) each polygon_parts(poly)]);
|
// Arguments:
|
||||||
|
// r = region to sanitize
|
||||||
|
// nonzero = set to true to use nonzero rule for polygon membership. Default: false
|
||||||
|
// eps = Epsilon for geometric comparisons. Default: `EPSILON` (1e-9)
|
||||||
|
// Examples:
|
||||||
|
//
|
||||||
|
function sanitize_region(r,nonzero=false,eps=EPSILON) =
|
||||||
|
assert(is_region(r))
|
||||||
|
exclusive_or(
|
||||||
|
[for(poly=r) each polygon_parts(poly,nonzero,eps)],
|
||||||
|
eps=eps);
|
||||||
|
|
||||||
|
|
||||||
// Module: region()
|
// Module: region()
|
||||||
|
@ -100,12 +109,12 @@ function sanitize_region(r) = exclusive_or([for(poly=r) each polygon_parts(poly)
|
||||||
// region(rgn);
|
// region(rgn);
|
||||||
module region(r)
|
module region(r)
|
||||||
{
|
{
|
||||||
|
no_children($children);
|
||||||
|
r = is_path(r) ? [r] : r;
|
||||||
points = flatten(r);
|
points = flatten(r);
|
||||||
paths = [
|
lengths = [for(path=r) len(path)];
|
||||||
for (i=[0:1:len(r)-1]) let(
|
starts = [0,each cumsum(lengths)];
|
||||||
start = default(sum([for (j=[0:1:i-1]) len(r[j])]),0)
|
paths = [for(i=idx(r)) count(s=starts[i], n=lengths[i])];
|
||||||
) [for (k=[0:1:len(r[i])-1]) start+k]
|
|
||||||
];
|
|
||||||
polygon(points=points, paths=paths);
|
polygon(points=points, paths=paths);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -143,12 +152,13 @@ function point_in_region(point, region, eps=EPSILON, _i=0, _cnt=0) =
|
||||||
// region = region to check
|
// region = region to check
|
||||||
// eps = tolerance for geometric omparisons. Default: `EPSILON` = 1e-9
|
// eps = tolerance for geometric omparisons. Default: `EPSILON` = 1e-9
|
||||||
function is_region_simple(region, eps=EPSILON) =
|
function is_region_simple(region, eps=EPSILON) =
|
||||||
[for(p=region) if (!is_path_simple(p,closed=true,eps)) 1] == []
|
[for(p=region) if (!is_path_simple(p,closed=true,eps)) 1] == [];
|
||||||
&&
|
|
||||||
|
/* &&
|
||||||
[for(i=[0:1:len(region)-2])
|
[for(i=[0:1:len(region)-2])
|
||||||
if (_path_region_intersections(region[i], list_tail(region,i+1), eps=eps) != []) 1
|
if (_path_region_intersections(region[i], list_tail(region,i+1), eps=eps) != []) 1
|
||||||
] ==[];
|
] ==[];
|
||||||
|
*/
|
||||||
|
|
||||||
// Function: are_regions_equal()
|
// Function: are_regions_equal()
|
||||||
// Usage:
|
// Usage:
|
||||||
|
@ -221,10 +231,11 @@ function old_path_region_intersections(path, region, closed=true, eps=EPSILON) =
|
||||||
// find the intersection points of a path and the polygons of a
|
// find the intersection points of a path and the polygons of a
|
||||||
// region; only crossing intersections are caught, no collinear
|
// region; only crossing intersections are caught, no collinear
|
||||||
// intersection is returned.
|
// intersection is returned.
|
||||||
function _path_region_intersections(path, region, closed=true, eps=EPSILON) =
|
function _path_region_intersections(path, region, closed=true, eps=EPSILON, extra=[]) =
|
||||||
let( path = closed ? close_path(path,eps=eps) : path )
|
let( path = closed ? close_path(path,eps=eps) : path )
|
||||||
_sort_vectors(
|
_sort_vectors(
|
||||||
[for(si = [0:1:len(path)-2]) let(
|
[ each extra,
|
||||||
|
for(si = [0:1:len(path)-2]) let(
|
||||||
a1 = path[si],
|
a1 = path[si],
|
||||||
a2 = path[si+1],
|
a2 = path[si+1],
|
||||||
nrm = norm(a1-a2)
|
nrm = norm(a1-a2)
|
||||||
|
@ -278,11 +289,11 @@ function _path_region_intersections(path, region, closed=true, eps=EPSILON) =
|
||||||
// paths = split_path_at_region_crossings(path, region);
|
// paths = split_path_at_region_crossings(path, region);
|
||||||
// color("#aaa") region(region);
|
// color("#aaa") region(region);
|
||||||
// rainbow(paths) stroke($item, closed=false, width=2);
|
// rainbow(paths) stroke($item, closed=false, width=2);
|
||||||
function split_path_at_region_crossings(path, region, closed=true, eps=EPSILON) =
|
function split_path_at_region_crossings(path, region, closed=true, eps=EPSILON, extra=[]) =
|
||||||
let(
|
let(
|
||||||
path = deduplicate(path, eps=eps),
|
path = deduplicate(path, eps=eps),
|
||||||
region = [for (path=region) deduplicate(path, eps=eps)],
|
region = [for (path=region) deduplicate(path, eps=eps)],
|
||||||
xings = _path_region_intersections(path, region, closed=closed, eps=eps),
|
xings = _path_region_intersections(path, region, closed=closed, eps=eps, extra=extra),
|
||||||
crossings = deduplicate(
|
crossings = deduplicate(
|
||||||
concat([[0,0]], xings, [[len(path)-1,1]]),
|
concat([[0,0]], xings, [[len(path)-1,1]]),
|
||||||
eps=eps
|
eps=eps
|
||||||
|
@ -317,35 +328,90 @@ function split_path_at_region_crossings(path, region, closed=true, eps=EPSILON)
|
||||||
// right(5,square(i,center=true))];
|
// right(5,square(i,center=true))];
|
||||||
// region_list = region_parts(R);
|
// region_list = region_parts(R);
|
||||||
// rainbow(region_list) region($item);
|
// rainbow(region_list) region($item);
|
||||||
function region_parts(region) =
|
|
||||||
let(
|
|
||||||
paths = sort(idx=0, [
|
|
||||||
for(i = idx(region)) let(
|
|
||||||
cnt = sum([
|
|
||||||
for (j = idx(region)) if (i!=j)
|
|
||||||
let(pt = lerp(region[i][0],region[i][1],0.5))
|
|
||||||
point_in_polygon(pt, region[j]) >=0 ? 1 : 0
|
|
||||||
])
|
|
||||||
) [cnt, region[i]]
|
|
||||||
]),
|
|
||||||
outs = [
|
|
||||||
for (candout = paths) let(
|
|
||||||
lev = candout[0],
|
|
||||||
parent = candout[1]
|
|
||||||
) if (lev % 2 == 0) [
|
|
||||||
clockwise_polygon(parent),
|
|
||||||
for (path = paths) if (
|
|
||||||
path[0] == lev+1 &&
|
|
||||||
point_in_polygon(
|
|
||||||
lerp(path[1][0], path[1][1], 0.5),
|
|
||||||
parent
|
|
||||||
) >= 0
|
|
||||||
) ccw_polygon(path[1])
|
|
||||||
]
|
|
||||||
]
|
|
||||||
) outs;
|
|
||||||
|
|
||||||
|
|
||||||
|
function old_region_parts(region) =
|
||||||
|
let(
|
||||||
|
paths = sort(idx=0,
|
||||||
|
[
|
||||||
|
for(i = idx(region))
|
||||||
|
let(
|
||||||
|
pt = mean([region[i][0],region[i][1]]),
|
||||||
|
cnt = sum([for (j = idx(region))
|
||||||
|
if (i!=j && point_in_polygon(pt, region[j]) >=0) 1])
|
||||||
|
)
|
||||||
|
[cnt, region[i]]
|
||||||
|
]),
|
||||||
|
|
||||||
|
outs = [
|
||||||
|
for (candout = paths)
|
||||||
|
let(
|
||||||
|
lev = candout[0],
|
||||||
|
parent = candout[1]
|
||||||
|
)
|
||||||
|
if (lev % 2 == 0)
|
||||||
|
[
|
||||||
|
clockwise_polygon(parent),
|
||||||
|
for (path = paths)
|
||||||
|
if (
|
||||||
|
path[0] == lev+1
|
||||||
|
&& point_in_polygon(
|
||||||
|
lerp(path[1][0], path[1][1], 0.5)
|
||||||
|
,parent
|
||||||
|
) >= 0
|
||||||
|
)
|
||||||
|
ccw_polygon(path[1])
|
||||||
|
]
|
||||||
|
]
|
||||||
|
)
|
||||||
|
outs;
|
||||||
|
|
||||||
|
|
||||||
|
function inside(region, ins=[]) =
|
||||||
|
let(
|
||||||
|
i = len(ins)
|
||||||
|
)
|
||||||
|
i==len(region) ? ins
|
||||||
|
:
|
||||||
|
let(
|
||||||
|
pt=mean([region[i][0],region[i][1]])
|
||||||
|
)
|
||||||
|
i==0 ? inside(region,
|
||||||
|
[[0,
|
||||||
|
for(j=[1:1:len(region)-1]) point_in_polygon(pt,region[j])>=0 ? 1 : 0]])
|
||||||
|
: let(
|
||||||
|
prev = [for(j=[0:i-1]) point_in_polygon(pt,region[j])>=0 ? 1 : 0],
|
||||||
|
check = sum(bselect(ins,prev),repeat(0,len(region))),
|
||||||
|
next = [for(j=[i+1:1:len(region)-1]) check[j]>0 ? 1 : point_in_polygon(pt,region[j])>=0 ? 1 : 0]
|
||||||
|
)
|
||||||
|
inside(region, [
|
||||||
|
each ins,
|
||||||
|
[each prev, 0, each next]
|
||||||
|
]);
|
||||||
|
|
||||||
|
|
||||||
|
function region_parts(region) =
|
||||||
|
let(
|
||||||
|
inside = [for(i=idx(region))
|
||||||
|
let(pt = mean([region[i][0], region[i][1]]))
|
||||||
|
[for(j=idx(region)) i==j ? 0
|
||||||
|
: point_in_polygon(pt,region[j]) >=0 ? 1 : 0]
|
||||||
|
],
|
||||||
|
level = inside*repeat(1,len(region))
|
||||||
|
)
|
||||||
|
[ for(i=idx(region))
|
||||||
|
if(level[i]%2==0)
|
||||||
|
let(
|
||||||
|
possible_children = search([level[i]+1],level,0)[0],
|
||||||
|
keep=search([1], select(inside,possible_children), 0, i)[0]
|
||||||
|
)
|
||||||
|
[
|
||||||
|
clockwise_polygon(region[i]),
|
||||||
|
for(good=keep)
|
||||||
|
ccw_polygon(region[possible_children[good]])
|
||||||
|
]
|
||||||
|
];
|
||||||
|
|
||||||
|
|
||||||
// Section: Region Extrusion and VNFs
|
// Section: Region Extrusion and VNFs
|
||||||
|
|
||||||
|
@ -647,7 +713,16 @@ function _point_dist(path,pathseg_unit,pathseg_len,pt) =
|
||||||
]);
|
]);
|
||||||
|
|
||||||
|
|
||||||
function _offset_region(
|
function _offset_region(region, r, delta, chamfer, check_valid, quality,closed,return_faces,firstface_index,flip_faces) =
|
||||||
|
let(
|
||||||
|
reglist = [for(R=region_parts(region)) is_path(R) ? [R] : R],
|
||||||
|
ofsregs = [for(R=reglist)
|
||||||
|
[for(i=idx(R)) offset(R[i], r=u_mul(i>0?-1:1,r), delta=u_mul(i>0?-1:1,delta), chamfer=chamfer, check_valid=check_valid,
|
||||||
|
quality=quality,closed=true)]]
|
||||||
|
)
|
||||||
|
union(ofsregs);
|
||||||
|
|
||||||
|
function d_offset_region(
|
||||||
paths, r, delta, chamfer, closed,
|
paths, r, delta, chamfer, closed,
|
||||||
check_valid, quality,
|
check_valid, quality,
|
||||||
return_faces, firstface_index,
|
return_faces, firstface_index,
|
||||||
|
@ -785,7 +860,10 @@ function offset(
|
||||||
quality=1, return_faces=false, firstface_index=0,
|
quality=1, return_faces=false, firstface_index=0,
|
||||||
flip_faces=false
|
flip_faces=false
|
||||||
) =
|
) =
|
||||||
is_region(path)? (
|
is_region(path)? _offset_region(path,r=r,delta=delta,chamfer=chamfer,quality=quality,check_valid=check_valid)
|
||||||
|
|
||||||
|
/*
|
||||||
|
(
|
||||||
assert(!return_faces, "return_faces not supported for regions.")
|
assert(!return_faces, "return_faces not supported for regions.")
|
||||||
let(
|
let(
|
||||||
path = [for (p=path) clockwise_polygon(p)],
|
path = [for (p=path) clockwise_polygon(p)],
|
||||||
|
@ -805,7 +883,8 @@ function offset(
|
||||||
return_faces=return_faces, firstface_index=firstface_index,
|
return_faces=return_faces, firstface_index=firstface_index,
|
||||||
flip_faces=flip_faces
|
flip_faces=flip_faces
|
||||||
)
|
)
|
||||||
) : let(rcount = num_defined([r,delta]))
|
)*/
|
||||||
|
: let(rcount = num_defined([r,delta]))
|
||||||
assert(rcount==1,"Must define exactly one of 'delta' and 'r'")
|
assert(rcount==1,"Must define exactly one of 'delta' and 'r'")
|
||||||
let(
|
let(
|
||||||
chamfer = is_def(r) ? false : chamfer,
|
chamfer = is_def(r) ? false : chamfer,
|
||||||
|
@ -904,44 +983,47 @@ function offset(
|
||||||
/// "S" - the subpath is on the region's border and the polygon and region are on the same side of the subpath
|
/// "S" - the subpath is on the region's border and the polygon and region are on the same side of the subpath
|
||||||
/// "U" - the subpath is on the region's border and the polygon and region meet at the subpath (from opposite sides)
|
/// "U" - the subpath is on the region's border and the polygon and region meet at the subpath (from opposite sides)
|
||||||
/// The return has the form of a list with entries [TAG, SUBPATH]
|
/// The return has the form of a list with entries [TAG, SUBPATH]
|
||||||
function _tag_subpaths(path, region, eps=EPSILON) =
|
function _tag_subpaths(region1, region2, keep, eps=EPSILON) =
|
||||||
|
// We have to compute common vertices between paths in the region because
|
||||||
|
// they can be places where the path must be cut, even though they aren't
|
||||||
|
// found my the split_path function.
|
||||||
let(
|
let(
|
||||||
subpaths = split_path_at_region_crossings(path, region, eps=eps),
|
keepS = search("S",keep)!=[],
|
||||||
tagged = [
|
keepU = search("U",keep)!=[],
|
||||||
for (subpath = subpaths)
|
keepoutside = search("O",keep) !=[],
|
||||||
let(
|
keepinside = search("I",keep) !=[],
|
||||||
midpt = mean([subpath[0], subpath[1]]),
|
points = flatten(region1),
|
||||||
rel = point_in_region(midpt,region,eps=eps)
|
tree = len(points)>0 ? vector_search_tree(points): undef
|
||||||
)
|
)
|
||||||
rel<0? ["O", subpath]
|
[for(p=region1)
|
||||||
: rel>0? ["I", subpath]
|
let(
|
||||||
: let(
|
path = deduplicate(p),
|
||||||
vec = unit(subpath[1]-subpath[0]),
|
self_int = is_undef(tree)?[]:[for(i=idx(path)) if (len(vector_search(path[i], eps, tree))>1) [i,0]],
|
||||||
perp = rot(90, planar=true, p=vec),
|
subpaths = split_path_at_region_crossings(path, region2, eps=eps, extra=self_int)
|
||||||
sidept = midpt + perp*0.01,
|
)
|
||||||
rel1 = point_in_polygon(sidept,path,eps=eps)>0,
|
for (subpath = subpaths)
|
||||||
rel2 = point_in_region(sidept,region,eps=eps)>0
|
let(
|
||||||
)
|
midpt = mean([subpath[0], subpath[1]]),
|
||||||
rel1==rel2? ["S", subpath] : ["U", subpath]
|
rel = point_in_region(midpt,region2,eps=eps),
|
||||||
]
|
keepthis = rel<0 ? keepoutside
|
||||||
) tagged;
|
: rel>0 ? keepinside
|
||||||
|
: !(keepS || keepU) ? false
|
||||||
|
: let(
|
||||||
|
sidept = midpt + 0.01*line_normal(subpath[0],subpath[1]),
|
||||||
|
rel1 = point_in_region(sidept,region1,eps=eps)>0,
|
||||||
|
rel2 = point_in_region(sidept,region2,eps=eps)>0
|
||||||
|
)
|
||||||
|
rel1==rel2 ? keepS : keepU
|
||||||
|
)
|
||||||
|
if (keepthis) subpath
|
||||||
|
];
|
||||||
|
|
||||||
|
|
||||||
function _tag_region_subpaths(region1, region2, eps=EPSILON) =
|
|
||||||
[for (path=region1) each _tag_subpaths(path, region2, eps=eps)];
|
|
||||||
|
|
||||||
|
|
||||||
function _tagged_region(region1,region2,keep1,keep2,eps=EPSILON) =
|
function _tagged_region(region1,region2,keep1,keep2,eps=EPSILON) =
|
||||||
let(
|
_assemble_path_fragments(concat(_tag_subpaths(region1, region2, keep1, eps=eps),
|
||||||
tagged1 = _tag_region_subpaths(region1, region2, eps=eps),
|
_tag_subpaths(region2, region1, keep2, eps=eps)),
|
||||||
tagged2 = _tag_region_subpaths(region2, region1, eps=eps),
|
eps=eps);
|
||||||
tagged = [
|
|
||||||
for (tagpath = tagged1) if (in_list(tagpath[0], keep1)) tagpath[1],
|
|
||||||
for (tagpath = tagged2) if (in_list(tagpath[0], keep2)) tagpath[1]
|
|
||||||
]
|
|
||||||
)
|
|
||||||
_assemble_path_fragments(tagged, eps=eps);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function&Module: union()
|
// Function&Module: union()
|
||||||
|
@ -963,14 +1045,14 @@ function _tagged_region(region1,region2,keep1,keep2,eps=EPSILON) =
|
||||||
// color("green") region(union(shape1,shape2));
|
// color("green") region(union(shape1,shape2));
|
||||||
function union(regions=[],b=undef,c=undef,eps=EPSILON) =
|
function union(regions=[],b=undef,c=undef,eps=EPSILON) =
|
||||||
b!=undef? union(concat([regions],[b],c==undef?[]:[c]), eps=eps) :
|
b!=undef? union(concat([regions],[b],c==undef?[]:[c]), eps=eps) :
|
||||||
len(regions)<=1? regions[0] :
|
len(regions)==0? [] :
|
||||||
union(
|
len(regions)==1? regions[0] :
|
||||||
let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)])
|
let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)])
|
||||||
concat(
|
union([
|
||||||
[_tagged_region(regions[0],regions[1],["O","S"],["O"], eps=eps)],
|
_tagged_region(regions[0],regions[1],"OS", "O", eps=eps),
|
||||||
[for (i=[2:1:len(regions)-1]) regions[i]]
|
for (i=[2:1:len(regions)-1]) regions[i]
|
||||||
),
|
],
|
||||||
eps=eps
|
eps=eps
|
||||||
);
|
);
|
||||||
|
|
||||||
|
|
||||||
|
@ -996,13 +1078,13 @@ function difference(regions=[],b=undef,c=undef,eps=EPSILON) =
|
||||||
b!=undef? difference(concat([regions],[b],c==undef?[]:[c]), eps=eps) :
|
b!=undef? difference(concat([regions],[b],c==undef?[]:[c]), eps=eps) :
|
||||||
len(regions)==0? [] :
|
len(regions)==0? [] :
|
||||||
len(regions)==1? regions[0] :
|
len(regions)==1? regions[0] :
|
||||||
difference(
|
regions[0]==[] ? [] :
|
||||||
let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)])
|
let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)])
|
||||||
concat(
|
difference([
|
||||||
[_tagged_region(regions[0],regions[1],["O","U"],["I"], eps=eps)],
|
_tagged_region(regions[0],regions[1],"OU", "I", eps=eps),
|
||||||
[for (i=[2:1:len(regions)-1]) regions[i]]
|
for (i=[2:1:len(regions)-1]) regions[i]
|
||||||
),
|
],
|
||||||
eps=eps
|
eps=eps
|
||||||
);
|
);
|
||||||
|
|
||||||
|
|
||||||
|
@ -1027,9 +1109,10 @@ function intersection(regions=[],b=undef,c=undef,eps=EPSILON) =
|
||||||
b!=undef? intersection(concat([regions],[b],c==undef?[]:[c]),eps=eps)
|
b!=undef? intersection(concat([regions],[b],c==undef?[]:[c]),eps=eps)
|
||||||
: len(regions)==0 ? []
|
: len(regions)==0 ? []
|
||||||
: len(regions)==1? regions[0]
|
: len(regions)==1? regions[0]
|
||||||
|
: regions[0]==[] || regions[1]==[] ? []
|
||||||
: let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)])
|
: let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)])
|
||||||
intersection([
|
intersection([
|
||||||
_tagged_region(regions[0],regions[1],["I","S"],["I"],eps=eps),
|
_tagged_region(regions[0],regions[1],"IS","I",eps=eps),
|
||||||
for (i=[2:1:len(regions)-1]) regions[i]
|
for (i=[2:1:len(regions)-1]) regions[i]
|
||||||
],
|
],
|
||||||
eps=eps
|
eps=eps
|
||||||
|
@ -1063,17 +1146,14 @@ function intersection(regions=[],b=undef,c=undef,eps=EPSILON) =
|
||||||
// }
|
// }
|
||||||
function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) =
|
function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) =
|
||||||
b!=undef? exclusive_or([regions, b, if(is_def(c)) c],eps=eps) :
|
b!=undef? exclusive_or([regions, b, if(is_def(c)) c],eps=eps) :
|
||||||
len(regions)<=1? regions[0] :
|
len(regions)==0? [] :
|
||||||
exclusive_or(
|
len(regions)==1? regions[0] :
|
||||||
let(regions=[for (r=regions) is_path(r)? [r] : r])
|
let(regions=[for (r=regions) is_path(r)? [r] : r])
|
||||||
concat(
|
exclusive_or([
|
||||||
[union([
|
_tagged_region(regions[0],regions[1],"IO","IO",eps=eps),
|
||||||
difference([regions[0],regions[1]], eps=eps),
|
for (i=[2:1:len(regions)-1]) regions[i]
|
||||||
difference([regions[1],regions[0]], eps=eps)
|
],
|
||||||
], eps=eps)],
|
eps=eps
|
||||||
[for (i=[2:1:len(regions)-1]) regions[i]]
|
|
||||||
),
|
|
||||||
eps=eps
|
|
||||||
);
|
);
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -10,3 +10,49 @@ module test_is_region() {
|
||||||
assert(!is_region("foo"));
|
assert(!is_region("foo"));
|
||||||
}
|
}
|
||||||
test_is_region();
|
test_is_region();
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
module test_union() {
|
||||||
|
R1 = [square(10,center=true), square(9,center=true)];
|
||||||
|
R2 = [square(9,center=true)];
|
||||||
|
assert(are_regions_equal(union(R1,R2), [square(10,center=true)]));
|
||||||
|
assert(are_regions_equal(union(R2,R1), [square(10,center=true)]));
|
||||||
|
}
|
||||||
|
test_union();
|
||||||
|
|
||||||
|
|
||||||
|
module test_intersection() {
|
||||||
|
R1 = [square(10,center=true), square(9,center=true)];
|
||||||
|
R6 = [square(9.5,center=true), square(9,center=true)];
|
||||||
|
assert(are_regions_equal(intersection(R6,R1), R6));
|
||||||
|
assert(are_regions_equal(intersection(R1,R6), R6));
|
||||||
|
}
|
||||||
|
test_intersection();
|
||||||
|
|
||||||
|
|
||||||
|
module test_difference() {
|
||||||
|
R5 = [square(10,center=true), square(9,center=true),square(4,center=true)];
|
||||||
|
R4 = [square(9,center=true), square(3,center=true)];
|
||||||
|
assert(are_regions_equal(difference(R5,R4),
|
||||||
|
[square(10,center=true), square(9, center=true), square(3,center=true)]));
|
||||||
|
|
||||||
|
pathA = [
|
||||||
|
[-9,12], [-6,2], [-3,12], [0,2], [3,10], [5,10], [19,-4], [-8,-4], [-12,0]
|
||||||
|
];
|
||||||
|
|
||||||
|
pathB = [
|
||||||
|
[-12,8], [7,8], [9,6], [7,5], [-3,5], [-5,-6], [-2,-6], [0,-4],
|
||||||
|
[6,-4], [2,-8], [-7,-8], [-15,0]
|
||||||
|
];
|
||||||
|
|
||||||
|
|
||||||
|
right=[[[-10, 8], [-9, 12], [-7.8, 8]], [[0, -4], [-4.63636363636, -4], [-3, 5], [-0.9, 5], [0, 2], [1.125, 5], [7, 5], [9, 6], [19, -4], [6, -4]], [[-4.2, 8], [-1.8, 8], [-3, 12]], [[2.25, 8], [3, 10], [5, 10], [7, 8]]];
|
||||||
|
assert(are_regions_equal(difference(pathA,pathB),right));
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
test_difference();
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue