mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2024-12-29 16:29:40 +00:00
Correction in _cleave_connected_region and polygon_triangulate and some few tweaks
This commit is contained in:
parent
10604cd20b
commit
6bd1dd918f
6 changed files with 105 additions and 98 deletions
|
@ -290,12 +290,12 @@ function compare_lists(a, b) =
|
|||
// idx = find_approx(val, list, [start=], [eps=]);
|
||||
// indices = find_approx(val, list, all=true, [start=], [eps=]);
|
||||
// Description:
|
||||
// Finds the first item in `list` that matches `val`, returning the index.
|
||||
// Finds the first item in `list` that matches `val`, returning the index. Returns `undef` if there is no match.
|
||||
// Arguments:
|
||||
// val = The value to search for. If given a function literal of signature `function (x)`, uses that function to check list items. Returns true for a match.
|
||||
// list = The list to search through.
|
||||
// ---
|
||||
// start = The index to start searching from.
|
||||
// start = The index to start searching from. Default: 0
|
||||
// all = If true, returns a list of all matching item indices.
|
||||
// eps = The maximum allowed floating point rounding error for numeric comparisons.
|
||||
function find_approx(val, list, start=0, all=false, eps=EPSILON) =
|
||||
|
|
|
@ -104,15 +104,16 @@ function _tri_class(tri, eps=EPSILON) =
|
|||
/// class = _pt_in_tri(point, tri);
|
||||
/// Topics: Geometry, Points, Triangles
|
||||
/// Description:
|
||||
/// Return 1 if point is inside the triangle interion.
|
||||
/// Return =0 if point is on the triangle border.
|
||||
/// Return -1 if point is outside the triangle.
|
||||
// For CW triangles `tri` :
|
||||
/// return 1 if point is inside the triangle interior.
|
||||
/// return =0 if point is on the triangle border.
|
||||
/// return -1 if point is outside the triangle.
|
||||
/// Arguments:
|
||||
/// point = The point to check position of.
|
||||
/// tri = A list of the three 2d vertices of a triangle.
|
||||
/// eps = Tolerance in the geometrical tests.
|
||||
function _pt_in_tri(point, tri, eps=EPSILON) =
|
||||
min( _tri_class([tri[0],tri[1],point],eps),
|
||||
min( _tri_class([tri[0],tri[1],point],eps),
|
||||
_tri_class([tri[1],tri[2],point],eps),
|
||||
_tri_class([tri[2],tri[0],point],eps) );
|
||||
|
||||
|
@ -1701,7 +1702,7 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
|
|||
// Description:
|
||||
// Given a simple polygon in 2D or 3D, triangulates it and returns a list
|
||||
// of triples indexing into the polygon vertices. When the optional argument `ind` is
|
||||
// given, it is used as an index list into `poly` to define the polygon. In that case,
|
||||
// given, it is used as an index list into `poly` to define the polygon vertices. In that case,
|
||||
// `poly` may have a length greater than `ind`. When `ind` is undefined, all points in `poly`
|
||||
// are considered as vertices of the polygon.
|
||||
// .
|
||||
|
@ -1710,47 +1711,49 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
|
|||
// vector with the same direction of the polygon normal.
|
||||
// .
|
||||
// The function produce correct triangulations for some non-twisted non-simple polygons.
|
||||
// A polygon is non-twisted iff it is simple or there is a partition of it in
|
||||
// A polygon is non-twisted iff it is simple or it has a partition in
|
||||
// simple polygons with the same winding such that the intersection of any two partitions is
|
||||
// made of full edges of both partitions. These polygons may have "touching" vertices
|
||||
// made of full edges and/or vertices of both partitions. These polygons may have "touching" vertices
|
||||
// (two vertices having the same coordinates, but distinct adjacencies) and "contact" edges
|
||||
// (edges whose vertex pairs have the same pairwise coordinates but are in reversed order) but has
|
||||
// no self-crossing. See examples bellow. If all polygon edges are contact edges (polygons with
|
||||
// zero area), it returns an empty list for 2d polygons and issues an error for 3d polygons.
|
||||
// zero area), it returns an empty list for 2d polygons and reports an error for 3d polygons.
|
||||
// Triangulation errors are reported either by an assert error (when `error=true`) or by returning
|
||||
// `undef` (when `error=false`). Invalid arguments always produce an assert error.
|
||||
// .
|
||||
// Twisted polygons have no consistent winding and when input to this function usually produce
|
||||
// an error but when an error is not issued the outputs are not correct triangulations. The function
|
||||
// Twisted polygons have no consistent winding and when input to this function usually reports
|
||||
// an error but when an error is not reported the outputs are not correct triangulations. The function
|
||||
// can work for 3d non-planar polygons if they are close enough to planar but may otherwise
|
||||
// issue an error for this case.
|
||||
// report an error for this case.
|
||||
// Arguments:
|
||||
// poly = Array of the polygon vertices.
|
||||
// ind = A list indexing the vertices of the polygon in `poly`.
|
||||
// eps = A maximum tolerance in geometrical tests. Default: EPSILON
|
||||
// Example(2D,NoAxes):
|
||||
// Example(2D,NoAxes): a simple polygon; see from above
|
||||
// poly = star(id=10, od=15,n=11);
|
||||
// tris = polygon_triangulate(poly);
|
||||
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
|
||||
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
|
||||
// color("magenta") up(2) stroke(poly,.25,closed=true);
|
||||
// color("black") up(3) vnf_debug([path3d(poly),[]],faces=false,size=1);
|
||||
// Example(2D,NoAxes): a polygon with a hole and one "contact" edge
|
||||
// Example(2D,NoAxes): a polygon with a hole and one "contact" edge; see from above
|
||||
// poly = [ [-10,0], [10,0], [0,10], [-10,0], [-4,4], [4,4], [0,2], [-4,4] ];
|
||||
// tris = polygon_triangulate(poly);
|
||||
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
|
||||
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
|
||||
// color("magenta") up(2) stroke(poly,.25,closed=true);
|
||||
// color("black") up(3) vnf_debug([path3d(poly),[]],faces=false,size=1);
|
||||
// Example(2D,NoAxes): a polygon with "touching" vertices and no holes
|
||||
// Example(2D,NoAxes): a polygon with "touching" vertices and no holes; see from above
|
||||
// poly = [ [0,0], [5,5], [-5,5], [0,0], [-5,-5], [5,-5] ];
|
||||
// tris = polygon_triangulate(poly);
|
||||
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
|
||||
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
|
||||
// color("magenta") up(2) stroke(poly,.25,closed=true);
|
||||
// color("black") up(3) vnf_debug([path3d(poly),[]],faces=false,size=1);
|
||||
// Example(2D,NoAxes): a polygon with "contact" edges and no holes
|
||||
// Example(2D,NoAxes): a polygon with "contact" edges and no holes; see from above
|
||||
// poly = [ [0,0], [10,0], [10,10], [0,10], [0,0], [3,3], [7,3],
|
||||
// [7,7], [7,3], [3,3] ];
|
||||
// tris = polygon_triangulate(poly); // see from above
|
||||
// tris = polygon_triangulate(poly);
|
||||
// color("lightblue") for(tri=tris) polygon(select(poly,tri));
|
||||
// color("blue") up(1) for(tri=tris) { stroke(select(poly,tri),.15,closed=true); }
|
||||
// color("magenta") up(2) stroke(poly,.25,closed=true);
|
||||
|
@ -1762,19 +1765,18 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
|
|||
// vnf_tri = [vnf[0], [for(face=vnf[1]) each polygon_triangulate(vnf[0], face) ] ];
|
||||
// color("blue")
|
||||
// vnf_wireframe(vnf_tri, width=.15);
|
||||
function polygon_triangulate(poly, ind, eps=EPSILON) =
|
||||
function polygon_triangulate(poly, ind, error=true, eps=EPSILON) =
|
||||
assert(is_path(poly) && len(poly)>=3, "Polygon `poly` should be a list of at least three 2d or 3d points")
|
||||
assert(is_undef(ind)
|
||||
|| (is_vector(ind) && min(ind)>=0 && max(ind)<len(poly) ),
|
||||
assert(is_undef(ind) || (is_vector(ind) && min(ind)>=0 && max(ind)<len(poly) ),
|
||||
"Improper or out of bounds list of indices")
|
||||
(! is_undef(ind) ) && len(ind) == 0 ? [] :
|
||||
let( ind = is_undef(ind) ? count(len(poly)) : ind )
|
||||
len(ind) <=2 ? [] :
|
||||
len(ind) == 3
|
||||
? _degenerate_tri([poly[ind[0]], poly[ind[1]], poly[ind[2]]], eps) ? [] :
|
||||
// non zero area
|
||||
assert( norm(scalar_vec3(cross(poly[ind[1]]-poly[ind[0]], poly[ind[2]]-poly[ind[0]]))) > 2*eps,
|
||||
"The polygon vertices are collinear.")
|
||||
[ind]
|
||||
let( degen = norm(scalar_vec3(cross(poly[ind[1]]-poly[ind[0]], poly[ind[2]]-poly[ind[0]]))) < 2*eps )
|
||||
assert( ! error || ! degen, "The polygon vertices are collinear.")
|
||||
degen ? undef : [ind]
|
||||
: len(poly[ind[0]]) == 3
|
||||
? // find a representation of the polygon as a 2d polygon by projecting it on its own plane
|
||||
let(
|
||||
|
@ -1785,44 +1787,46 @@ function polygon_triangulate(poly, ind, eps=EPSILON) =
|
|||
pts = select(poly,ind),
|
||||
nrm = -polygon_normal(pts)
|
||||
)
|
||||
assert( nrm!=undef,
|
||||
assert( ! error || (nrm != undef),
|
||||
"The polygon has self-intersections or zero area or its vertices are collinear or non coplanar.")
|
||||
nrm == undef ? undef :
|
||||
let(
|
||||
imax = max_index([for(p=pts) norm(p-pts[0]) ]),
|
||||
v1 = unit( pts[imax] - pts[0] ),
|
||||
v2 = cross(v1,nrm),
|
||||
prpts = pts*transpose([v1,v2]) // the 2d projection of pts on the polygon plane
|
||||
)
|
||||
[for(tri=_triangulate(prpts, count(len(ind)), eps)) select(ind,tri) ]
|
||||
let( tris = _triangulate(prpts, count(len(ind)), error, eps) )
|
||||
tris == undef ? undef :
|
||||
[for(tri=tris) select(ind,tri) ]
|
||||
: is_polygon_clockwise(select(poly, ind))
|
||||
? _triangulate( poly, ind, eps )
|
||||
: [for(tri=_triangulate( poly, reverse(ind), eps )) reverse(tri) ];
|
||||
? _triangulate( poly, ind, error, eps )
|
||||
: let( tris = _triangulate( poly, reverse(ind), error, eps ) )
|
||||
tris == undef ? undef :
|
||||
[for(tri=tris) reverse(tri) ];
|
||||
|
||||
|
||||
// poly is supposed to be a 2d cw polygon
|
||||
// implements a modified version of ear cut method for non-twisted polygons
|
||||
// the polygons accepted by this function are (tecnically) the ones whose interior
|
||||
// is homeomoph to the interior of a simple polygon
|
||||
function _triangulate(poly, ind, eps=EPSILON, tris=[]) =
|
||||
// the polygons accepted by this function are those decomposable in simple
|
||||
// CW polygons.
|
||||
function _triangulate(poly, ind, error, eps=EPSILON, tris=[]) =
|
||||
len(ind)==3
|
||||
? _degenerate_tri(select(poly,ind),eps)
|
||||
? tris // if last 3 pts perform a degenerate triangle, ignore it
|
||||
: concat(tris,[ind]) // otherwise, include it
|
||||
: let( ear = _get_ear(poly,ind,eps) )
|
||||
/*
|
||||
let( x= [if(is_undef(ear)) echo(ind=ind) 0] )
|
||||
is_undef(ear) ? tris :
|
||||
*/
|
||||
assert( ear!=undef,
|
||||
assert( ! error || (ear != undef),
|
||||
"The polygon has twists or all its vertices are collinear or non coplanar.")
|
||||
ear == undef ? undef :
|
||||
is_list(ear) // is it a degenerate ear ?
|
||||
? len(ind) <= 4 ? tris :
|
||||
_triangulate(poly, select(ind,ear[0]+3, ear[0]), eps, tris) // discard it
|
||||
_triangulate(poly, select(ind,ear[0]+3, ear[0]), error, eps, tris) // discard it
|
||||
: let(
|
||||
ear_tri = select(ind,ear,ear+2),
|
||||
indr = select(ind,ear+2, ear) // indices of the remaining path
|
||||
)
|
||||
_triangulate(poly, indr, eps, concat(tris,[ear_tri]));
|
||||
_triangulate(poly, indr, error, eps, concat(tris,[ear_tri]));
|
||||
|
||||
|
||||
// a returned ear will be:
|
||||
|
@ -1847,9 +1851,7 @@ function _get_ear(poly, ind, eps, _i=0) =
|
|||
// otherwise check the next ear candidate
|
||||
_i<lind-1 ? _get_ear(poly, ind, eps, _i=_i+1) :
|
||||
// poly has no ears, look for wiskers
|
||||
let(
|
||||
wiskers = [for(j=idx(ind)) if(norm(poly[ind[j]]-poly[ind[(j+2)%lind]])<eps) j ]
|
||||
)
|
||||
let( wiskers = [for(j=idx(ind)) if(norm(poly[ind[j]]-poly[ind[(j+2)%lind]])<eps) j ] )
|
||||
wiskers==[] ? undef : [wiskers[0]];
|
||||
|
||||
|
||||
|
@ -1873,12 +1875,12 @@ function _none_inside(idxs,poly,p0,p1,p2,eps,i=0) =
|
|||
_tri_class([p2,p0,vert],eps)>=0 )
|
||||
// or it is equal to p1 and some of its adjacent edges cross the open segment (p0,p2)
|
||||
|| ( norm(vert-p1) < eps
|
||||
&& ( _is_at_left(p0,[prev_vert,p1],eps)
|
||||
&& _is_at_left(p2,[p1,next_vert],eps) )
|
||||
&& _is_at_left(p0,[prev_vert,p1],eps) && _is_at_left(p2,[p1,prev_vert],eps)
|
||||
&& _is_at_left(p2,[p1,next_vert],eps) && _is_at_left(p0,[next_vert,p1],eps)
|
||||
)
|
||||
)
|
||||
? false
|
||||
: _none_inside(idxs,poly,p0,p1,p2,eps,i=i+1);
|
||||
: _none_inside(idxs,poly,p0,p1,p2,eps,i=i+1);
|
||||
|
||||
|
||||
// Function: is_polygon_clockwise()
|
||||
|
|
|
@ -230,14 +230,15 @@ function select(list, start, end) =
|
|||
: end==undef
|
||||
? is_num(start)
|
||||
? list[ (start%l+l)%l ]
|
||||
: assert( is_list(start) || is_range(start), "Invalid start parameter")
|
||||
: assert( start==[] || is_vector(start) || is_range(start), "Invalid start parameter")
|
||||
[for (i=start) list[ (i%l+l)%l ] ]
|
||||
: assert(is_finite(start), "When `end` is given, `start` parameter should be a number.")
|
||||
assert(is_finite(end), "Invalid end parameter.")
|
||||
let( s = (start%l+l)%l, e = (end%l+l)%l )
|
||||
(s <= e)
|
||||
? [for (i = [s:1:e]) list[i]]
|
||||
: concat([for (i = [s:1:l-1]) list[i]], [for (i = [0:1:e]) list[i]]) ;
|
||||
? [ for (i = [s:1:e]) list[i] ]
|
||||
: [ for (i = [s:1:l-1]) list[i],
|
||||
for (i = [0:1:e]) list[i] ] ;
|
||||
|
||||
|
||||
// Function: slice()
|
||||
|
|
|
@ -278,9 +278,8 @@ function _path_self_intersections(path, closed=true, eps=EPSILON) =
|
|||
// signs at its two vertices can have an intersection with segment
|
||||
// [a1,a2]. The variable signals is zero when abs(vals[j]-ref) is less than
|
||||
// eps and the sign of vals[j]-ref otherwise.
|
||||
signals = [for(j=[i+2:1:plen-(i==0 && closed? 2: 1)]) vals[j]-ref > eps ? 1
|
||||
: vals[j]-ref < -eps ? -1
|
||||
: 0]
|
||||
signals = [for(j=[i+2:1:plen-(i==0 && closed? 2: 1)])
|
||||
abs(vals[j]-ref) < eps ? 0 : sign(vals[j]-ref) ]
|
||||
)
|
||||
if(max(signals)>=0 && min(signals)<=0 ) // some remaining edge intersects line [a1,a2]
|
||||
for(j=[i+2:1:plen-(i==0 && closed? 3: 2)])
|
||||
|
|
|
@ -282,9 +282,9 @@ function _region_region_intersections(region1, region2, closed1=true,closed2=tru
|
|||
for(p2=idx(region2))
|
||||
let(
|
||||
poly = closed2?close_path(region2[p2]):region2[p2],
|
||||
signs = [for(v=poly*seg_normal) v-ref> eps ? 1 : v-ref<-eps ? -1 : 0]
|
||||
signs = [for(v=poly*seg_normal) abs(v-ref) < eps ? 0 : sign(v-ref) ]
|
||||
)
|
||||
if(max(signs)>=0 && min(signs)<=0) // some edge edge intersects line [a1,a2]
|
||||
if(max(signs)>=0 && min(signs)<=0) // some edge intersects line [a1,a2]
|
||||
for(j=[0:1:len(poly)-2])
|
||||
if(signs[j]!=signs[j+1])
|
||||
let( // exclude non-crossing and collinear segments
|
||||
|
@ -329,7 +329,7 @@ function _region_region_intersections(region1, region2, closed1=true,closed2=tru
|
|||
// where region1 intersections region2. Split region2 similarly with respect to region1.
|
||||
// The return is a pair of results of the form [split1, split2] where split1=[frags1,frags2,...]
|
||||
// and frags1 is a list of path pieces (in order) from the first path of the region.
|
||||
// You can pass a single path in for either region, but the output will be a singleton list, as ify
|
||||
// You can pass a single path in for either region, but the output will be a singleton list, as if
|
||||
// you passed in a singleton region.
|
||||
// Arguments:
|
||||
// region1 = first region
|
||||
|
|
93
vnf.scad
93
vnf.scad
|
@ -414,22 +414,22 @@ function _old_cleave_connected_region(region) =
|
|||
|
||||
/// Internal Function: _cleave_connected_region(region, eps)
|
||||
/// Description:
|
||||
/// Given a region that is connected and has its outer border in region[0],
|
||||
/// produces a polygon with the same points that has overlapping connected paths
|
||||
/// to join internal holes to the outer border. Output is a single path.
|
||||
/// It expect that region[0] be a simple closed CW path and that each hole,
|
||||
/// region[i] for i>0, be a simple closed CCW path.
|
||||
/// The paths are also supposed to be disjoint except for common vertices and
|
||||
/// common edges but no crossing.
|
||||
/// This function implements an extension of the algorithm discussed in:
|
||||
/// https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
|
||||
/// Given a region that is connected and has its outer border in region[0],
|
||||
/// produces a overlapping connected path to join internal holes to
|
||||
/// the outer border without adding points. Output is a single non-simple polygon.
|
||||
/// Requirements:
|
||||
/// It expects that all region paths be simple closed paths, with region[0] CW and
|
||||
/// the other paths CCW and encircled by region[0]. The input region paths are also
|
||||
/// supposed to be disjoint except for common vertices and common edges but with
|
||||
/// no crossings. It may return `undef` if these conditions are not met.
|
||||
/// This function implements an extension of the algorithm discussed in:
|
||||
/// https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
|
||||
function _cleave_connected_region(region, eps=EPSILON) =
|
||||
len(region)==1 ? region[0] :
|
||||
let(
|
||||
outer = deduplicate(clockwise_polygon(region[0])), //
|
||||
holes = [for(i=[1:1:len(region)-1]) // possibly unneeded
|
||||
let(poly=region[i]) //
|
||||
deduplicate( ccw_polygon(poly) ) ], //
|
||||
outer = deduplicate(region[0]), //
|
||||
holes = [for(i=[1:1:len(region)-1]) // deduplication possibly unneeded
|
||||
deduplicate( region[i] ) ], //
|
||||
extridx = [for(li=holes) max_index(column(li,0)) ],
|
||||
// the right extreme vertex for each hole sorted by decreasing x values
|
||||
extremes = sort( [for(i=idx(holes)) [ i, extridx[i], -holes[i][extridx[i]].x] ], idx=2 )
|
||||
|
@ -439,7 +439,7 @@ function _cleave_connected_region(region, eps=EPSILON) =
|
|||
|
||||
// connect the hole paths one at a time to the outer path.
|
||||
// 'extremes' is the list of the right extreme vertex of each hole sorted by decreasing abscissas
|
||||
// see _cleave_connected_region(region, eps)
|
||||
// see: _cleave_connected_region(region, eps)
|
||||
function _polyHoles(outer, holes, extremes, eps=EPSILON, n=0) =
|
||||
let(
|
||||
extr = extremes[n], //
|
||||
|
@ -447,17 +447,17 @@ function _polyHoles(outer, holes, extremes, eps=EPSILON, n=0) =
|
|||
ipt = extr[1], // index of the hole point with maximum abscissa
|
||||
brdg = _bridge(hole[ipt], outer, eps) // the index of a point in outer to bridge hole[ipt] to
|
||||
)
|
||||
assert(brdg!=undef, "Error: check input polygon restrictions")
|
||||
brdg == undef ? undef :
|
||||
let(
|
||||
l = len(outer),
|
||||
lh = len(hole),
|
||||
// the new outer polygon bridging the hole to the old outer
|
||||
npoly =
|
||||
approx(outer[brdg], hole[ipt], eps)
|
||||
? [ for(i=[brdg: 1: brdg+l]) outer[i%l] ,
|
||||
for(i=[ipt+1:1: ipt+lh-1]) hole[i%lh] ]
|
||||
: [ for(i=[brdg: 1: brdg+l]) outer[i%l] ,
|
||||
for(i=[ipt:1: ipt+lh]) hole[i%lh] ]
|
||||
? [ for(i=[brdg: 1: brdg+l]) outer[i%l] ,
|
||||
for(i=[ipt+1: 1: ipt+lh-1]) hole[i%lh] ]
|
||||
: [ for(i=[brdg: 1: brdg+l]) outer[i%l] ,
|
||||
for(i=[ipt: 1: ipt+lh]) hole[i%lh] ]
|
||||
)
|
||||
n==len(holes)-1 ? npoly :
|
||||
_polyHoles(npoly, holes, extremes, eps, n+1);
|
||||
|
@ -472,13 +472,13 @@ function _bridge(pt, outer,eps) =
|
|||
let(
|
||||
l = len(outer),
|
||||
crxs =
|
||||
[for( i=idx(outer) )
|
||||
let( edge = select(outer,i,i+1) )
|
||||
let( edges = pair(outer,wrap=true) )
|
||||
[for( i = idx(edges) )
|
||||
let( edge = edges[i] )
|
||||
// consider just descending outer edges at right of pt crossing ordinate pt.y
|
||||
if( (edge[0].y> pt.y)
|
||||
&& (edge[1].y<=pt.y)
|
||||
&& ( norm(edge[1]-pt)<eps // accepts touching vertices
|
||||
|| _tri_class([pt, edge[0], edge[1]], eps)>0 ) )
|
||||
if( (edge[0].y > pt.y+eps)
|
||||
&& (edge[1].y <= pt.y)
|
||||
&& _is_at_left(pt, [edge[1], edge[0]], eps) )
|
||||
[ i,
|
||||
// the point of edge with ordinate pt.y
|
||||
abs(pt.y-edge[1].y)<eps ? edge[1] :
|
||||
|
@ -487,22 +487,21 @@ function _bridge(pt, outer,eps) =
|
|||
]
|
||||
]
|
||||
)
|
||||
assert(crxs!=[], "Error: check input polygon restrictions")
|
||||
crxs == [] ? undef :
|
||||
let(
|
||||
// the intersection point nearest to pt
|
||||
// the intersection point of the nearest edge to pt with minimum slope
|
||||
minX = min([for(p=crxs) p[1].x]),
|
||||
crxcand = [for(crx=crxs) if(crx[1].x < minX+eps) crx ],
|
||||
nearest = min_index([for(crx=crxcand) outer[crx[0]].y]),
|
||||
crxcand = [for(crx=crxs) if(crx[1].x < minX+eps) crx ], // nearest edges
|
||||
nearest = min_index([for(crx=crxcand)
|
||||
(outer[crx[0]].x - pt.x) / (outer[crx[0]].y - pt.y) ]), // minimum slope
|
||||
proj = crxcand[nearest],
|
||||
vert0 = outer[proj[0]], // the two vertices of the nearest crossing edge
|
||||
vert1 = outer[(proj[0]+1)%l],
|
||||
isect = proj[1] // the intersection point
|
||||
)
|
||||
// if pt touches the middle of an outer edge -> error
|
||||
assert( ! approx(pt,isect,eps) || approx(pt,vert0,eps) || approx(pt,vert1,eps),
|
||||
"There is a forbidden self_intersection" )
|
||||
norm(pt-vert0) < eps ? proj[0] : // if pt touches an outer vertex, return its index
|
||||
norm(pt-vert1) < eps ? (proj[0]+1)%l :
|
||||
norm(pt-vert1) < eps ? (proj[0]+1)%l : // if pt touches an outer vertex, return its index
|
||||
// as vert0.y > pt.y then pt!=vert0
|
||||
norm(pt-isect) < eps ? undef : // if pt touches the middle of an outer edge -> error
|
||||
let(
|
||||
// the edge [vert0, vert1] necessarily satisfies vert0.y > vert1.y
|
||||
// indices of candidates to an outer bridge point
|
||||
|
@ -553,13 +552,15 @@ function _bridge(pt, outer,eps) =
|
|||
function vnf_from_region(region, transform, reverse=false) =
|
||||
let (
|
||||
regions = region_parts(force_region(region)),
|
||||
vnfs = [
|
||||
for (rgn = regions) let(
|
||||
cleaved = path3d(_cleave_connected_region(rgn)),
|
||||
face = is_undef(transform)? cleaved : apply(transform,cleaved),
|
||||
faceidxs = reverse? [for (i=[len(face)-1:-1:0]) i] : [for (i=[0:1:len(face)-1]) i]
|
||||
) [face, [faceidxs]]
|
||||
],
|
||||
vnfs =
|
||||
[ for (rgn = regions)
|
||||
let( cleaved = path3d(_cleave_connected_region(rgn)) )
|
||||
assert( cleaved, "The region is invalid")
|
||||
let(
|
||||
face = is_undef(transform)? cleaved : apply(transform,cleaved),
|
||||
faceidxs = reverse? [for (i=[len(face)-1:-1:0]) i] : [for (i=[0:1:len(face)-1]) i]
|
||||
) [face, [faceidxs]]
|
||||
],
|
||||
outvnf = vnf_merge(vnfs)
|
||||
)
|
||||
vnf_triangulate(outvnf);
|
||||
|
@ -667,9 +668,13 @@ function _link_indicator(l,imin,imax) =
|
|||
function vnf_triangulate(vnf) =
|
||||
let(
|
||||
verts = vnf[0],
|
||||
faces = [for (face=vnf[1]) each len(face)==3 ? [face] :
|
||||
polygon_triangulate(verts, face)]
|
||||
) [verts, faces];
|
||||
faces = [for (face=vnf[1])
|
||||
each (len(face)==3 ? [face] :
|
||||
let( tris = polygon_triangulate(verts, face) )
|
||||
assert( tris!=undef, "Some `vnf` face cannot be triangulated.")
|
||||
tris ) ]
|
||||
)
|
||||
[verts, faces];
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue