Merge pull request #592 from revarbat/revarbat_dev

Tweaks for docs usage lines.
This commit is contained in:
Revar Desmera 2021-06-26 22:41:55 -07:00 committed by GitHub
commit 6e1d33206a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
28 changed files with 513 additions and 510 deletions

View file

@ -42,7 +42,7 @@ function ident(n) = [
// Function: is_affine() // Function: is_affine()
// Usage: // Usage:
// bool = is_affine(x,<dim>); // bool = is_affine(x, [dim]);
// Topics: Affine, Matrices, Transforms, Type Checking // Topics: Affine, Matrices, Transforms, Type Checking
// See Also: is_matrix() // See Also: is_matrix()
// Description: // Description:
@ -649,10 +649,10 @@ function affine3d_rot_from_to(from, to) =
// Function: affine3d_frame_map() // Function: affine3d_frame_map()
// Usage: // Usage:
// map = affine3d_frame_map(v1, v2, v3, <reverse>); // map = affine3d_frame_map(v1, v2, v3, [reverse=]);
// map = affine3d_frame_map(x=VECTOR1, y=VECTOR2, <reverse>); // map = affine3d_frame_map(x=VECTOR1, y=VECTOR2, [reverse=]);
// map = affine3d_frame_map(x=VECTOR1, z=VECTOR2, <reverse>); // map = affine3d_frame_map(x=VECTOR1, z=VECTOR2, [reverse=]);
// map = affine3d_frame_map(y=VECTOR1, z=VECTOR2, <reverse>); // map = affine3d_frame_map(y=VECTOR1, z=VECTOR2, [reverse=]);
// Topics: Affine, Matrices, Transforms, Rotation // Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot() // See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
// Description: // Description:
@ -750,7 +750,7 @@ function affine3d_mirror(v) =
// Function: affine3d_skew() // Function: affine3d_skew()
// Usage: // Usage:
// mat = affine3d_skew(<sxy>, <sxz>, <syx>, <syz>, <szx>, <szy>); // mat = affine3d_skew([sxy=], [sxz=], [syx=], [syz=], [szx=], [szy=]);
// Topics: Affine, Matrices, Transforms, Skewing // Topics: Affine, Matrices, Transforms, Skewing
// See Also: skew(), affine3d_skew_xy(), affine3d_skew_xz(), affine3d_skew_yz(), affine2d_skew() // See Also: skew(), affine3d_skew_xy(), affine3d_skew_xz(), affine3d_skew_yz(), affine2d_skew()
// Description: // Description:

View file

@ -63,8 +63,8 @@ function _same_type(a,b, depth) =
// a list of indices or a range. // a list of indices or a range.
// Usage: // Usage:
// item = select(list, start); // item = select(list, start);
// item = select(list,[s:d:e]); // item = select(list, RANGE);
// item = select(list,[i0,i1...,ik]); // item = select(list, INDEXLIST);
// list = select(list, start, end); // list = select(list, start, end);
// Arguments: // Arguments:
// list = The list to get the portion of. // list = The list to get the portion of.
@ -150,7 +150,7 @@ function last(list) =
// Function: list_head() // Function: list_head()
// Usage: // Usage:
// list = list_head(list,<to>); // list = list_head(list, [to]);
// Topics: List Handling // Topics: List Handling
// See Also: select(), slice(), list_tail(), last() // See Also: select(), slice(), list_tail(), last()
// Description: // Description:
@ -177,7 +177,7 @@ function list_head(list, to=-2) =
// Function: list_tail() // Function: list_tail()
// Usage: // Usage:
// list = list_tail(list,<from>); // list = list_tail(list, [from]);
// Topics: List Handling // Topics: List Handling
// See Also: select(), slice(), list_tail(), last() // See Also: select(), slice(), list_tail(), last()
// Description: // Description:
@ -223,7 +223,7 @@ function list(l) = is_list(l)? l : [for (x=l) x];
// Function: force_list() // Function: force_list()
// Usage: // Usage:
// list = force_list(value, <n>, <fill>); // list = force_list(value, [n], [fill]);
// Topics: List Handling // Topics: List Handling
// See Also: scalar_vec3() // See Also: scalar_vec3()
// Description: // Description:
@ -265,7 +265,7 @@ function add_scalar(v,s) =
// Function: in_list() // Function: in_list()
// Usage: // Usage:
// bool = in_list(val,list, <idx>); // bool = in_list(val, list, [idx]);
// Topics: List Handling // Topics: List Handling
// Description: // Description:
// Returns true if value `val` is in list `list`. When `val==NAN` the answer will be false for any list. // Returns true if value `val` is in list `list`. When `val==NAN` the answer will be false for any list.
@ -290,8 +290,8 @@ function in_list(val,list,idx) =
// Topics: List Handling // Topics: List Handling
// See Also: in_list() // See Also: in_list()
// Usage: // Usage:
// idx = find_first_match(val, list, <start=>, <eps=>); // idx = find_first_match(val, list, [start=], [eps=]);
// indices = find_first_match(val, list, all=true, <start=>, <eps=>); // indices = find_first_match(val, list, all=true, [start=], [eps=]);
// Description: // Description:
// Finds the first item in `list` that matches `val`, returning the index. // Finds the first item in `list` that matches `val`, returning the index.
// Arguments: // Arguments:
@ -421,7 +421,7 @@ function repeat(val, n, i=0) =
// Function: count() // Function: count()
// Usage: // Usage:
// list = count(n,<s>,<step>); // list = count(n, [s], [step], [reverse]);
// Description: // Description:
// Creates a list of `n` numbers, starting at `s`, incrementing by `step` each time. // Creates a list of `n` numbers, starting at `s`, incrementing by `step` each time.
// Arguments: // Arguments:
@ -461,7 +461,7 @@ function reverse(x) =
// Function: list_rotate() // Function: list_rotate()
// Usage: // Usage:
// rlist = list_rotate(list,<n>); // rlist = list_rotate(list, [n]);
// Topics: List Handling // Topics: List Handling
// See Also: select(), reverse() // See Also: select(), reverse()
// Description: // Description:
@ -497,7 +497,7 @@ function list_rotate(list,n=1) =
// Function: deduplicate() // Function: deduplicate()
// Usage: // Usage:
// list = deduplicate(list,<close>,<eps>); // list = deduplicate(list, [close], [eps]);
// Topics: List Handling // Topics: List Handling
// See Also: deduplicate_indexed() // See Also: deduplicate_indexed()
// Description: // Description:
@ -528,7 +528,7 @@ function deduplicate(list, closed=false, eps=EPSILON) =
// Function: deduplicate_indexed() // Function: deduplicate_indexed()
// Usage: // Usage:
// new_idxs = deduplicate_indexed(list, indices, <closed>, <eps>); // new_idxs = deduplicate_indexed(list, indices, [closed], [eps]);
// Topics: List Handling // Topics: List Handling
// See Also: deduplicate() // See Also: deduplicate()
// Description: // Description:
@ -572,7 +572,7 @@ function deduplicate_indexed(list, indices, closed=false, eps=EPSILON) =
// Function: repeat_entries() // Function: repeat_entries()
// Usage: // Usage:
// newlist = repeat_entries(list, N, <exact>); // newlist = repeat_entries(list, N, [exact]);
// Topics: List Handling // Topics: List Handling
// See Also: repeat() // See Also: repeat()
// Description: // Description:
@ -613,7 +613,7 @@ function repeat_entries(list, N, exact=true) =
// Function: list_set() // Function: list_set()
// Usage: // Usage:
// list = list_set(list, indices, values, <dflt>, <minlen>); // list = list_set(list, indices, values, [dflt], [minlen]);
// Topics: List Handling // Topics: List Handling
// See Also: list_insert(), list_remove(), list_remove_values() // See Also: list_insert(), list_remove(), list_remove_values()
// Description: // Description:
@ -775,7 +775,7 @@ function bselect(array,index) =
// Function: list_bset() // Function: list_bset()
// Usage: // Usage:
// arr = list_bset(indexset, valuelist, <dflt>); // arr = list_bset(indexset, valuelist, [dflt]);
// Topics: List Handling // Topics: List Handling
// See Also: bselect() // See Also: bselect()
// Description: // Description:
@ -838,7 +838,7 @@ function list_longest(array) =
// Function: list_pad() // Function: list_pad()
// Usage: // Usage:
// arr = list_pad(array, minlen, <fill>); // arr = list_pad(array, minlen, [fill]);
// Topics: List Handling // Topics: List Handling
// See Also: list_trim(), list_fit() // See Also: list_trim(), list_fit()
// Description: // Description:
@ -920,7 +920,7 @@ function _valid_idx(idx,imin,imax) =
// Function: shuffle() // Function: shuffle()
// Usage: // Usage:
// shuffled = shuffle(list,<seed>); // shuffled = shuffle(list, [seed]);
// Topics: List Handling // Topics: List Handling
// See Also: sort(), sortidx(), unique(), unique_count() // See Also: sort(), sortidx(), unique(), unique_count()
// Description: // Description:
@ -1066,7 +1066,7 @@ function _indexed_sort(arrind) =
// Function: sort() // Function: sort()
// Usage: // Usage:
// slist = sort(list, <idx>); // slist = sort(list, [idx]);
// Topics: List Handling // Topics: List Handling
// See Also: shuffle(), sortidx(), unique(), unique_count(), group_sort() // See Also: shuffle(), sortidx(), unique(), unique_count(), group_sort()
// Description: // Description:
@ -1107,7 +1107,7 @@ function sort(list, idx=undef) =
// Function: sortidx() // Function: sortidx()
// Usage: // Usage:
// idxlist = sortidx(list, <idx>); // idxlist = sortidx(list, [idx]);
// Topics: List Handling // Topics: List Handling
// See Also: shuffle(), sort(), group_sort(), unique(), unique_count() // See Also: shuffle(), sort(), group_sort(), unique(), unique_count()
// Description: // Description:
@ -1263,8 +1263,8 @@ function unique_count(list) =
// Function: idx() // Function: idx()
// Usage: // Usage:
// rng = idx(list, <s=>, <e=>, <step=>); // rng = idx(list, [s=], [e=], [step=]);
// for(i=idx(list, <s=>, <e=>, <step=>)) ... // for(i=idx(list, [s=], [e=], [step=])) ...
// Topics: List Handling, Iteration // Topics: List Handling, Iteration
// See Also: enumerate(), pair(), triplet(), combinations(), permutations() // See Also: enumerate(), pair(), triplet(), combinations(), permutations()
// Description: // Description:
@ -1289,8 +1289,8 @@ function idx(list, s=0, e=-1, step=1) =
// Function: enumerate() // Function: enumerate()
// Usage: // Usage:
// arr = enumerate(l, <idx>); // arr = enumerate(l, [idx]);
// for (x = enumerate(l, <idx>)) ... // x[0] is the index number, x[1] is the item. // for (x = enumerate(l, [idx])) ... // x[0] is the index number, x[1] is the item.
// Topics: List Handling, Iteration // Topics: List Handling, Iteration
// See Also: idx(), pair(), triplet(), combinations(), permutations() // See Also: idx(), pair(), triplet(), combinations(), permutations()
// Description: // Description:
@ -1316,8 +1316,8 @@ function enumerate(l,idx=undef) =
// Function: pair() // Function: pair()
// Usage: // Usage:
// p = pair(list, <wrap>); // p = pair(list, [wrap]);
// for (p = pair(list, <wrap>)) ... // On each iteration, p contains a list of two adjacent items. // for (p = pair(list, [wrap])) ... // On each iteration, p contains a list of two adjacent items.
// Topics: List Handling, Iteration // Topics: List Handling, Iteration
// See Also: idx(), enumerate(), triplet(), combinations(), permutations() // See Also: idx(), enumerate(), triplet(), combinations(), permutations()
// Description: // Description:
@ -1346,8 +1346,8 @@ function pair(list, wrap=false) =
// Function: triplet() // Function: triplet()
// Usage: // Usage:
// list = triplet(list, <wrap>); // list = triplet(list, [wrap]);
// for (t = triplet(list, <wrap>)) ... // for (t = triplet(list, [wrap])) ...
// Topics: List Handling, Iteration // Topics: List Handling, Iteration
// See Also: idx(), enumerate(), pair(), combinations(), permutations() // See Also: idx(), enumerate(), pair(), combinations(), permutations()
// Description: // Description:
@ -1375,8 +1375,8 @@ function triplet(list, wrap=false) =
// Function: combinations() // Function: combinations()
// Usage: // Usage:
// list = combinations(l, <n>); // list = combinations(l, [n]);
// for (p = combinations(l, <n>)) ... // for (p = combinations(l, [n])) ...
// Topics: List Handling, Iteration // Topics: List Handling, Iteration
// See Also: idx(), enumerate(), pair(), triplet(), permutations() // See Also: idx(), enumerate(), pair(), triplet(), permutations()
// Description: // Description:
@ -1401,8 +1401,8 @@ function combinations(l,n=2,_s=0) =
// Function: permutations() // Function: permutations()
// Usage: // Usage:
// list = permutations(l, <n>); // list = permutations(l, [n]);
// for (p = permutations(l, <n>)) ... // for (p = permutations(l, [n])) ...
// Topics: List Handling, Iteration // Topics: List Handling, Iteration
// See Also: idx(), enumerate(), pair(), triplet(), combinations() // See Also: idx(), enumerate(), pair(), triplet(), combinations()
// Description: // Description:
@ -1487,7 +1487,7 @@ function zip_long(a,b,c,fill) =
// Function: set_union() // Function: set_union()
// Usage: // Usage:
// s = set_union(a, b, <get_indices>); // s = set_union(a, b, [get_indices]);
// Topics: Set Handling, List Handling // Topics: Set Handling, List Handling
// See Also: set_difference(), set_intersection() // See Also: set_difference(), set_intersection()
// Description: // Description:
@ -1732,7 +1732,7 @@ function block_matrix(M) =
// Function: diagonal_matrix() // Function: diagonal_matrix()
// Usage: // Usage:
// mat = diagonal_matrix(diag, <offdiag>); // mat = diagonal_matrix(diag, [offdiag]);
// Topics: Matrices, Array Handling // Topics: Matrices, Array Handling
// See Also: subindex(), submatrix() // See Also: subindex(), submatrix()
// Description: // Description:
@ -1749,7 +1749,7 @@ function diagonal_matrix(diag, offdiag=0) =
// Function: submatrix_set() // Function: submatrix_set()
// Usage: // Usage:
// mat = submatrix_set(M,A,<m>,<n>); // mat = submatrix_set(M, A, [m], [n]);
// Topics: Matrices, Array Handling // Topics: Matrices, Array Handling
// See Also: subindex(), submatrix() // See Also: subindex(), submatrix()
// Description: // Description:
@ -1777,7 +1777,7 @@ function submatrix_set(M,A,m=0,n=0) =
// Function: array_group() // Function: array_group()
// Usage: // Usage:
// groups = array_group(v, <cnt>, <dflt>); // groups = array_group(v, [cnt], [dflt]);
// Description: // Description:
// Takes a flat array of values, and groups items in sets of `cnt` length. // Takes a flat array of values, and groups items in sets of `cnt` length.
// The opposite of this is `flatten()`. // The opposite of this is `flatten()`.
@ -1851,7 +1851,7 @@ function _array_dim_recurse(v) =
// Function: array_dim() // Function: array_dim()
// Usage: // Usage:
// dims = array_dim(v, <depth>); // dims = array_dim(v, [depth]);
// Topics: Matrices, Array Handling // Topics: Matrices, Array Handling
// Description: // Description:
// Returns the size of a multi-dimensional array. Returns a list of dimension lengths. The length // Returns the size of a multi-dimensional array. Returns a list of dimension lengths. The length
@ -1883,7 +1883,7 @@ function array_dim(v, depth=undef) =
// Function: transpose() // Function: transpose()
// Usage: // Usage:
// arr = transpose(arr, <reverse>); // arr = transpose(arr, [reverse]);
// Topics: Matrices, Array Handling // Topics: Matrices, Array Handling
// See Also: submatrix(), block_matrix(), hstack(), flatten() // See Also: submatrix(), block_matrix(), hstack(), flatten()
// Description: // Description:
@ -1947,7 +1947,7 @@ function transpose(arr, reverse=false) =
// Function: is_matrix_symmetric() // Function: is_matrix_symmetric()
// Usage: // Usage:
// b = is_matrix_symmetric(A,<eps>) // b = is_matrix_symmetric(A, [eps])
// Description: // Description:
// Returns true if the input matrix is symmetric, meaning it equals its transpose. // Returns true if the input matrix is symmetric, meaning it equals its transpose.
// Matrix should have numerical entries. // Matrix should have numerical entries.

View file

@ -87,7 +87,7 @@ $tags_hidden = [];
// Function: anchorpt() // Function: anchorpt()
// Usage: // Usage:
// a = anchorpt(name, pos, <orient>, <spin>); // a = anchorpt(name, pos, [orient], [spin]);
// Topics: Attachments // Topics: Attachments
// See Also: attach_geom(), reorient(), attachable() // See Also: attach_geom(), reorient(), attachable()
// Description: // Description:
@ -104,21 +104,21 @@ function anchorpt(name, pos=[0,0,0], orient=UP, spin=0) = [name, pos, orient, sp
// Function: attach_geom() // Function: attach_geom()
// //
// Usage: Square/Trapezoid Geometry // Usage: Square/Trapezoid Geometry
// geom = attach_geom(two_d=true, size=, <size2=>, <shift=>, ...); // geom = attach_geom(two_d=true, size=, [size2=], [shift=], ...);
// Usage: Circle/Oval Geometry // Usage: Circle/Oval Geometry
// geom = attach_geom(two_d=true, r=|d=, ...); // geom = attach_geom(two_d=true, r=|d=, ...);
// Usage: 2D Path/Polygon Geometry // Usage: 2D Path/Polygon Geometry
// geom = attach_geom(two_d=true, path=, <extent=>, ...); // geom = attach_geom(two_d=true, path=, [extent=], ...);
// Usage: Cubical/Prismoidal Geometry // Usage: Cubical/Prismoidal Geometry
// geom = attach_geom(size=, <size2=>, <shift=>, ...); // geom = attach_geom(size=, [size2=], [shift=], ...);
// Usage: Cylindrical Geometry // Usage: Cylindrical Geometry
// geom = attach_geom(r=|d=, l=, <axis=>, ...); // geom = attach_geom(r=|d=, l=, [axis=], ...);
// Usage: Conical Geometry // Usage: Conical Geometry
// geom = attach_geom(r1|d1=, r2=|d2=, l=, <axis=>, ...); // geom = attach_geom(r1|d1=, r2=|d2=, l=, [axis=], ...);
// Usage: Spheroid/Ovoid Geometry // Usage: Spheroid/Ovoid Geometry
// geom = attach_geom(r=|d=, ...); // geom = attach_geom(r=|d=, ...);
// Usage: VNF Geometry // Usage: VNF Geometry
// geom = attach_geom(vnf=, <extent=>, ...); // geom = attach_geom(vnf=, [extent=], ...);
// //
// Topics: Attachments // Topics: Attachments
// See Also: reorient(), attachable() // See Also: reorient(), attachable()
@ -657,29 +657,29 @@ function attachment_is_shown(tags) =
// Function: reorient() // Function: reorient()
// //
// Usage: Square/Trapezoid Geometry // Usage: Square/Trapezoid Geometry
// mat = reorient(anchor, spin, <orient>, two_d=true, size=, <size2=>, <shift=>, ...); // mat = reorient(anchor, spin, [orient], two_d=true, size=, [size2=], [shift=], ...);
// pts = reorient(anchor, spin, <orient>, two_d=true, size=, <size2=>, <shift=>, p=, ...); // pts = reorient(anchor, spin, [orient], two_d=true, size=, [size2=], [shift=], p=, ...);
// Usage: Circle/Oval Geometry // Usage: Circle/Oval Geometry
// mat = reorient(anchor, spin, <orient>, two_d=true, r=|d=, ...); // mat = reorient(anchor, spin, [orient], two_d=true, r=|d=, ...);
// pts = reorient(anchor, spin, <orient>, two_d=true, r=|d=, p=, ...); // pts = reorient(anchor, spin, [orient], two_d=true, r=|d=, p=, ...);
// Usage: 2D Path/Polygon Geometry // Usage: 2D Path/Polygon Geometry
// mat = reorient(anchor, spin, <orient>, two_d=true, path=, <extent=>, ...); // mat = reorient(anchor, spin, [orient], two_d=true, path=, [extent=], ...);
// pts = reorient(anchor, spin, <orient>, two_d=true, path=, <extent=>, p=, ...); // pts = reorient(anchor, spin, [orient], two_d=true, path=, [extent=], p=, ...);
// Usage: Cubical/Prismoidal Geometry // Usage: Cubical/Prismoidal Geometry
// mat = reorient(anchor, spin, <orient>, size=, <size2=>, <shift=>, ...); // mat = reorient(anchor, spin, [orient], size=, [size2=], [shift=], ...);
// pts = reorient(anchor, spin, <orient>, size=, <size2=>, <shift=>, p=, ...); // pts = reorient(anchor, spin, [orient], size=, [size2=], [shift=], p=, ...);
// Usage: Cylindrical Geometry // Usage: Cylindrical Geometry
// mat = reorient(anchor, spin, <orient>, r=|d=, l=, <axis=>, ...); // mat = reorient(anchor, spin, [orient], r=|d=, l=, [axis=], ...);
// pts = reorient(anchor, spin, <orient>, r=|d=, l=, <axis=>, p=, ...); // pts = reorient(anchor, spin, [orient], r=|d=, l=, [axis=], p=, ...);
// Usage: Conical Geometry // Usage: Conical Geometry
// mat = reorient(anchor, spin, <orient>, r1=|d1=, r2=|d2=, l=, <axis=>, ...); // mat = reorient(anchor, spin, [orient], r1=|d1=, r2=|d2=, l=, [axis=], ...);
// pts = reorient(anchor, spin, <orient>, r1=|d1=, r2=|d2=, l=, <axis=>, p=, ...); // pts = reorient(anchor, spin, [orient], r1=|d1=, r2=|d2=, l=, [axis=], p=, ...);
// Usage: Spheroid/Ovoid Geometry // Usage: Spheroid/Ovoid Geometry
// mat = reorient(anchor, spin, <orient>, r|d=, ...); // mat = reorient(anchor, spin, [orient], r|d=, ...);
// pts = reorient(anchor, spin, <orient>, r|d=, p=, ...); // pts = reorient(anchor, spin, [orient], r|d=, p=, ...);
// Usage: VNF Geometry // Usage: VNF Geometry
// mat = reorient(anchor, spin, <orient>, vnf, <extent>, ...); // mat = reorient(anchor, spin, [orient], vnf, [extent], ...);
// pts = reorient(anchor, spin, <orient>, vnf, <extent>, p=, ...); // pts = reorient(anchor, spin, [orient], vnf, [extent], p=, ...);
// //
// Topics: Attachments // Topics: Attachments
// See Also: reorient(), attachable() // See Also: reorient(), attachable()
@ -772,21 +772,21 @@ function reorient(
// Module: attachable() // Module: attachable()
// //
// Usage: Square/Trapezoid Geometry // Usage: Square/Trapezoid Geometry
// attachable(anchor, spin, two_d=true, size=, <size2=>, <shift=>, ...) {...} // attachable(anchor, spin, two_d=true, size=, [size2=], [shift=], ...) {...}
// Usage: Circle/Oval Geometry // Usage: Circle/Oval Geometry
// attachable(anchor, spin, two_d=true, r=|d=, ...) {...} // attachable(anchor, spin, two_d=true, r=|d=, ...) {...}
// Usage: 2D Path/Polygon Geometry // Usage: 2D Path/Polygon Geometry
// attachable(anchor, spin, two_d=true, path=, <extent=>, ...) {...} // attachable(anchor, spin, two_d=true, path=, [extent=], ...) {...}
// Usage: Cubical/Prismoidal Geometry // Usage: Cubical/Prismoidal Geometry
// attachable(anchor, spin, <orient>, size=, <size2=>, <shift=>, ...) {...} // attachable(anchor, spin, [orient], size=, [size2=], [shift=], ...) {...}
// Usage: Cylindrical Geometry // Usage: Cylindrical Geometry
// attachable(anchor, spin, <orient>, r=|d=, l=, <axis=>, ...) {...} // attachable(anchor, spin, [orient], r=|d=, l=, [axis=], ...) {...}
// Usage: Conical Geometry // Usage: Conical Geometry
// attachable(anchor, spin, <orient>, r1=|d1=, r2=|d2=, l=, <axis=>, ...) {...} // attachable(anchor, spin, [orient], r1=|d1=, r2=|d2=, l=, [axis=], ...) {...}
// Usage: Spheroid/Ovoid Geometry // Usage: Spheroid/Ovoid Geometry
// attachable(anchor, spin, <orient>, r=|d=, ...) {...} // attachable(anchor, spin, [orient], r=|d=, ...) {...}
// Usage: VNF Geometry // Usage: VNF Geometry
// attachable(anchor, spin, <orient>, vnf=, <extent=>, ...) {...} // attachable(anchor, spin, [orient], vnf=, [extent=], ...) {...}
// //
// Topics: Attachments // Topics: Attachments
// See Also: reorient() // See Also: reorient()
@ -997,7 +997,7 @@ module attachable(
// Module: atext() // Module: atext()
// Topics: Attachments, Text // Topics: Attachments, Text
// Usage: // Usage:
// atext(text, <h>, <size>, <font>); // atext(text, [h], [size], [font]);
// Description: // Description:
// Creates a 3D text block that can be attached to other attachable objects. // Creates a 3D text block that can be attached to other attachable objects.
// NOTE: This cannot have children attached to it. // NOTE: This cannot have children attached to it.
@ -1117,8 +1117,8 @@ module position(from)
// Module: attach() // Module: attach()
// Usage: // Usage:
// attach(from, <overlap=>, <norot=>) {...} // attach(from, [overlap=], [norot=]) {...}
// attach(from, to, <overlap=>, <norot=>) {...} // attach(from, to, [overlap=], [norot=]) {...}
// Topics: Attachments // Topics: Attachments
// See Also: attachable(), position(), face_profile(), edge_profile(), corner_profile() // See Also: attachable(), position(), face_profile(), edge_profile(), corner_profile()
// Description: // Description:
@ -1164,7 +1164,7 @@ module attach(from, to, overlap, norot=false)
// Module: face_profile() // Module: face_profile()
// Usage: // Usage:
// face_profile(faces, r|d=, <convexity=>) {...} // face_profile(faces, r|d=, [convexity=]) {...}
// Topics: Attachments // Topics: Attachments
// See Also: attachable(), position(), attach(), edge_profile(), corner_profile() // See Also: attachable(), position(), attach(), edge_profile(), corner_profile()
// Description: // Description:
@ -1195,7 +1195,7 @@ module face_profile(faces=[], r, d, convexity=10) {
// Module: edge_profile() // Module: edge_profile()
// Usage: // Usage:
// edge_profile(<edges>, <except>, <convexity>) {...} // edge_profile([edges], [except], [convexity]) {...}
// Topics: Attachments // Topics: Attachments
// See Also: attachable(), position(), attach(), face_profile(), corner_profile() // See Also: attachable(), position(), attach(), face_profile(), corner_profile()
// Description: // Description:
@ -1248,7 +1248,7 @@ module edge_profile(edges=EDGES_ALL, except=[], convexity=10) {
// Module: corner_profile() // Module: corner_profile()
// Usage: // Usage:
// corner_profile(<corners>, <except>, <r=|d=>, <convexity=>) {...} // corner_profile([corners], [except], <r=|d=>, [convexity=]) {...}
// Topics: Attachments // Topics: Attachments
// See Also: attachable(), position(), attach(), face_profile(), edge_profile() // See Also: attachable(), position(), attach(), face_profile(), edge_profile()
// Description: // Description:
@ -1314,7 +1314,7 @@ module corner_profile(corners=CORNERS_ALL, except=[], r, d, convexity=10) {
// Module: edge_mask() // Module: edge_mask()
// Usage: // Usage:
// edge_mask(<edges>, <except>) {...} // edge_mask([edges], [except]) {...}
// Topics: Attachments // Topics: Attachments
// See Also: attachable(), position(), attach(), face_profile(), edge_profile(), corner_mask() // See Also: attachable(), position(), attach(), face_profile(), edge_profile(), corner_mask()
// Description: // Description:
@ -1368,7 +1368,7 @@ module edge_mask(edges=EDGES_ALL, except=[]) {
// Module: corner_mask() // Module: corner_mask()
// Usage: // Usage:
// corner_mask(<corners>, <except>) {...} // corner_mask([corners], [except]) {...}
// Topics: Attachments // Topics: Attachments
// See Also: attachable(), position(), attach(), face_profile(), edge_profile(), edge_mask() // See Also: attachable(), position(), attach(), face_profile(), edge_profile(), edge_mask()
// Description: // Description:
@ -1502,8 +1502,8 @@ module show(tags="")
// Module: diff() // Module: diff()
// Usage: // Usage:
// diff(neg, <keep>) {...} // diff(neg, [keep]) {...}
// diff(neg, pos, <keep>) {...} // diff(neg, pos, [keep]) {...}
// Topics: Attachments // Topics: Attachments
// See Also: tags(), recolor(), show(), hide(), intersect() // See Also: tags(), recolor(), show(), hide(), intersect()
// Description: // Description:
@ -1564,8 +1564,8 @@ module diff(neg, pos, keep)
// Module: intersect() // Module: intersect()
// Usage: // Usage:
// intersect(a, <keep=>) {...} // intersect(a, [keep=]) {...}
// intersect(a, b, <keep=>) {...} // intersect(a, b, [keep=]) {...}
// Topics: Attachments // Topics: Attachments
// See Also: tags(), recolor(), show(), hide(), diff() // See Also: tags(), recolor(), show(), hide(), diff()
// Description: // Description:

View file

@ -25,8 +25,8 @@
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bez_tang(), bez_joint(), bez_end() // See Also: bez_tang(), bez_joint(), bez_end()
// Usage: // Usage:
// pts = bez_begin(pt, a, r, <p=>); // pts = bez_begin(pt, a, r, [p=]);
// pts = bez_begin(pt, VECTOR, <r>, <p=>); // pts = bez_begin(pt, VECTOR, [r], [p=]);
// Description: // Description:
// This is used to create the first endpoint and control point of a cubic bezier path. // This is used to create the first endpoint and control point of a cubic bezier path.
// Arguments: // Arguments:
@ -94,8 +94,8 @@ function bez_begin(pt,a,r,p) =
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bez_begin(), bez_joint(), bez_end() // See Also: bez_begin(), bez_joint(), bez_end()
// Usage: // Usage:
// pts = bez_tang(pt, a, r1, r2, <p=>); // pts = bez_tang(pt, a, r1, r2, [p=]);
// pts = bez_tang(pt, VECTOR, <r1>, <r2>, <p=>); // pts = bez_tang(pt, VECTOR, [r1], [r2], [p=]);
// Description: // Description:
// This creates a smooth joint in a cubic bezier path. It creates three points, being the // This creates a smooth joint in a cubic bezier path. It creates three points, being the
// approaching control point, the fixed bezier control point, and the departing control // approaching control point, the fixed bezier control point, and the departing control
@ -128,8 +128,8 @@ function bez_tang(pt,a,r1,r2,p) =
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bez_begin(), bez_tang(), bez_end() // See Also: bez_begin(), bez_tang(), bez_end()
// Usage: // Usage:
// pts = bez_joint(pt, a1, a2, r1, r2, <p1=>, <p2=>); // pts = bez_joint(pt, a1, a2, r1, r2, [p1=], [p2=]);
// pts = bez_joint(pt, VEC1, VEC2, <r1=>, <r2=>, <p1=>, <p2=>); // pts = bez_joint(pt, VEC1, VEC2, [r1=], [r2=], [p1=], [p2=]);
// Description: // Description:
// This creates a disjoint corner joint in a cubic bezier path. It creates three points, being // This creates a disjoint corner joint in a cubic bezier path. It creates three points, being
// the aproaching control point, the fixed bezier control point, and the departing control point. // the aproaching control point, the fixed bezier control point, and the departing control point.
@ -167,8 +167,8 @@ function bez_joint(pt,a1,a2,r1,r2,p1,p2) =
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bez_tang(), bez_joint(), bez_end() // See Also: bez_tang(), bez_joint(), bez_end()
// Usage: // Usage:
// pts = bez_end(pt, a, r, <p=>); // pts = bez_end(pt, a, r, [p=]);
// pts = bez_end(pt, VECTOR, <r>, <p=>); // pts = bez_end(pt, VECTOR, [r], [p=]);
// Description: // Description:
// This is used to create the approaching control point, and the endpoint of a cubic bezier path. // This is used to create the approaching control point, and the endpoint of a cubic bezier path.
// See {{bez_begin()}} for examples. // See {{bez_begin()}} for examples.
@ -336,9 +336,9 @@ function _bezier_matrix(N) =
// Function: bezier_derivative() // Function: bezier_derivative()
// Usage: // Usage:
// deriv = bezier_derivative(curve, u, <order>); // deriv = bezier_derivative(curve, u, [order]);
// derivs = bezier_derivative(curve, LIST, <order>); // derivs = bezier_derivative(curve, LIST, [order]);
// derivs = bezier_derivative(curve, RANGE, <order>); // derivs = bezier_derivative(curve, RANGE, [order]);
// Topics: Bezier Segments // Topics: Bezier Segments
// See Also: bezier_curvature(), bezier_tangent(), bezier_points() // See Also: bezier_curvature(), bezier_tangent(), bezier_points()
// Description: // Description:
@ -409,7 +409,7 @@ function bezier_curvature(curve, u) =
// Function: bezier_curve() // Function: bezier_curve()
// Usage: // Usage:
// path = bezier_curve(curve, n, <endpoint>); // path = bezier_curve(curve, n, [endpoint]);
// Topics: Bezier Segments // Topics: Bezier Segments
// See Also: bezier_curvature(), bezier_tangent(), bezier_derivative(), bezier_points() // See Also: bezier_curvature(), bezier_tangent(), bezier_derivative(), bezier_points()
// Description: // Description:
@ -442,7 +442,7 @@ function bezier_curve(curve,n,endpoint=true) =
// Function: bezier_segment_closest_point() // Function: bezier_segment_closest_point()
// Usage: // Usage:
// u = bezier_segment_closest_point(bezier, pt, <max_err>); // u = bezier_segment_closest_point(bezier, pt, [max_err]);
// Topics: Bezier Segments // Topics: Bezier Segments
// See Also: bezier_points() // See Also: bezier_points()
// Description: // Description:
@ -491,7 +491,7 @@ function bezier_segment_closest_point(curve, pt, max_err=0.01, u=0, end_u=1) =
// Function: bezier_segment_length() // Function: bezier_segment_length()
// Usage: // Usage:
// pathlen = bezier_segment_length(curve, <start_u>, <end_u>, <max_deflect>); // pathlen = bezier_segment_length(curve, [start_u], [end_u], [max_deflect]);
// Topics: Bezier Segments // Topics: Bezier Segments
// See Also: bezier_points() // See Also: bezier_points()
// Description: // Description:
@ -602,9 +602,9 @@ function fillet3pts(p0, p1, p2, r, d, maxerr=0.1, w=0.5, dw=0.25) = let(
// Function: bezier_path_point() // Function: bezier_path_point()
// Usage: // Usage:
// pt = bezier_path_point(path, seg, u, <N>); // pt = bezier_path_point(path, seg, u, [N]);
// ptlist = bezier_path_point(path, seg, LIST, <N>); // ptlist = bezier_path_point(path, seg, LIST, [N]);
// path = bezier_path_point(path, seg, RANGE, <N>); // path = bezier_path_point(path, seg, RANGE, [N]);
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bezier_points(), bezier_curve() // See Also: bezier_points(), bezier_curve()
// Description: // Description:
@ -665,7 +665,7 @@ function bezier_path_closest_point(path, pt, N=3, max_err=0.01, seg=0, min_seg=u
// Function: bezier_path_length() // Function: bezier_path_length()
// Usage: // Usage:
// plen = bezier_path_length(path, <N>, <max_deflect>); // plen = bezier_path_length(path, [N], [max_deflect]);
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bezier_points(), bezier_curve(), bezier_segment_length() // See Also: bezier_points(), bezier_curve(), bezier_segment_length()
// Description: // Description:
@ -691,7 +691,7 @@ function bezier_path_length(path, N=3, max_deflect=0.001) =
// Function: bezier_path() // Function: bezier_path()
// Usage: // Usage:
// path = bezier_path(bezier, <splinesteps>, <N>, <endpoint>) // path = bezier_path(bezier, [splinesteps], [N], [endpoint])
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bezier_points(), bezier_curve() // See Also: bezier_points(), bezier_curve()
// Description: // Description:
@ -728,7 +728,7 @@ function bezier_path(bezier, splinesteps=16, N=3, endpoint=true) =
// Function: path_to_bezier() // Function: path_to_bezier()
// Usage: // Usage:
// bezpath = path_to_bezier(path, <closed>, <tangents>, <uniform>, <size=>|<relsize=>); // bezpath = path_to_bezier(path, [closed], [tangents], [uniform], [size=]|[relsize=]);
// Topics: Bezier Paths, Rounding // Topics: Bezier Paths, Rounding
// See Also: path_tangents(), fillet_path() // See Also: path_tangents(), fillet_path()
// Description: // Description:
@ -810,7 +810,7 @@ function path_to_bezier(path, closed=false, tangents, uniform=false, size, relsi
// Function: fillet_path() // Function: fillet_path()
// Usage: // Usage:
// bezpath = fillet_path(pts, fillet, <maxerr>); // bezpath = fillet_path(pts, fillet, [maxerr]);
// Topics: Bezier Paths, Rounding // Topics: Bezier Paths, Rounding
// See Also: path_to_bezier(), bezier_path() // See Also: path_to_bezier(), bezier_path()
// Description: // Description:
@ -839,7 +839,7 @@ function fillet_path(pts, fillet, maxerr=0.1) = concat(
// Function: bezier_close_to_axis() // Function: bezier_close_to_axis()
// Usage: // Usage:
// bezpath = bezier_close_to_axis(bezier, <axis>, <N>); // bezpath = bezier_close_to_axis(bezier, [axis], [N]);
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bezier_offset() // See Also: bezier_offset()
// Description: // Description:
@ -880,7 +880,7 @@ function bezier_close_to_axis(bezier, axis="X", N=3) =
// Function: bezier_offset() // Function: bezier_offset()
// Usage: // Usage:
// bezpath = bezier_offset(offset, bezier, <N>); // bezpath = bezier_offset(offset, bezier, [N]);
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bezier_close_to_axis() // See Also: bezier_close_to_axis()
// Description: // Description:
@ -919,7 +919,7 @@ function bezier_offset(offset, bezier, N=3) =
// Module: bezier_polygon() // Module: bezier_polygon()
// Usage: // Usage:
// bezier_polygon(bezier, <splinesteps>, <N>); // bezier_polygon(bezier, [splinesteps], [N]);
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bezier_path() // See Also: bezier_path()
// Description: // Description:
@ -951,7 +951,7 @@ module bezier_polygon(bezier, splinesteps=16, N=3) {
// Module: trace_bezier() // Module: trace_bezier()
// Usage: // Usage:
// trace_bezier(bez, <size>, <N=>); // trace_bezier(bez, [size], [N=]);
// Topics: Bezier Paths, Debugging // Topics: Bezier Paths, Debugging
// See Also: bezier_path() // See Also: bezier_path()
// Description: // Description:
@ -1105,7 +1105,7 @@ function is_patch(x) =
// Function: bezier_patch() // Function: bezier_patch()
// Usage: // Usage:
// vnf = bezier_patch(patch, <splinesteps>, <vnf=>, <style=>); // vnf = bezier_patch(patch, [splinesteps], [vnf=], [style=]);
// Topics: Bezier Patches // Topics: Bezier Patches
// See Also: bezier_points(), bezier_curve(), bezier_path(), bezier_patch_points(), bezier_triangle_point() // See Also: bezier_points(), bezier_curve(), bezier_path(), bezier_patch_points(), bezier_triangle_point()
// Description: // Description:
@ -1225,8 +1225,8 @@ function bezier_patch(patch, splinesteps=16, vnf=EMPTY_VNF, style="default") =
// Function: bezier_patch_degenerate() // Function: bezier_patch_degenerate()
// Usage: // Usage:
// vnf = bezier_patch_degenerate(patch, <splinesteps>, <reverse>); // vnf = bezier_patch_degenerate(patch, [splinesteps], [reverse]);
// vnf_edges = bezier_patch_degenerate(patch, <splinesteps>, <reverse>, return_edges=true); // vnf_edges = bezier_patch_degenerate(patch, [splinesteps], [reverse], return_edges=true);
// Description: // Description:
// Returns a VNF for a degenerate rectangular bezier patch where some of the corners of the patch are // Returns a VNF for a degenerate rectangular bezier patch where some of the corners of the patch are
// equal. If the resulting patch has no faces then returns an empty VNF. Note that due to the degeneracy, // equal. If the resulting patch has no faces then returns an empty VNF. Note that due to the degeneracy,
@ -1442,7 +1442,7 @@ function _bezier_triangle(tri, splinesteps=16, vnf=EMPTY_VNF) =
// Function: bezier_patch_flat() // Function: bezier_patch_flat()
// Usage: // Usage:
// patch = bezier_patch_flat(size, <N=>, <spin=>, <orient=>, <trans=>); // patch = bezier_patch_flat(size, [N=], [spin=], [orient=], [trans=]);
// Topics: Bezier Patches // Topics: Bezier Patches
// See Also: bezier_patch_points() // See Also: bezier_patch_points()
// Description: // Description:
@ -1487,7 +1487,7 @@ function patch_reverse(patch) =
// Function: bezier_surface() // Function: bezier_surface()
// Usage: // Usage:
// vnf = bezier_surface(patches, <splinesteps>, <vnf=>, <style=>); // vnf = bezier_surface(patches, [splinesteps], [vnf=], [style=]);
// Topics: Bezier Patches // Topics: Bezier Patches
// See Also: bezier_patch_points(), bezier_patch_flat() // See Also: bezier_patch_points(), bezier_patch_flat()
// Description: // Description:
@ -1530,7 +1530,7 @@ function bezier_surface(patches=[], splinesteps=16, vnf=EMPTY_VNF, style="defaul
// Module: trace_bezier_patches() // Module: trace_bezier_patches()
// Usage: // Usage:
// trace_bezier_patches(patches, <size=>, <splinesteps=>, <showcps=>, <showdots=>, <showpatch=>, <convexity=>, <style=>); // trace_bezier_patches(patches, [size=], [splinesteps=], [showcps=], [showdots=], [showpatch=], [convexity=], [style=]);
// Topics: Bezier Patches, Debugging // Topics: Bezier Patches, Debugging
// See Also: bezier_patch_points(), bezier_patch_flat(), bezier_surface() // See Also: bezier_patch_points(), bezier_patch_flat(), bezier_surface()
// Description: // Description:

View file

@ -16,7 +16,7 @@ include <knurling.scad>
// Module: pco1810_neck() // Module: pco1810_neck()
// Usage: // Usage:
// pco1810_neck(<wall>) // pco1810_neck([wall])
// Description: // Description:
// Creates an approximation of a standard PCO-1810 threaded beverage bottle neck. // Creates an approximation of a standard PCO-1810 threaded beverage bottle neck.
// Arguments: // Arguments:
@ -137,7 +137,7 @@ function pco1810_neck(wall=2, anchor="support-ring", spin=0, orient=UP) =
// Module: pco1810_cap() // Module: pco1810_cap()
// Usage: // Usage:
// pco1810_cap(<wall>, <texture>); // pco1810_cap([wall], [texture]);
// Description: // Description:
// Creates a basic cap for a PCO1810 threaded beverage bottle. // Creates a basic cap for a PCO1810 threaded beverage bottle.
// Arguments: // Arguments:
@ -208,7 +208,7 @@ function pco1810_cap(wall=2, texture="none", anchor=BOTTOM, spin=0, orient=UP) =
// Module: pco1881_neck() // Module: pco1881_neck()
// Usage: // Usage:
// pco1881_neck(<wall>) // pco1881_neck([wall])
// Description: // Description:
// Creates an approximation of a standard PCO-1881 threaded beverage bottle neck. // Creates an approximation of a standard PCO-1881 threaded beverage bottle neck.
// Arguments: // Arguments:
@ -329,7 +329,7 @@ function pco1881_neck(wall=2, anchor="support-ring", spin=0, orient=UP) =
// Module: pco1881_cap() // Module: pco1881_cap()
// Usage: // Usage:
// pco1881_cap(wall, <texture>); // pco1881_cap(wall, [texture]);
// Description: // Description:
// Creates a basic cap for a PCO1881 threaded beverage bottle. // Creates a basic cap for a PCO1881 threaded beverage bottle.
// Arguments: // Arguments:
@ -391,7 +391,7 @@ function pco1881_cap(wall=2, texture="none", anchor=BOTTOM, spin=0, orient=UP) =
// Module: generic_bottle_neck() // Module: generic_bottle_neck()
// Usage: // Usage:
// generic_bottle_neck(<wall>, ...) // generic_bottle_neck([wall], ...)
// Description: // Description:
// Creates a bottle neck given specifications. // Creates a bottle neck given specifications.
// Arguments: // Arguments:
@ -516,7 +516,7 @@ function generic_bottle_neck(
// Module: generic_bottle_cap() // Module: generic_bottle_cap()
// Usage: // Usage:
// generic_bottle_cap(wall, <texture>, ...); // generic_bottle_cap(wall, [texture], ...);
// Description: // Description:
// Creates a basic threaded cap given specifications. // Creates a basic threaded cap given specifications.
// Arguments: // Arguments:
@ -605,7 +605,7 @@ function generic_bottle_cap(
// Module: bottle_adapter_neck_to_cap() // Module: bottle_adapter_neck_to_cap()
// Usage: // Usage:
// bottle_adapter_neck_to_cap(wall, <texture>); // bottle_adapter_neck_to_cap(wall, [texture]);
// Description: // Description:
// Creates a threaded neck to cap adapter // Creates a threaded neck to cap adapter
// Arguments: // Arguments:
@ -718,7 +718,7 @@ function bottle_adapter_neck_to_cap(
// Module: bottle_adapter_cap_to_cap() // Module: bottle_adapter_cap_to_cap()
// Usage: // Usage:
// bottle_adapter_cap_to_cap(wall, <texture>); // bottle_adapter_cap_to_cap(wall, [texture]);
// Description: // Description:
// Creates a threaded cap to cap adapter. // Creates a threaded cap to cap adapter.
// Arguments: // Arguments:

View file

@ -200,7 +200,7 @@ function is_func(x) = version_num()>20210000 && is_function(x);
// Function: is_consistent() // Function: is_consistent()
// Usage: // Usage:
// bool = is_consistent(list, <pattern>); // bool = is_consistent(list, [pattern]);
// Topics: Type Checking // Topics: Type Checking
// See Also: typeof(), is_type(), is_str(), is_def(), is_int(), is_range(), is_homogeneous() // See Also: typeof(), is_type(), is_str(), is_def(), is_int(), is_range(), is_homogeneous()
// Description: // Description:
@ -254,7 +254,7 @@ function same_shape(a,b) = is_def(b) && _list_pattern(a) == b*0;
// Function: is_bool_list() // Function: is_bool_list()
// Usage: // Usage:
// check = is_bool_list(list,<length>) // check = is_bool_list(list,[length])
// Topics: Type Checking // Topics: Type Checking
// See Also: is_homogeneous(), is_consistent() // See Also: is_homogeneous(), is_consistent()
// Description: // Description:
@ -285,7 +285,7 @@ function default(v,dflt=undef) = is_undef(v)? dflt : v;
// Function: first_defined() // Function: first_defined()
// Usage: // Usage:
// val = first_defined(v, <recursive>); // val = first_defined(v, [recursive]);
// Topics: Undef Handling // Topics: Undef Handling
// See Also: default(), one_defined(), num_defined(), any_defined(), all_defined() // See Also: default(), one_defined(), num_defined(), any_defined(), all_defined()
// Description: // Description:
@ -308,7 +308,7 @@ function first_defined(v,recursive=false,_i=0) =
// Function: one_defined() // Function: one_defined()
// Usage: // Usage:
// val = one_defined(vals, names, <dflt>) // val = one_defined(vals, names, [dflt])
// Topics: Undef Handling // Topics: Undef Handling
// See Also: default(), first_defined(), num_defined(), any_defined(), all_defined() // See Also: default(), first_defined(), num_defined(), any_defined(), all_defined()
// Description: // Description:
@ -361,7 +361,7 @@ function num_defined(v) =
// Function: any_defined() // Function: any_defined()
// Usage: // Usage:
// bool = any_defined(v, <recursive>); // bool = any_defined(v, [recursive]);
// Topics: Undef Handling // Topics: Undef Handling
// See Also: default(), first_defined(), one_defined(), num_defined(), all_defined() // See Also: default(), first_defined(), one_defined(), num_defined(), all_defined()
// Description: // Description:
@ -382,7 +382,7 @@ function any_defined(v,recursive=false) =
// Function: all_defined() // Function: all_defined()
// Usage: // Usage:
// bool = all_defined(v, <recursive>); // bool = all_defined(v, [recursive]);
// Description: // Description:
// Returns true if all items in the given array are not `undef`. // Returns true if all items in the given array are not `undef`.
// Arguments: // Arguments:
@ -405,7 +405,7 @@ function all_defined(v,recursive=false) =
// Function: get_anchor() // Function: get_anchor()
// Usage: // Usage:
// anchr = get_anchor(anchor,center,<uncentered>,<dflt>); // anchr = get_anchor(anchor,center,[uncentered],[dflt]);
// Topics: Argument Handling // Topics: Argument Handling
// See Also: get_radius() // See Also: get_radius()
// Description: // Description:
@ -435,7 +435,7 @@ function get_anchor(anchor,center,uncentered=BOT,dflt=CENTER) =
// Function: get_radius() // Function: get_radius()
// Usage: // Usage:
// r = get_radius(<r1=>, <r2=>, <r=>, <d1=>, <d2=>, <d=>, <dflt=>); // r = get_radius([r1=], [r2=], [r=], [d1=], [d2=], [d=], [dflt=]);
// Topics: Argument Handling // Topics: Argument Handling
// See Also: get_anchor() // See Also: get_anchor()
// Description: // Description:
@ -484,7 +484,7 @@ function get_radius(r1, r2, r, d1, d2, d, dflt) =
// Function: scalar_vec3() // Function: scalar_vec3()
// Usage: // Usage:
// vec = scalar_vec3(v, <dflt>); // vec = scalar_vec3(v, [dflt]);
// Topics: Argument Handling // Topics: Argument Handling
// See Also: get_anchor(), get_radius(), force_list() // See Also: get_anchor(), get_radius(), force_list()
// Description: // Description:
@ -583,7 +583,7 @@ function _valstr(x) =
// Module: assert_approx() // Module: assert_approx()
// Usage: // Usage:
// assert_approx(got, expected, <info>); // assert_approx(got, expected, [info]);
// Topics: Error Checking, Debugging // Topics: Error Checking, Debugging
// See Also: no_children(), no_function(), no_module(), assert_equal() // See Also: no_children(), no_function(), no_module(), assert_equal()
// Description: // Description:
@ -615,7 +615,7 @@ module assert_approx(got, expected, info) {
// Module: assert_equal() // Module: assert_equal()
// Usage: // Usage:
// assert_equal(got, expected, <info>); // assert_equal(got, expected, [info]);
// Topics: Error Checking, Debugging // Topics: Error Checking, Debugging
// See Also: no_children(), no_function(), no_module(), assert_approx() // See Also: no_children(), no_function(), no_module(), assert_approx()
// Description: // Description:
@ -646,7 +646,7 @@ module assert_equal(got, expected, info) {
// Module: shape_compare() // Module: shape_compare()
// Usage: // Usage:
// shape_compare(<eps>) {test_shape(); expected_shape();} // shape_compare([eps]) {test_shape(); expected_shape();}
// Topics: Error Checking, Debugging, Testing // Topics: Error Checking, Debugging, Testing
// See Also: assert_approx(), assert_equal() // See Also: assert_approx(), assert_equal()
// Description: // Description:

View file

@ -10,7 +10,7 @@
// Function: point2d() // Function: point2d()
// Usage: // Usage:
// pt = point2d(p, <fill>); // pt = point2d(p, [fill]);
// Topics: Coordinates, Points // Topics: Coordinates, Points
// See Also: path2d(), point3d(), path3d() // See Also: path2d(), point3d(), path3d()
// Description: // Description:
@ -41,7 +41,7 @@ function path2d(points) =
// Function: point3d() // Function: point3d()
// Usage: // Usage:
// pt = point3d(p, <fill>); // pt = point3d(p, [fill]);
// Topics: Coordinates, Points // Topics: Coordinates, Points
// See Also: path2d(), point2d(), path3d() // See Also: path2d(), point2d(), path3d()
// Description: // Description:
@ -54,7 +54,7 @@ function point3d(p, fill=0) = [for (i=[0:2]) (p[i]==undef)? fill : p[i]];
// Function: path3d() // Function: path3d()
// Usage: // Usage:
// pts = path3d(points, <fill>); // pts = path3d(points, [fill]);
// Topics: Coordinates, Points, Paths // Topics: Coordinates, Points, Paths
// See Also: point2d(), path2d(), point3d() // See Also: point2d(), path2d(), point3d()
// Description: // Description:
@ -78,7 +78,7 @@ function path3d(points, fill=0) =
// Function: point4d() // Function: point4d()
// Usage: // Usage:
// pt = point4d(p, <fill>); // pt = point4d(p, [fill]);
// Topics: Coordinates, Points // Topics: Coordinates, Points
// See Also: point2d(), path2d(), point3d(), path3d(), path4d() // See Also: point2d(), path2d(), point3d(), path3d(), path4d()
// Description: // Description:
@ -91,7 +91,7 @@ function point4d(p, fill=0) = [for (i=[0:3]) (p[i]==undef)? fill : p[i]];
// Function: path4d() // Function: path4d()
// Usage: // Usage:
// pt = path4d(points, <fill>); // pt = path4d(points, [fill]);
// Topics: Coordinates, Points, Paths // Topics: Coordinates, Points, Paths
// See Also: point2d(), path2d(), point3d(), path3d(), point4d() // See Also: point2d(), path2d(), point3d(), path3d(), point4d()
// Description: // Description:

View file

@ -16,7 +16,7 @@ $cubetruss_clip_thickness = 1.6;
// Function: cubetruss_dist() // Function: cubetruss_dist()
// Usage: // Usage:
// cubetruss_dist(cubes, gaps, <size>, <strut>); // cubetruss_dist(cubes, gaps, [size], [strut]);
// Description: // Description:
// Function to calculate the length of a cubetruss truss. // Function to calculate the length of a cubetruss truss.
// Arguments: // Arguments:
@ -34,7 +34,7 @@ function cubetruss_dist(cubes=0, gaps=0, size, strut) =
// Module: cubetruss_segment() // Module: cubetruss_segment()
// Usage: // Usage:
// cubetruss_segment(<size>, <strut>, <bracing>); // cubetruss_segment([size], [strut], [bracing]);
// Description: // Description:
// Creates a single cubetruss cube segment. // Creates a single cubetruss cube segment.
// Arguments: // Arguments:
@ -103,7 +103,7 @@ module cubetruss_segment(size, strut, bracing, anchor=CENTER, spin=0, orient=UP)
// Module: cubetruss_support() // Module: cubetruss_support()
// Usage: // Usage:
// cubetruss_support(<size>, <strut>); // cubetruss_support([size], [strut]);
// Description: // Description:
// Creates a single cubetruss support. // Creates a single cubetruss support.
// Arguments: // Arguments:
@ -163,7 +163,7 @@ module cubetruss_support(size, strut, extents=1, anchor=CENTER, spin=0, orient=U
// Module: cubetruss_clip() // Module: cubetruss_clip()
// Usage: // Usage:
// cubetruss_clip(extents, <size>, <strut>, <clipthick>); // cubetruss_clip(extents, [size], [strut], [clipthick]);
// Description: // Description:
// Creates a pair of clips to add onto the end of a truss. // Creates a pair of clips to add onto the end of a truss.
// Arguments: // Arguments:
@ -227,7 +227,7 @@ module cubetruss_clip(extents=1, size, strut, clipthick, anchor=CENTER, spin=0,
// Module: cubetruss_foot() // Module: cubetruss_foot()
// Usage: // Usage:
// cubetruss_foot(w, <size>, <strut>, <clipthick>); // cubetruss_foot(w, [size], [strut], [clipthick]);
// Description: // Description:
// Creates a foot that can be clipped onto the bottom of a truss for support. // Creates a foot that can be clipped onto the bottom of a truss for support.
// Arguments: // Arguments:
@ -303,7 +303,7 @@ module cubetruss_foot(w=1, size, strut, clipthick, anchor=CENTER, spin=0, orient
// Module: cubetruss_joiner() // Module: cubetruss_joiner()
// Usage: // Usage:
// cubetruss_joiner(<w>, <vert>, <size>, <strut>, <clipthick>); // cubetruss_joiner([w], [vert], [size], [strut], [clipthick]);
// Description: // Description:
// Creates a part to join two cubetruss trusses end-to-end. // Creates a part to join two cubetruss trusses end-to-end.
// Arguments: // Arguments:
@ -370,7 +370,7 @@ module cubetruss_joiner(w=1, vert=true, size, strut, clipthick, anchor=CENTER, s
// Module: cubetruss_uclip() // Module: cubetruss_uclip()
// Usage: // Usage:
// cubetruss_uclip(dual, <size>, <strut>, <clipthick>); // cubetruss_uclip(dual, [size], [strut], [clipthick]);
// Description: // Description:
// Creates a small clip that can snap around one or two adjacent struts. // Creates a small clip that can snap around one or two adjacent struts.
// Arguments: // Arguments:
@ -415,7 +415,7 @@ module cubetruss_uclip(dual=true, size, strut, clipthick, anchor=CENTER, spin=0,
// Module: cubetruss() // Module: cubetruss()
// Usage: // Usage:
// cubetruss(extents, <clips>, <bracing>, <size>, <strut>, <clipthick>); // cubetruss(extents, [clips], [bracing], [size], [strut], [clipthick]);
// Description: // Description:
// Creates a cubetruss truss, assembled out of one or more cubical segments. // Creates a cubetruss truss, assembled out of one or more cubical segments.
// Arguments: // Arguments:
@ -485,7 +485,7 @@ module cubetruss(extents=6, clips=[], bracing, size, strut, clipthick, anchor=CE
// Module: cubetruss_corner() // Module: cubetruss_corner()
// Usage: // Usage:
// cubetruss_corner(h, extents, <bracing>, <size>, <strut>, <clipthick>); // cubetruss_corner(h, extents, [bracing], [size], [strut], [clipthick]);
// Description: // Description:
// Creates a corner cubetruss with extents jutting out in one or more directions. // Creates a corner cubetruss with extents jutting out in one or more directions.
// Arguments: // Arguments:

View file

@ -10,7 +10,7 @@
// Module: trace_path() // Module: trace_path()
// Usage: // Usage:
// trace_path(path, <closed=>, <showpts=>, <N=>, <size=>, <color=>); // trace_path(path, [closed=], [showpts=], [N=], [size=], [color=]);
// Description: // Description:
// Renders lines between each point of a path. // Renders lines between each point of a path.
// Can also optionally show the individual vertex points. // Can also optionally show the individual vertex points.
@ -58,7 +58,7 @@ module trace_path(path, closed=false, showpts=false, N=1, size=1, color="yellow"
// Module: debug_polygon() // Module: debug_polygon()
// Usage: // Usage:
// debug_polygon(points, paths, <convexity=>, <size=>); // debug_polygon(points, paths, [convexity=], [size=]);
// Description: // Description:
// A drop-in replacement for `polygon()` that renders and labels the path points. // A drop-in replacement for `polygon()` that renders and labels the path points.
// Arguments: // Arguments:
@ -129,7 +129,7 @@ module debug_polygon(points, paths, convexity=2, size=1)
// Module: debug_vertices() // Module: debug_vertices()
// Usage: // Usage:
// debug_vertices(vertices, <size>, <disabled=>); // debug_vertices(vertices, [size], [disabled=]);
// Description: // Description:
// Draws all the vertices in an array, at their 3D position, numbered by their // Draws all the vertices in an array, at their 3D position, numbered by their
// position in the vertex array. Also draws any children of this module with // position in the vertex array. Also draws any children of this module with
@ -177,7 +177,7 @@ module debug_vertices(vertices, size=1, disabled=false) {
// Module: debug_faces() // Module: debug_faces()
// Usage: // Usage:
// debug_faces(vertices, faces, <size=>, <disabled=>); // debug_faces(vertices, faces, [size=], [disabled=]);
// Description: // Description:
// Draws all the vertices at their 3D position, numbered in blue by their // Draws all the vertices at their 3D position, numbered in blue by their
// position in the vertex array. Each face will have their face number drawn // position in the vertex array. Each face will have their face number drawn
@ -243,7 +243,7 @@ module debug_faces(vertices, faces, size=1, disabled=false) {
// Module: debug_vnf() // Module: debug_vnf()
// Usage: // Usage:
// debug_vnf(vnfs, <convexity=>, <txtsize=>, <disabled=>); // debug_vnf(vnfs, [convexity=], [txtsize=], [disabled=]);
// Description: // Description:
// A drop-in module to replace `vnf_polyhedron()` and help debug vertices and faces. // A drop-in module to replace `vnf_polyhedron()` and help debug vertices and faces.
// Draws all the vertices at their 3D position, numbered in blue by their // Draws all the vertices at their 3D position, numbered in blue by their
@ -270,7 +270,7 @@ module debug_vnf(vnf, convexity=6, txtsize=1, disabled=false) {
// Function: standard_anchors() // Function: standard_anchors()
// Usage: // Usage:
// anchs = standard_anchors(<two_d>); // anchs = standard_anchors([two_d]);
// Description: // Description:
// Return the vectors for all standard anchors. // Return the vectors for all standard anchors.
// Arguments: // Arguments:
@ -291,7 +291,7 @@ function standard_anchors(two_d=false) = [
// Module: anchor_arrow() // Module: anchor_arrow()
// Usage: // Usage:
// anchor_arrow(<s>, <color>, <flag>); // anchor_arrow([s], [color], [flag]);
// Description: // Description:
// Show an anchor orientation arrow. By default, tagged with the name "anchor-arrow". // Show an anchor orientation arrow. By default, tagged with the name "anchor-arrow".
// Arguments: // Arguments:
@ -320,7 +320,7 @@ module anchor_arrow(s=10, color=[0.333,0.333,1], flag=true, $tags="anchor-arrow"
// Module: anchor_arrow2d() // Module: anchor_arrow2d()
// Usage: // Usage:
// anchor_arrow2d(<s>, <color>, <flag>); // anchor_arrow2d([s], [color], [flag]);
// Description: // Description:
// Show an anchor orientation arrow. // Show an anchor orientation arrow.
// Arguments: // Arguments:
@ -354,7 +354,7 @@ module expose_anchors(opacity=0.2) {
// Module: show_anchors() // Module: show_anchors()
// Usage: // Usage:
// ... show_anchors(<s>, <std=>, <custom=>); // ... show_anchors([s], [std=], [custom=]);
// Description: // Description:
// Show all standard anchors for the parent object. // Show all standard anchors for the parent object.
// Arguments: // Arguments:
@ -436,7 +436,7 @@ module frame_ref(s=15, opacity=1) {
// Module: ruler() // Module: ruler()
// Usage: // Usage:
// ruler(length, width, <thickness=>, <depth=>, <labels=>, <pipscale=>, <maxscale=>, <colors=>, <alpha=>, <unit=>, <inch=>); // ruler(length, width, [thickness=], [depth=], [labels=], [pipscale=], [maxscale=], [colors=], [alpha=], [unit=], [inch=]);
// Description: // Description:
// Creates a ruler for checking dimensions of the model // Creates a ruler for checking dimensions of the model
// Arguments: // Arguments:
@ -527,7 +527,7 @@ module ruler(length=100, width, thickness=1, depth=3, labels=false, pipscale=1/3
// Function: mod_indent() // Function: mod_indent()
// Usage: // Usage:
// str = mod_indent(<indent>); // str = mod_indent([indent]);
// Description: // Description:
// Returns a string that is the total indentation for the module level you are at. // Returns a string that is the total indentation for the module level you are at.
// Arguments: // Arguments:
@ -540,7 +540,7 @@ function mod_indent(indent=" ") =
// Function: mod_trace() // Function: mod_trace()
// Usage: // Usage:
// str = mod_trace(<levs>, <indent=>, <modsep=>); // str = mod_trace([levs], [indent=], [modsep=]);
// Description: // Description:
// Returns a string that shows the current module and its parents, indented for each unprinted parent module. // Returns a string that shows the current module and its parents, indented for each unprinted parent module.
// Arguments: // Arguments:
@ -559,8 +559,8 @@ function mod_trace(levs=2, indent=" ", modsep="->") =
// Function&Module: echo_matrix() // Function&Module: echo_matrix()
// Usage: // Usage:
// echo_matrix(M, <description=>, <sig=>, <eps=>); // echo_matrix(M, [description=], [sig=], [eps=]);
// dummy = echo_matrix(M, <description=>, <sig=>, <eps=>), // dummy = echo_matrix(M, [description=], [sig=], [eps=]),
// Description: // Description:
// Display a numerical matrix in a readable columnar format with `sig` significant // Display a numerical matrix in a readable columnar format with `sig` significant
// digits. Values smaller than eps display as zero. If you give a description // digits. Values smaller than eps display as zero. If you give a description

View file

@ -43,21 +43,21 @@ module move_copies(a=[[0,0,0]])
// Function&Module: line_of() // Function&Module: line_of()
// //
// Usage: Spread `n` copies by a given spacing // Usage: Spread `n` copies by a given spacing
// line_of(spacing, <n>, <p1=>) ... // line_of(spacing, [n], [p1=]) ...
// Usage: Spread copies every given spacing along the line // Usage: Spread copies every given spacing along the line
// line_of(spacing, <l=>, <p1=>) ... // line_of(spacing, [l=], [p1=]) ...
// Usage: Spread `n` copies along the length of the line // Usage: Spread `n` copies along the length of the line
// line_of(<n=>, <l=>, <p1=>) ... // line_of([n=], [l=], [p1=]) ...
// Usage: Spread `n` copies along the line from `p1` to `p2` // Usage: Spread `n` copies along the line from `p1` to `p2`
// line_of(<n=>, <p1=>, <p2=>) ... // line_of([n=], [p1=], [p2=]) ...
// Usage: Spread copies every given spacing, centered along the line from `p1` to `p2` // Usage: Spread copies every given spacing, centered along the line from `p1` to `p2`
// line_of(<spacing>, <p1=>, <p2=>) ... // line_of([spacing], [p1=], [p2=]) ...
// Usage: As a function // Usage: As a function
// pts = line_of(<spacing>, <n>, <p1=>); // pts = line_of([spacing], [n], [p1=]);
// pts = line_of(<spacing>, <l=>, <p1=>); // pts = line_of([spacing], [l=], [p1=]);
// pts = line_of(<n=>, <l=>, <p1=>); // pts = line_of([n=], [l=], [p1=]);
// pts = line_of(<n=>, <p1=>, <p2=>); // pts = line_of([n=], [p1=], [p2=]);
// pts = line_of(<spacing>, <p1=>, <p2=>); // pts = line_of([spacing], [p1=], [p2=]);
// Description: // Description:
// When called as a function, returns a list of points at evenly spread positions along a line. // When called as a function, returns a list of points at evenly spread positions along a line.
// When called as a module, copies `children()` at one or more evenly spread positions along a line. // When called as a module, copies `children()` at one or more evenly spread positions along a line.

View file

@ -295,7 +295,7 @@ function edges(v, except=[]) =
// Module: show_edges() // Module: show_edges()
// Topics: Edges, Debugging // Topics: Edges, Debugging
// Usage: // Usage:
// show_edges(edges, <size=>, <text=>, <txtsize=>); // show_edges(edges, [size=], [text=], [txtsize=]);
// Description: // Description:
// Draws a semi-transparent cube with the given edges highlighted in red. // Draws a semi-transparent cube with the given edges highlighted in red.
// Arguments: // Arguments:
@ -555,7 +555,7 @@ function _corners_text(corners) =
// Module: show_corners() // Module: show_corners()
// Topics: Corners, Debugging // Topics: Corners, Debugging
// Usage: // Usage:
// show_corners(corners, <size=>, <text=>, <txtsize=>); // show_corners(corners, [size=], [text=], [txtsize=]);
// Description: // Description:
// Draws a semi-transparent cube with the given corners highlighted in red. // Draws a semi-transparent cube with the given corners highlighted in red.
// Arguments: // Arguments:

View file

@ -77,7 +77,7 @@ function filter(func, list) =
// Function: reduce() // Function: reduce()
// Topics: Function Literals, Looping // Topics: Function Literals, Looping
// Usage: // Usage:
// res = reduce(func, list, <init>); // res = reduce(func, list, [init]);
// res = reduce(function (a,b) a+b, list, <init=); // res = reduce(function (a,b) a+b, list, <init=);
// Description: // Description:
// First the accumulator is set to the value in `init`. Then, for each item in `list`, the function // First the accumulator is set to the value in `init`. Then, for each item in `list`, the function
@ -119,8 +119,8 @@ function reduce(func, list, init=0) =
// Function: accumulate() // Function: accumulate()
// Topics: Function Literals, Looping // Topics: Function Literals, Looping
// Usage: // Usage:
// res = accumulate(func, list, <init>); // res = accumulate(func, list, [init]);
// res = accumulate(function (a,b) a+b, list, <init=>); // res = accumulate(function (a,b) a+b, list, [init=]);
// Description: // Description:
// First the accumulator is set to the value in `init`. Then, for each item in `list`, the function // First the accumulator is set to the value in `init`. Then, for each item in `list`, the function
// in `func` is called with the accumulator and that list item, and the result is stored in the // in `func` is called with the accumulator and that list item, and the result is stored in the
@ -234,7 +234,7 @@ function for_n(n,init,func) =
// Function: find_first() // Function: find_first()
// Topics: Function Literals, Searching // Topics: Function Literals, Searching
// Usage: // Usage:
// idx = find_first(val, list, <start=>, <func=>); // idx = find_first(val, list, [start=], [func=]);
// Description: // Description:
// Finds the first item in `list` which, when compared against `val` using the function literal // Finds the first item in `list` which, when compared against `val` using the function literal
// `func` gets a true result. By default, `func` just calls `approx()`. The signature of the // `func` gets a true result. By default, `func` just calls `approx()`. The signature of the
@ -265,7 +265,7 @@ function find_first(val, list, start=0, func=f_approx()) =
// Function: binsearch() // Function: binsearch()
// Topics: Function Literals, Data Structures, Searching // Topics: Function Literals, Data Structures, Searching
// Usage: // Usage:
// idx = binsearch(key,list, <cmp>); // idx = binsearch(key,list, [cmp]);
// Description: // Description:
// Searches a sorted list for an entry with the given key, using a binary search strategy. // Searches a sorted list for an entry with the given key, using a binary search strategy.
// Returns the index of the matching item found. If none found, returns undef. // Returns the index of the matching item found. If none found, returns undef.
@ -326,9 +326,9 @@ function simple_hash(x) =
// Function: hashmap() // Function: hashmap()
// Topics: Function Literals, Data Structures, Hashing // Topics: Function Literals, Data Structures, Hashing
// Usage: Creating an Empty HashMap. // Usage: Creating an Empty HashMap.
// hm = hashmap(<hashsize=>); // hm = hashmap([hashsize=]);
// Usage: Creating a Populated HashMap. // Usage: Creating a Populated HashMap.
// hm = hashmap(items=KEYVAL_LIST, <hashsize=>); // hm = hashmap(items=KEYVAL_LIST, [hashsize=]);
// Usage: Adding an Entry // Usage: Adding an Entry
// hm2 = hm(key, val); // hm2 = hm(key, val);
// Usage: Adding Multiple Entries // Usage: Adding Multiple Entries

View file

@ -115,7 +115,7 @@ function adendum(pitch=5, mod) =
// Function: dedendum() // Function: dedendum()
// Usage: // Usage:
// ddn = dedendum(pitch|mod, <clearance>); // ddn = dedendum(pitch|mod, [clearance]);
// Topics: Gears // Topics: Gears
// Description: // Description:
// The depth of the gear tooth valley, below the pitch radius. // The depth of the gear tooth valley, below the pitch radius.
@ -167,7 +167,7 @@ function pitch_radius(pitch=5, teeth=11, mod) =
// Function: outer_radius() // Function: outer_radius()
// Usage: // Usage:
// or = outer_radius(pitch|mod, teeth, <clearance>, <interior>); // or = outer_radius(pitch|mod, teeth, [clearance], [interior]);
// Topics: Gears // Topics: Gears
// Description: // Description:
// Calculates the outer radius for the gear. The gear fits entirely within a cylinder of this radius. // Calculates the outer radius for the gear. The gear fits entirely within a cylinder of this radius.
@ -193,7 +193,7 @@ function outer_radius(pitch=5, teeth=11, clearance, interior=false, mod) =
// Function: root_radius() // Function: root_radius()
// Usage: // Usage:
// rr = root_radius(pitch|mod, teeth, <clearance>, <interior>); // rr = root_radius(pitch|mod, teeth, [clearance], [interior]);
// Topics: Gears // Topics: Gears
// Description: // Description:
// Calculates the root radius for the gear, at the base of the dedendum. // Calculates the root radius for the gear, at the base of the dedendum.
@ -219,7 +219,7 @@ function root_radius(pitch=5, teeth=11, clearance, interior=false, mod) =
// Function: base_radius() // Function: base_radius()
// Usage: // Usage:
// br = base_radius(pitch|mod, teeth, <pressure_angle>); // br = base_radius(pitch|mod, teeth, [pressure_angle]);
// Topics: Gears // Topics: Gears
// Description: // Description:
// Get the base circle for involute teeth, at the base of the teeth. // Get the base circle for involute teeth, at the base of the teeth.
@ -243,7 +243,7 @@ function base_radius(pitch=5, teeth=11, pressure_angle=28, mod) =
// Function: bevel_pitch_angle() // Function: bevel_pitch_angle()
// Usage: // Usage:
// ang = bevel_pitch_angle(teeth, mate_teeth, <drive_angle>); // ang = bevel_pitch_angle(teeth, mate_teeth, [drive_angle]);
// Topics: Gears // Topics: Gears
// See Also: bevel_gear() // See Also: bevel_gear()
// Description: // Description:
@ -274,7 +274,7 @@ function bevel_pitch_angle(teeth, mate_teeth, drive_angle=90) =
// Function: worm_gear_thickness() // Function: worm_gear_thickness()
// Usage: // Usage:
// thick = worm_gear_thickness(pitch|mod, teeth, worm_diam, <worm_arc>, <crowning>, <clearance>); // thick = worm_gear_thickness(pitch|mod, teeth, worm_diam, [worm_arc], [crowning], [clearance]);
// Topics: Gears // Topics: Gears
// See Also: worm(), worm_gear() // See Also: worm(), worm_gear()
// Description: // Description:
@ -327,9 +327,9 @@ function _gear_q7(f,r,b,r2,t,s) = _gear_q6(b,s,t,(1-f)*max(b,r)+f*r2); //
// Function&Module: gear_tooth_profile() // Function&Module: gear_tooth_profile()
// Usage: As Module // Usage: As Module
// gear_tooth_profile(pitch|mod, teeth, <pressure_angle>, <clearance>, <backlash>, <interior>, <valleys>); // gear_tooth_profile(pitch|mod, teeth, [pressure_angle], [clearance], [backlash], [interior], [valleys]);
// Usage: As Function // Usage: As Function
// path = gear_tooth_profile(pitch|mod, teeth, <pressure_angle>, <clearance>, <backlash>, <interior>, <valleys>); // path = gear_tooth_profile(pitch|mod, teeth, [pressure_angle], [clearance], [backlash], [interior], [valleys]);
// Topics: Gears // Topics: Gears
// See Also: spur_gear2d() // See Also: spur_gear2d()
// Description: // Description:
@ -427,9 +427,9 @@ module gear_tooth_profile(
// Function&Module: spur_gear2d() // Function&Module: spur_gear2d()
// Usage: As Module // Usage: As Module
// spur_gear2d(pitch|mod, teeth, <hide>, <pressure_angle>, <clearance>, <backlash>, <interior>); // spur_gear2d(pitch|mod, teeth, [hide], [pressure_angle], [clearance], [backlash], [interior]);
// Usage: As Function // Usage: As Function
// poly = spur_gear2d(pitch|mod, teeth, <hide>, <pressure_angle>, <clearance>, <backlash>, <interior>); // poly = spur_gear2d(pitch|mod, teeth, [hide], [pressure_angle], [clearance], [backlash], [interior]);
// Topics: Gears // Topics: Gears
// See Also: spur_gear() // See Also: spur_gear()
// Description: // Description:
@ -526,9 +526,9 @@ module spur_gear2d(
// Function&Module: rack2d() // Function&Module: rack2d()
// Usage: As a Function // Usage: As a Function
// path = rack2d(pitch|mod, teeth, height, <pressure_angle>, <backlash>); // path = rack2d(pitch|mod, teeth, height, [pressure_angle], [backlash]);
// Usage: As a Module // Usage: As a Module
// rack2d(pitch|mod, teeth, height, <pressure_angle>, <backlash>); // rack2d(pitch|mod, teeth, height, [pressure_angle], [backlash]);
// Topics: Gears // Topics: Gears
// See Also: spur_gear2d() // See Also: spur_gear2d()
// Description: // Description:
@ -647,11 +647,11 @@ module rack2d(
// Function&Module: spur_gear() // Function&Module: spur_gear()
// Usage: As a Module // Usage: As a Module
// spur_gear(pitch, teeth, thickness, <shaft_diam=>, <hide>, <pressure_angle>, <clearance>, <backlash>, <helical>, <slices>, <interior>); // spur_gear(pitch, teeth, thickness, [shaft_diam=], [hide], [pressure_angle], [clearance], [backlash], [helical], [slices], [interior]);
// spur_gear(mod=, teeth=, thickness=, <shaft_diam=>, ...); // spur_gear(mod=, teeth=, thickness=, [shaft_diam=], ...);
// Usage: As a Function // Usage: As a Function
// vnf = spur_gear(pitch, teeth, thickness, <shaft_diam>, ...); // vnf = spur_gear(pitch, teeth, thickness, [shaft_diam], ...);
// vnf = spur_gear(mod=, teeth=, thickness=, <shaft_diam>, ...); // vnf = spur_gear(mod=, teeth=, thickness=, [shaft_diam], ...);
// Topics: Gears // Topics: Gears
// See Also: rack() // See Also: rack()
// Description: // Description:
@ -813,9 +813,9 @@ module spur_gear(
// Function&Module: bevel_gear() // Function&Module: bevel_gear()
// Usage: As a Module // Usage: As a Module
// bevel_gear(pitch|mod, teeth, face_width, pitch_angle, <shaft_diam>, <hide>, <pressure_angle>, <clearance>, <backlash>, <cutter_radius>, <spiral_angle>, <slices>, <interior>); // bevel_gear(pitch|mod, teeth, face_width, pitch_angle, [shaft_diam], [hide], [pressure_angle], [clearance], [backlash], [cutter_radius], [spiral_angle], [slices], [interior]);
// Usage: As a Function // Usage: As a Function
// vnf = bevel_gear(pitch|mod, teeth, face_width, pitch_angle, <hide>, <pressure_angle>, <clearance>, <backlash>, <cutter_radius>, <spiral_angle>, <slices>, <interior>); // vnf = bevel_gear(pitch|mod, teeth, face_width, pitch_angle, [hide], [pressure_angle], [clearance], [backlash], [cutter_radius], [spiral_angle], [slices], [interior]);
// Topics: Gears // Topics: Gears
// See Also: bevel_pitch_angle() // See Also: bevel_pitch_angle()
// Description: // Description:
@ -1066,11 +1066,11 @@ module bevel_gear(
// Function&Module: rack() // Function&Module: rack()
// Usage: As a Module // Usage: As a Module
// rack(pitch, teeth, thickness, height, <pressure_angle=>, <backlash=>); // rack(pitch, teeth, thickness, height, [pressure_angle=], [backlash=]);
// rack(mod=, teeth=, thickness=, height=, <pressure_angle=>, <backlash>=); // rack(mod=, teeth=, thickness=, height=, [pressure_angle=], [backlash]=);
// Usage: As a Function // Usage: As a Function
// vnf = rack(pitch, teeth, thickness, height, <pressure_angle=>, <backlash=>); // vnf = rack(pitch, teeth, thickness, height, [pressure_angle=], [backlash=]);
// vnf = rack(mod=, teeth=, thickness=, height=, <pressure_angle=>, <backlash=>); // vnf = rack(mod=, teeth=, thickness=, height=, [pressure_angle=], [backlash=]);
// Topics: Gears // Topics: Gears
// See Also: spur_gear() // See Also: spur_gear()
// Description: // Description:
@ -1213,9 +1213,9 @@ function rack(
// Function&Module: worm() // Function&Module: worm()
// Usage: As a Module // Usage: As a Module
// worm(pitch|mod, d, l, <starts>, <left_handed>, <pressure_angle>, <backlash>, <clearance>); // worm(pitch|mod, d, l, [starts], [left_handed], [pressure_angle], [backlash], [clearance]);
// Usage: As a Function // Usage: As a Function
// vnf = worm(pitch|mod, d, l, <starts>, <left_handed>, <pressure_angle>, <backlash>, <clearance>); // vnf = worm(pitch|mod, d, l, [starts], [left_handed], [pressure_angle], [backlash], [clearance]);
// Topics: Gears // Topics: Gears
// See Also: worm_gear() // See Also: worm_gear()
// Description: // Description:
@ -1330,9 +1330,9 @@ module worm(
// Function&Module: worm_gear() // Function&Module: worm_gear()
// Usage: As a Module // Usage: As a Module
// worm_gear(pitch|mod, teeth, worm_diam, <worm_starts>, <crowning>, <left_handed>, <pressure_angle>, <backlash>, <slices>, <clearance>, <shaft_diam>); // worm_gear(pitch|mod, teeth, worm_diam, [worm_starts], [crowning], [left_handed], [pressure_angle], [backlash], [slices], [clearance], [shaft_diam]);
// Usage: As a Function // Usage: As a Function
// vnf = worm_gear(pitch|mod, teeth, worm_diam, <worm_starts>, <crowning>, <left_handed>, <pressure_angle>, <backlash>, <slices>, <clearance>); // vnf = worm_gear(pitch|mod, teeth, worm_diam, [worm_starts], [crowning], [left_handed], [pressure_angle], [backlash], [slices], [clearance]);
// Topics: Gears // Topics: Gears
// See Also: worm() // See Also: worm()
// Description: // Description:

View file

@ -1021,7 +1021,7 @@ function _covariance_evec_eval(points) =
// Function: plane_from_points() // Function: plane_from_points()
// Usage: // Usage:
// plane = plane_from_points(points, <fast>, <eps>); // plane = plane_from_points(points, [fast], [eps]);
// Topics: Geometry, Planes, Points // Topics: Geometry, Planes, Points
// Description: // Description:
// Given a list of 3 or more coplanar 3D points, returns the coefficients of the normalized cartesian equation of a plane, // Given a list of 3 or more coplanar 3D points, returns the coefficients of the normalized cartesian equation of a plane,
@ -1350,7 +1350,7 @@ function plane_intersection(plane1,plane2,plane3) =
// Function: coplanar() // Function: coplanar()
// Usage: // Usage:
// test = coplanar(points,<eps>); // test = coplanar(points,[eps]);
// Topics: Geometry, Coplanarity // Topics: Geometry, Coplanarity
// Description: // Description:
// Returns true if the given 3D points are non-collinear and are on a plane. // Returns true if the given 3D points are non-collinear and are on a plane.
@ -1378,7 +1378,7 @@ function _pointlist_greatest_distance(points,plane) =
// Function: points_on_plane() // Function: points_on_plane()
// Usage: // Usage:
// test = points_on_plane(points, plane, <eps>); // test = points_on_plane(points, plane, [eps]);
// Topics: Geometry, Planes, Points // Topics: Geometry, Planes, Points
// Description: // Description:
// Returns true if the given 3D points are on the given plane. // Returns true if the given 3D points are on the given plane.
@ -1414,10 +1414,10 @@ function in_front_of_plane(plane, point) =
// Function&Module: circle_2tangents() // Function&Module: circle_2tangents()
// Usage: As Function // Usage: As Function
// circ = circle_2tangents(pt1, pt2, pt3, r|d, <tangents>); // circ = circle_2tangents(pt1, pt2, pt3, r|d, [tangents]);
// Topics: Geometry, Circles, Tangents // Topics: Geometry, Circles, Tangents
// Usage: As Module // Usage: As Module
// circle_2tangents(pt1, pt2, pt3, r|d, <h>, <center>); // circle_2tangents(pt1, pt2, pt3, r|d, [h], [center]);
// Description: // Description:
// Given a pair of rays with a common origin, and a known circle radius/diameter, finds // Given a pair of rays with a common origin, and a known circle radius/diameter, finds
// the centerpoint for the circle of that size that touches both rays tangentally. // the centerpoint for the circle of that size that touches both rays tangentally.
@ -1530,8 +1530,8 @@ module circle_2tangents(pt1, pt2, pt3, r, d, h, center=false) {
// circ = circle_3points([pt1, pt2, pt3]); // circ = circle_3points([pt1, pt2, pt3]);
// Topics: Geometry, Circles // Topics: Geometry, Circles
// Usage: As Module // Usage: As Module
// circle_3points(pt1, pt2, pt3, <h>, <center>); // circle_3points(pt1, pt2, pt3, [h], [center]);
// circle_3points([pt1, pt2, pt3], <h>, <center>); // circle_3points([pt1, pt2, pt3], [h], [center]);
// Description: // Description:
// Returns the [CENTERPOINT, RADIUS, NORMAL] of the circle that passes through three non-collinear // Returns the [CENTERPOINT, RADIUS, NORMAL] of the circle that passes through three non-collinear
// points where NORMAL is the normal vector of the plane that the circle is on (UP or DOWN if the points are 2D). // points where NORMAL is the normal vector of the plane that the circle is on (UP or DOWN if the points are 2D).
@ -1724,7 +1724,7 @@ function circle_circle_tangents(c1,r1,c2,r2,d1,d2) =
// Function: circle_line_intersection() // Function: circle_line_intersection()
// Usage: // Usage:
// isect = circle_line_intersection(c,<r|d>,<line>,<bounded>,<eps>); // isect = circle_line_intersection(c,<r|d>,[line],[bounded],[eps]);
// Topics: Geometry, Circles, Lines, Intersection // Topics: Geometry, Circles, Lines, Intersection
// Description: // Description:
// Find intersection points between a 2d circle and a line, ray or segment specified by two points. // Find intersection points between a 2d circle and a line, ray or segment specified by two points.
@ -1968,7 +1968,7 @@ function reindex_polygon(reference, poly, return_error=false) =
// Function: align_polygon() // Function: align_polygon()
// Usage: // Usage:
// newpoly = align_polygon(reference, poly, angles, <cp>); // newpoly = align_polygon(reference, poly, angles, [cp]);
// Topics: Geometry, Polygons // Topics: Geometry, Polygons
// Description: // Description:
// Tries the list or range of angles to find a rotation of the specified 2D polygon that best aligns // Tries the list or range of angles to find a rotation of the specified 2D polygon that best aligns
@ -2042,7 +2042,7 @@ function centroid(poly, eps=EPSILON) =
// Function: point_in_polygon() // Function: point_in_polygon()
// Usage: // Usage:
// test = point_in_polygon(point, poly, <eps>) // test = point_in_polygon(point, poly, [eps])
// Topics: Geometry, Polygons // Topics: Geometry, Polygons
// Description: // Description:
// This function tests whether the given 2D point is inside, outside or on the boundary of // This function tests whether the given 2D point is inside, outside or on the boundary of
@ -2371,7 +2371,7 @@ function is_convex_polygon(poly,eps=EPSILON) =
// Function: convex_distance() // Function: convex_distance()
// Usage: // Usage:
// dist = convex_distance(pts1, pts2,<eps=>); // dist = convex_distance(pts1, pts2,[eps=]);
// Topics: Geometry, Convexity, Distance // Topics: Geometry, Convexity, Distance
// See also: // See also:
// convex_collision(), hull() // convex_collision(), hull()
@ -2430,7 +2430,7 @@ function _GJK_distance(points1, points2, eps=EPSILON, lbd, d, simplex=[]) =
// Function: convex_collision() // Function: convex_collision()
// Usage: // Usage:
// test = convex_collision(pts1, pts2,<eps=>); // test = convex_collision(pts1, pts2, [eps=]);
// Topics: Geometry, Convexity, Collision, Intersection // Topics: Geometry, Convexity, Collision, Intersection
// See also: // See also:
// convex_distance(), hull() // convex_distance(), hull()

View file

@ -62,7 +62,7 @@ function log2(x) =
// Function: hypot() // Function: hypot()
// Usage: // Usage:
// l = hypot(x,y,<z>); // l = hypot(x,y,[z]);
// Description: // Description:
// Calculate hypotenuse length of a 2D or 3D triangle. // Calculate hypotenuse length of a 2D or 3D triangle.
// Arguments: // Arguments:
@ -79,7 +79,7 @@ function hypot(x,y,z=0) =
// Function: factorial() // Function: factorial()
// Usage: // Usage:
// x = factorial(n,<d>); // x = factorial(n,[d]);
// Description: // Description:
// Returns the factorial of the given integer value, or n!/d! if d is given. // Returns the factorial of the given integer value, or n!/d! if d is given.
// Arguments: // Arguments:
@ -177,7 +177,7 @@ function lerp(a,b,u) =
// Function: lerpn() // Function: lerpn()
// Usage: // Usage:
// x = lerpn(a, b, n); // x = lerpn(a, b, n);
// x = lerpn(a, b, n, <endpoint>); // x = lerpn(a, b, n, [endpoint]);
// Description: // Description:
// Returns exactly `n` values, linearly interpolated between `a` and `b`. // Returns exactly `n` values, linearly interpolated between `a` and `b`.
// If `endpoint` is true, then the last value will exactly equal `b`. // If `endpoint` is true, then the last value will exactly equal `b`.
@ -463,7 +463,7 @@ function modang(x) =
// Function: rand_int() // Function: rand_int()
// Usage: // Usage:
// rand_int(minval,maxval,N,<seed>); // rand_int(minval,maxval,N,[seed]);
// Description: // Description:
// Return a list of random integers in the range of minval to maxval, inclusive. // Return a list of random integers in the range of minval to maxval, inclusive.
// Arguments: // Arguments:
@ -483,7 +483,7 @@ function rand_int(minval, maxval, N, seed=undef) =
// Function: gaussian_rands() // Function: gaussian_rands()
// Usage: // Usage:
// gaussian_rands(mean, stddev, <N>, <seed>) // gaussian_rands(mean, stddev, [N], [seed])
// Description: // Description:
// Returns a random number with a gaussian/normal distribution. // Returns a random number with a gaussian/normal distribution.
// Arguments: // Arguments:
@ -499,7 +499,7 @@ function gaussian_rands(mean, stddev, N=1, seed=undef) =
// Function: log_rands() // Function: log_rands()
// Usage: // Usage:
// log_rands(minval, maxval, factor, <N>, <seed>); // log_rands(minval, maxval, factor, [N], [seed]);
// Description: // Description:
// Returns a single random number, with a logarithmic distribution. // Returns a single random number, with a logarithmic distribution.
// Arguments: // Arguments:
@ -568,7 +568,7 @@ function lcm(a,b=[]) =
// Function: sum() // Function: sum()
// Usage: // Usage:
// x = sum(v, <dflt>); // x = sum(v, [dflt]);
// Description: // Description:
// Returns the sum of all entries in the given consistent list. // Returns the sum of all entries in the given consistent list.
// If passed an array of vectors, returns the sum the vectors. // If passed an array of vectors, returns the sum the vectors.
@ -920,7 +920,7 @@ function _swap_matrix(n,i,j) =
// Function: back_substitute() // Function: back_substitute()
// Usage: // Usage:
// x = back_substitute(R, b, <transpose>); // x = back_substitute(R, b, [transpose]);
// Description: // Description:
// Solves the problem Rx=b where R is an upper triangular square matrix. The lower triangular entries of R are // Solves the problem Rx=b where R is an upper triangular square matrix. The lower triangular entries of R are
// ignored. If transpose==true then instead solve transpose(R)*x=b. // ignored. If transpose==true then instead solve transpose(R)*x=b.
@ -1012,7 +1012,7 @@ function determinant(M) =
// Function: is_matrix() // Function: is_matrix()
// Usage: // Usage:
// is_matrix(A,<m>,<n>,<square>) // is_matrix(A,[m],[n],[square])
// Description: // Description:
// Returns true if A is a numeric matrix of height m and width n. If m or n // Returns true if A is a numeric matrix of height m and width n. If m or n
// are omitted or set to undef then true is returned for any positive dimension. // are omitted or set to undef then true is returned for any positive dimension.
@ -1055,7 +1055,7 @@ function matrix_trace(M) =
// Function: all_zero() // Function: all_zero()
// Usage: // Usage:
// x = all_zero(x, <eps>); // x = all_zero(x, [eps]);
// Description: // Description:
// Returns true if the finite number passed to it is approximately zero, to within `eps`. // Returns true if the finite number passed to it is approximately zero, to within `eps`.
// If passed a list, recursively checks if all items in the list are approximately zero. // If passed a list, recursively checks if all items in the list are approximately zero.
@ -1076,7 +1076,7 @@ function all_zero(x, eps=EPSILON) =
// Function: all_nonzero() // Function: all_nonzero()
// Usage: // Usage:
// x = all_nonzero(x, <eps>); // x = all_nonzero(x, [eps]);
// Description: // Description:
// Returns true if the finite number passed to it is not almost zero, to within `eps`. // Returns true if the finite number passed to it is not almost zero, to within `eps`.
// If passed a list, recursively checks if all items in the list are not almost zero. // If passed a list, recursively checks if all items in the list are not almost zero.
@ -1194,7 +1194,7 @@ function all_nonnegative(x) =
// Function all_equal() // Function all_equal()
// Usage: // Usage:
// b = all_equal(vec,<eps>); // b = all_equal(vec,[eps]);
// Description: // Description:
// Returns true if all of the entries in vec are equal to each other, or approximately equal to each other if eps is set. // Returns true if all of the entries in vec are equal to each other, or approximately equal to each other if eps is set.
// Arguments: // Arguments:
@ -1206,7 +1206,7 @@ function all_equal(vec,eps=0) =
// Function: approx() // Function: approx()
// Usage: // Usage:
// b = approx(a,b,<eps>) // b = approx(a,b,[eps])
// Description: // Description:
// Compares two numbers or vectors, and returns true if they are closer than `eps` to each other. // Compares two numbers or vectors, and returns true if they are closer than `eps` to each other.
// Arguments: // Arguments:
@ -1345,8 +1345,8 @@ function _all_bool(l, i=0, out=true) =
// Function: count_true() // Function: count_true()
// Usage: // Usage:
// n = count_true(l,<nmax=>); // n = count_true(l,[nmax=]);
// n = count_true(l,func,<nmax=>); // Requires OpenSCAD 2021.01 or later. // n = count_true(l,func,[nmax=]); // Requires OpenSCAD 2021.01 or later.
// Requirements: // Requirements:
// Requires OpenSCAD 2021.01 or later to use the `func=` argument. // Requires OpenSCAD 2021.01 or later to use the `func=` argument.
// Description: // Description:
@ -1460,7 +1460,7 @@ function _deriv_nonuniform(data, h, closed) =
// Function: deriv2() // Function: deriv2()
// Usage: // Usage:
// x = deriv2(data, <h>, <closed>) // x = deriv2(data, [h], [closed])
// Description: // Description:
// Computes a numerical estimate of the second derivative of the data, which may be scalar or vector valued. // Computes a numerical estimate of the second derivative of the data, which may be scalar or vector valued.
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly. // The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
@ -1504,7 +1504,7 @@ function deriv2(data, h=1, closed=false) =
// Function: deriv3() // Function: deriv3()
// Usage: // Usage:
// x = deriv3(data, <h>, <closed>) // x = deriv3(data, [h], [closed])
// Description: // Description:
// Computes a numerical third derivative estimate of the data, which may be scalar or vector valued. // Computes a numerical third derivative estimate of the data, which may be scalar or vector valued.
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly. // The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
@ -1657,7 +1657,7 @@ function c_norm(z) = norm_fro(z);
// Function: quadratic_roots() // Function: quadratic_roots()
// Usage: // Usage:
// roots = quadratic_roots(a,b,c,<real>) // roots = quadratic_roots(a,b,c,[real])
// Description: // Description:
// Computes roots of the quadratic equation a*x^2+b*x+c==0, where the // Computes roots of the quadratic equation a*x^2+b*x+c==0, where the
// coefficients are real numbers. If real is true then returns only the // coefficients are real numbers. If real is true then returns only the
@ -1779,7 +1779,7 @@ function poly_add(p,q) =
// Function: poly_roots() // Function: poly_roots()
// Usage: // Usage:
// poly_roots(p,<tol>) // poly_roots(p,[tol])
// Description: // Description:
// Returns all complex roots of the specified real polynomial p. // Returns all complex roots of the specified real polynomial p.
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0] // The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
@ -1849,7 +1849,7 @@ function _poly_roots(p, pderiv, s, z, tol, i=0) =
// Function: real_roots() // Function: real_roots()
// Usage: // Usage:
// real_roots(p, <eps>, <tol>) // real_roots(p, [eps], [tol])
// Description: // Description:
// Returns the real roots of the specified real polynomial p. // Returns the real roots of the specified real polynomial p.
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0] // The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]

View file

@ -118,7 +118,7 @@ _hose_waist = [1.7698, 1.8251, 3.95998];
// Module: modular_hose() // Module: modular_hose()
// Usage: // Usage:
// modular_hose(size, type, <clearance>, <waist_len>, <anchor>, <spin>, <orient>) <attachments> // modular_hose(size, type, [clearance], [waist_len], [anchor], [spin], [orient]) [attachments]
// Description: // Description:
// Construct moduler hose segments or modular hose ends for connection to standard // Construct moduler hose segments or modular hose ends for connection to standard
// modular hose systems. The 1/4", 1/2" and 3/4" sizes are supported and you can // modular hose systems. The 1/4", 1/2" and 3/4" sizes are supported and you can
@ -185,7 +185,7 @@ module modular_hose(size, type, clearance=0, waist_len, anchor=BOTTOM, spin=0,or
// Function: modular_hose_radius() // Function: modular_hose_radius()
// Usage: // Usage:
// r = modular_hose_radius(size, <outer>); // r = modular_hose_radius(size, [outer]);
// Description: // Description:
// Returns the inner (or outer) diameter of the waist section // Returns the inner (or outer) diameter of the waist section
// of the modular hose to enable hollowing out connecting channels. // of the modular hose to enable hollowing out connecting channels.

View file

@ -96,9 +96,9 @@ module bounding_box(excess=0, planar=false) {
// Function&Module: half_of() // Function&Module: half_of()
// //
// Usage: as module // Usage: as module
// half_of(v, <cp>, <s>, <planar>) ... // half_of(v, [cp], [s], [planar]) ...
// Usage: as function // Usage: as function
// result = half_of(p,v,<cp>); // result = half_of(p,v,[cp]);
// //
// Description: // Description:
// Slices an object at a cut plane, and masks away everything that is on one side. The v parameter is either a plane specification or // Slices an object at a cut plane, and masks away everything that is on one side. The v parameter is either a plane specification or
@ -200,10 +200,10 @@ function half_of(p, v=UP, cp) =
// Function&Module: left_half() // Function&Module: left_half()
// //
// Usage: as module // Usage: as module
// left_half(<s>, <x>) ... // left_half([s], [x]) ...
// left_half(planar=true, <s>, <x>) ... // left_half(planar=true, [s], [x]) ...
// Usage: as function // Usage: as function
// result = left_half(p, <x>); // result = left_half(p, [x]);
// //
// Description: // Description:
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is right of it. // Slices an object at a vertical Y-Z cut plane, and masks away everything that is right of it.
@ -243,7 +243,7 @@ function left_half(p,x=0) = half_of(p, LEFT, [x,0,0]);
// right_half([s], [x]) ... // right_half([s], [x]) ...
// right_half(planar=true, [s], [x]) ... // right_half(planar=true, [s], [x]) ...
// Usage: as function // Usage: as function
// result = right_half(p, <x>); // result = right_half(p, [x]);
// //
// Description: // Description:
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is left of it. // Slices an object at a vertical Y-Z cut plane, and masks away everything that is left of it.
@ -280,10 +280,10 @@ function right_half(p,x=0) = half_of(p, RIGHT, [x,0,0]);
// Function&Module: front_half() // Function&Module: front_half()
// //
// Usage: // Usage:
// front_half(<s>, <y>) ... // front_half([s], [y]) ...
// front_half(planar=true, <s>, <y>) ... // front_half(planar=true, [s], [y]) ...
// Usage: as function // Usage: as function
// result = front_half(p, <y>); // result = front_half(p, [y]);
// //
// Description: // Description:
// Slices an object at a vertical X-Z cut plane, and masks away everything that is behind it. // Slices an object at a vertical X-Z cut plane, and masks away everything that is behind it.
@ -320,10 +320,10 @@ function front_half(p,y=0) = half_of(p, FRONT, [0,y,0]);
// Function&Module: back_half() // Function&Module: back_half()
// //
// Usage: // Usage:
// back_half(<s>, <y>) ... // back_half([s], [y]) ...
// back_half(planar=true, <s>, <y>) ... // back_half(planar=true, [s], [y]) ...
// Usage: as function // Usage: as function
// result = back_half(p, <y>); // result = back_half(p, [y]);
// //
// Description: // Description:
// Slices an object at a vertical X-Z cut plane, and masks away everything that is in front of it. // Slices an object at a vertical X-Z cut plane, and masks away everything that is in front of it.
@ -360,9 +360,9 @@ function back_half(p,y=0) = half_of(p, BACK, [0,y,0]);
// Function&Module: bottom_half() // Function&Module: bottom_half()
// //
// Usage: // Usage:
// bottom_half(<s>, <z>) ... // bottom_half([s], [z]) ...
// Usage: as function // Usage: as function
// result = bottom_half(p, <z>); // result = bottom_half(p, [z]);
// //
// Description: // Description:
// Slices an object at a horizontal X-Y cut plane, and masks away everything that is above it. // Slices an object at a horizontal X-Y cut plane, and masks away everything that is above it.
@ -392,8 +392,8 @@ function bottom_half(p,z=0) = half_of(p,BOTTOM,[0,0,z]);
// Function&Module: top_half() // Function&Module: top_half()
// //
// Usage: // Usage:
// top_half(<s>, <z>) ... // top_half([s], [z]) ...
// result = top_half(p, <z>); // result = top_half(p, [z]);
// //
// Description: // Description:
// Slices an object at a horizontal X-Y cut plane, and masks away everything that is below it. // Slices an object at a horizontal X-Y cut plane, and masks away everything that is below it.
@ -475,7 +475,7 @@ module chain_hull()
// Module: path_extrude2d() // Module: path_extrude2d()
// Usage: // Usage:
// path_extrude2d(path, <caps>) {...} // path_extrude2d(path, [caps]) {...}
// Description: // Description:
// Extrudes 2D children along the given 2D path, with optional rounded endcaps. // Extrudes 2D children along the given 2D path, with optional rounded endcaps.
// Arguments: // Arguments:

View file

@ -319,7 +319,7 @@ function path_closest_point(path, pt) =
// Function: path_tangents() // Function: path_tangents()
// Usage: // Usage:
// tangs = path_tangents(path, <closed>, <uniform>); // tangs = path_tangents(path, [closed], [uniform]);
// Description: // Description:
// Compute the tangent vector to the input path. The derivative approximation is described in deriv(). // Compute the tangent vector to the input path. The derivative approximation is described in deriv().
// The returns vectors will be normalized to length 1. If any derivatives are zero then // The returns vectors will be normalized to length 1. If any derivatives are zero then
@ -352,7 +352,7 @@ function path_tangents(path, closed=false, uniform=true) =
// Function: path_normals() // Function: path_normals()
// Usage: // Usage:
// norms = path_normals(path, <tangents>, <closed>); // norms = path_normals(path, [tangents], [closed]);
// Description: // Description:
// Compute the normal vector to the input path. This vector is perpendicular to the // Compute the normal vector to the input path. This vector is perpendicular to the
// path tangent and lies in the plane of the curve. For 3d paths we define the plane of the curve // path tangent and lies in the plane of the curve. For 3d paths we define the plane of the curve
@ -386,7 +386,7 @@ function path_normals(path, tangents, closed=false) =
// Function: path_curvature() // Function: path_curvature()
// Usage: // Usage:
// curvs = path_curvature(path, <closed>); // curvs = path_curvature(path, [closed]);
// Description: // Description:
// Numerically estimate the curvature of the path (in any dimension). // Numerically estimate the curvature of the path (in any dimension).
function path_curvature(path, closed=false) = function path_curvature(path, closed=false) =
@ -404,7 +404,7 @@ function path_curvature(path, closed=false) =
// Function: path_torsion() // Function: path_torsion()
// Usage: // Usage:
// tortions = path_torsion(path, <closed>); // tortions = path_torsion(path, [closed]);
// Description: // Description:
// Numerically estimate the torsion of a 3d path. // Numerically estimate the torsion of a 3d path.
function path_torsion(path, closed=false) = function path_torsion(path, closed=false) =
@ -575,7 +575,7 @@ function _corner_roundover_path(p1, p2, p3, r, d) =
// Topics: Paths // Topics: Paths
// See Also: jittered_poly(), subdivide_long_segments() // See Also: jittered_poly(), subdivide_long_segments()
// Usage: // Usage:
// jpath = path_add_jitter(path, <dist>, <closed=>); // jpath = path_add_jitter(path, [dist], [closed=]);
// Description: // Description:
// Adds tiny jitter offsets to collinear points in the given path so that they // Adds tiny jitter offsets to collinear points in the given path so that they
// are no longer collinear. This is useful for preserving subdivision on long // are no longer collinear. This is useful for preserving subdivision on long
@ -971,7 +971,7 @@ module modulated_circle(r, sines=[[1,1]], d)
// Topics: Extrusions // Topics: Extrusions
// See Also: path_add_jitter(), subdivide_long_segments() // See Also: path_add_jitter(), subdivide_long_segments()
// Usage: // Usage:
// jittered_poly(path, <dist>); // jittered_poly(path, [dist]);
// Description: // Description:
// Creates a 2D polygon shape from the given path in such a way that any extra // Creates a 2D polygon shape from the given path in such a way that any extra
// collinear points are not stripped out in the way that `polygon()` normally does. // collinear points are not stripped out in the way that `polygon()` normally does.
@ -1010,7 +1010,10 @@ module jittered_poly(path, dist=1/512) {
// xcopies(3) circle(3, $fn=32); // xcopies(3) circle(3, $fn=32);
// } // }
module extrude_from_to(pt1, pt2, convexity, twist, scale, slices) { module extrude_from_to(pt1, pt2, convexity, twist, scale, slices) {
assert( is_path([pt1,pt2],3), "The points should be 3d points"); assert(is_vector(pt1));
assert(is_vector(pt2));
pt1 = point3d(pt1);
pt2 = point3d(pt2);
rtp = xyz_to_spherical(pt2-pt1); rtp = xyz_to_spherical(pt2-pt1);
translate(pt1) { translate(pt1) {
rotate([0, rtp[2], rtp[1]]) { rotate([0, rtp[2], rtp[1]]) {
@ -1285,7 +1288,7 @@ module path_spread(path, n, spacing, sp=undef, rotate_children=true, closed=fals
// Function: path_cut_points() // Function: path_cut_points()
// //
// Usage: // Usage:
// cuts = path_cut_points(path, dists, <closed=>, <direction=>); // cuts = path_cut_points(path, dists, [closed=], [direction=]);
// //
// Description: // Description:
// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut // Cuts a path at a list of distances from the first point in the path. Returns a list of the cut
@ -1402,7 +1405,7 @@ function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) =
// Topics: Paths // Topics: Paths
// See Also: path_cut_points() // See Also: path_cut_points()
// Usage: // Usage:
// path_list = path_cut(path, cutdist, <closed=>); // path_list = path_cut(path, cutdist, [closed=]);
// Description: // Description:
// Given a list of distances in `cutdist`, cut the path into // Given a list of distances in `cutdist`, cut the path into
// subpaths at those lengths, returning a list of paths. // subpaths at those lengths, returning a list of paths.
@ -1561,7 +1564,7 @@ function subdivide_path(path, N, refine, closed=true, exact=true, method="length
// Function: path_length_fractions() // Function: path_length_fractions()
// Usage: // Usage:
// fracs = path_length_fractions(path, <closed>); // fracs = path_length_fractions(path, [closed]);
// Description: // Description:
// Returns the distance fraction of each point in the path along the path, so the first // Returns the distance fraction of each point in the path along the path, so the first
// point is zero and the final point is 1. If the path is closed the length of the output // point is zero and the final point is 1. If the path is closed the length of the output
@ -1583,7 +1586,7 @@ function path_length_fractions(path, closed=false) =
// Function: resample_path() // Function: resample_path()
// Usage: // Usage:
// newpath = resample_path(path, N|spacing, <closed>); // newpath = resample_path(path, N|spacing, [closed]);
// Description: // Description:
// Compute a uniform resampling of the input path. If you specify `N` then the output path will have N // Compute a uniform resampling of the input path. If you specify `N` then the output path will have N
// points spaced uniformly (by linear interpolation along the input path segments). The only points of the // points spaced uniformly (by linear interpolation along the input path segments). The only points of the

View file

@ -13,9 +13,9 @@
// Function&Module: square() // Function&Module: square()
// Topics: Shapes (2D), Path Generators (2D) // Topics: Shapes (2D), Path Generators (2D)
// Usage: As a Built-in Module // Usage: As a Built-in Module
// square(size, <center>); // square(size, [center]);
// Usage: As a Function // Usage: As a Function
// path = square(size, <center>); // path = square(size, [center]);
// See Also: rect() // See Also: rect()
// Description: // Description:
// When called as the builtin module, creates a 2D square or rectangle of the given size. // When called as the builtin module, creates a 2D square or rectangle of the given size.
@ -84,11 +84,11 @@ function circle(r, d, anchor=CENTER, spin=0) =
// Function&Module: cube() // Function&Module: cube()
// Topics: Shapes (3D), Attachable, VNF Generators // Topics: Shapes (3D), Attachable, VNF Generators
// Usage: As Module // Usage: As Module
// cube(size, <center>, ...); // cube(size, [center], ...);
// Usage: With Attachments // Usage: With Attachments
// cube(size, <center>, ...) { attachments } // cube(size, [center], ...) { attachments }
// Usage: As Function // Usage: As Function
// vnf = cube(size, <center>, ...); // vnf = cube(size, [center], ...);
// See Also: cuboid(), prismoid() // See Also: cuboid(), prismoid()
// Description: // Description:
// Creates a 3D cubic object with support for anchoring and attachments. // Creates a 3D cubic object with support for anchoring and attachments.
@ -155,13 +155,13 @@ function cube(size=1, center, anchor, spin=0, orient=UP) =
// Function&Module: cylinder() // Function&Module: cylinder()
// Topics: Shapes (3D), Attachable, VNF Generators // Topics: Shapes (3D), Attachable, VNF Generators
// Usage: As Module // Usage: As Module
// cylinder(h, r=/d=, <center=>, ...); // cylinder(h, r=/d=, [center=], ...);
// cylinder(h, r1/d1=, r2/d2=, <center=>, ...); // cylinder(h, r1/d1=, r2/d2=, [center=], ...);
// Usage: With Attachments // Usage: With Attachments
// cylinder(h, r=/d=, <center=>) {attachments} // cylinder(h, r=/d=, [center=]) {attachments}
// Usage: As Function // Usage: As Function
// vnf = cylinder(h, r=/d=, <center=>, ...); // vnf = cylinder(h, r=/d=, [center=], ...);
// vnf = cylinder(h, r1/d1=, r2/d2=, <center=>, ...); // vnf = cylinder(h, r1/d1=, r2/d2=, [center=], ...);
// See Also: cyl() // See Also: cyl()
// Description: // Description:
// Creates a 3D cylinder or conic object with support for anchoring and attachments. // Creates a 3D cylinder or conic object with support for anchoring and attachments.
@ -252,11 +252,11 @@ function cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor, spin=0, orient=UP)
// Function&Module: sphere() // Function&Module: sphere()
// Topics: Shapes (3D), Attachable, VNF Generators // Topics: Shapes (3D), Attachable, VNF Generators
// Usage: As Module // Usage: As Module
// sphere(r|d=, <circum=>, <style=>, ...); // sphere(r|d=, [circum=], [style=], ...);
// Usage: With Attachments // Usage: With Attachments
// sphere(r|d=, ...) { attachments } // sphere(r|d=, ...) { attachments }
// Usage: As Function // Usage: As Function
// vnf = sphere(r|d=, <circum=>, <style=>, ...); // vnf = sphere(r|d=, [circum=], [style=], ...);
// See Also: spheroid() // See Also: spheroid()
// Description: // Description:
// Creates a sphere object, with support for anchoring and attachments. // Creates a sphere object, with support for anchoring and attachments.

View file

@ -123,7 +123,7 @@ function point_in_region(point, region, eps=EPSILON, _i=0, _cnt=0) =
// Function: polygons_equal() // Function: polygons_equal()
// Usage: // Usage:
// b = polygons_equal(poly1, poly2, <eps>) // b = polygons_equal(poly1, poly2, [eps])
// Description: // Description:
// Returns true if the components of region1 and region2 are the same polygons // Returns true if the components of region1 and region2 are the same polygons
// within given epsilon tolerance. // within given epsilon tolerance.
@ -172,7 +172,7 @@ function __poly_in_polygons(poly, polys, i) =
// Function: regions_equal() // Function: regions_equal()
// Usage: // Usage:
// b = regions_equal(region1, region2, <eps>) // b = regions_equal(region1, region2, [eps])
// Description: // Description:
// Returns true if the components of region1 and region2 are the same polygons // Returns true if the components of region1 and region2 are the same polygons
// within given epsilon tolerance. // within given epsilon tolerance.

View file

@ -15,7 +15,7 @@ include <structs.scad>
// Function: round_corners() // Function: round_corners()
// //
// Usage: // Usage:
// rounded_path = round_corners(path, <method>, <radius=>, <cut=>, <joint=>, <closed=>, <verbose=>); // rounded_path = round_corners(path, [method], [radius=], [cut=], [joint=], [closed=], [verbose=]);
// //
// Description: // Description:
// Takes a 2D or 3D path as input and rounds each corner // Takes a 2D or 3D path as input and rounds each corner
@ -434,7 +434,7 @@ function _rounding_offsets(edgespec,z_dir=1) =
// Function: smooth_path() // Function: smooth_path()
// Usage: // Usage:
// smoothed = smooth_path(path, <tangents>, <size=|relsize=>, <splinesteps=>, <closed=>, <uniform=>); // smoothed = smooth_path(path, [tangents], <size=|relsize=>, [splinesteps=], [closed=], [uniform=]);
// Description: // Description:
// Smooths the input path using a cubic spline. Every segment of the path will be replaced by a cubic curve // Smooths the input path using a cubic spline. Every segment of the path will be replaced by a cubic curve
// with `splinesteps` points. The cubic interpolation will pass through every input point on the path // with `splinesteps` points. The cubic interpolation will pass through every input point on the path
@ -517,7 +517,7 @@ function _scalar_to_vector(value,length,varname) =
// Function: path_join() // Function: path_join()
// Usage: // Usage:
// joined_path = path_join(paths, <joint>, <k=>, <relocate=>, <closed=>); // joined_path = path_join(paths, [joint], [k=], [relocate=], [closed=]);
// Description: // Description:
// Connect a sequence of paths together into a single path with optional rounding // Connect a sequence of paths together into a single path with optional rounding
// applied at the joints. By default the first path is taken as specified and subsequent paths are // applied at the joints. By default the first path is taken as specified and subsequent paths are
@ -679,9 +679,9 @@ function _path_join(paths,joint,k=0.5,i=0,result=[],relocate=true,closed=false)
// Function&Module: offset_sweep() // Function&Module: offset_sweep()
// Usage: most common module arguments. See Arguments list below for more. // Usage: most common module arguments. See Arguments list below for more.
// offset_sweep(path, <height|h|l>, <bottom>, <top>, <offset=>, <convexity=>,...) <attachments> // offset_sweep(path, <height|h|l>, [bottom], [top], [offset=], [convexity=],...) [attachments]
// Usage: most common function arguments. See Arguments list below for more. // Usage: most common function arguments. See Arguments list below for more.
// vnf = offset_sweep(path, <height|h|l>, <bottom>, <top>, <offset=>, ...) // vnf = offset_sweep(path, <height|h|l>, [bottom], [top], [offset=], ...)
// Description: // Description:
// Takes a 2d path as input and extrudes it upwards and/or downward. Each layer in the extrusion is produced using `offset()` to expand or shrink the previous layer. When invoked as a function returns a VNF; when invoked as a module produces geometry. // Takes a 2d path as input and extrudes it upwards and/or downward. Each layer in the extrusion is produced using `offset()` to expand or shrink the previous layer. When invoked as a function returns a VNF; when invoked as a module produces geometry.
// Using the `top` and/or `bottom` arguments you can specify a sequence of offsets values, or you can use several built-in offset profiles that // Using the `top` and/or `bottom` arguments you can specify a sequence of offsets values, or you can use several built-in offset profiles that
@ -1308,10 +1308,10 @@ function _remove_undefined_vals(list) =
// Function&Module: offset_stroke() // Function&Module: offset_stroke()
// Usage: as module // Usage: as module
// offset_stroke(path, <width>, <rounded=>, <chamfer=>, <start=>, <end=>, <check_valid=>, <quality=>, <maxstep=>, <closed=>); // offset_stroke(path, [width], [rounded=], [chamfer=], [start=], [end=], [check_valid=], [quality=], [maxstep=], [closed=]);
// Usage: as function // Usage: as function
// path = offset_stroke(path, <width>, closed=false, <rounded=>, <chamfer=>, <start=>, <end=>, <check_valid=>, <quality=>, <maxstep=>); // path = offset_stroke(path, [width], closed=false, [rounded=], [chamfer=], [start=], [end=], [check_valid=], [quality=], [maxstep=]);
// region = offset_stroke(path, <width>, closed=true, <rounded=>, <chamfer=>, <start=>, <end=>, <check_valid=>, <quality=>, <maxstep=>); // region = offset_stroke(path, [width], closed=true, [rounded=], [chamfer=], [start=], [end=], [check_valid=], [quality=], [maxstep=]);
// Description: // Description:
// Uses `offset()` to compute a stroke for the input path. Unlike `stroke`, the result does not need to be // Uses `offset()` to compute a stroke for the input path. Unlike `stroke`, the result does not need to be
// centered on the input path. The corners can be rounded, pointed, or chamfered, and you can make the ends // centered on the input path. The corners can be rounded, pointed, or chamfered, and you can make the ends
@ -1692,9 +1692,9 @@ function _rp_compute_patches(top, bot, rtop, rsides, ktop, ksides, concave) =
// Function&Module: rounded_prism() // Function&Module: rounded_prism()
// Usage: as a module // Usage: as a module
// rounded_prism(bottom, <top>, <height=|h=|length=|l=>, <joint_top=>, <joint_bot=>, <joint_sides=>, <k=>, <k_top=>, <k_bot=>, <k_sides=>, <splinesteps=>, <debug=>, <convexity=>,...) <attachments>; // rounded_prism(bottom, [top], <height=|h=|length=|l=>, [joint_top=], [joint_bot=], [joint_sides=], [k=], [k_top=], [k_bot=], [k_sides=], [splinesteps=], [debug=], [convexity=],...) [attachments];
// Usage: as a function // Usage: as a function
// vnf = rounded_prism(bottom, <top>, <height=|h=|length=|l=>, <joint_top=>, <joint_bot=>, <joint_sides=>, <k=>, <k_top=>, <k_bot=>, <k_sides=>, <splinesteps=>, <debug=>); // vnf = rounded_prism(bottom, [top], <height=|h=|length=|l=>, [joint_top=], [joint_bot=], [joint_sides=], [k=], [k_top=], [k_bot=], [k_sides=], [splinesteps=], [debug=]);
// Description: // Description:
// Construct a generalized prism with continuous curvature rounding. You supply the polygons for the top and bottom of the prism. The only // Construct a generalized prism with continuous curvature rounding. You supply the polygons for the top and bottom of the prism. The only
// limitation is that joining the edges must produce a valid polyhedron with coplanar side faces. You specify the rounding by giving // limitation is that joining the edges must produce a valid polyhedron with coplanar side faces. You specify the rounding by giving

View file

@ -11,15 +11,15 @@
// Module: cuboid() // Module: cuboid()
// //
// Usage: Standard Cubes // Usage: Standard Cubes
// cuboid(size, <anchor=>, <spin=>, <orient=>); // cuboid(size, [anchor=], [spin=], [orient=]);
// cuboid(size, p1=, ...); // cuboid(size, p1=, ...);
// cuboid(p1=, p2=, ...); // cuboid(p1=, p2=, ...);
// Usage: Chamfered Cubes // Usage: Chamfered Cubes
// cuboid(size, <chamfer=>, <edges=>, <except_edges=>, <trimcorners=>, ...); // cuboid(size, [chamfer=], [edges=], [except_edges=], [trimcorners=], ...);
// Usage: Rounded Cubes // Usage: Rounded Cubes
// cuboid(size, <rounding=>, <edges=>, <except_edges=>, <trimcorners=>, ...); // cuboid(size, [rounding=], [edges=], [except_edges=], [trimcorners=], ...);
// Usage: Attaching children // Usage: Attaching children
// cuboid(size, <anchor=>, ...) <attachments>; // cuboid(size, [anchor=], ...) [attachments];
// //
// Description: // Description:
// Creates a cube or cuboid object, with optional chamfering or rounding. // Creates a cube or cuboid object, with optional chamfering or rounding.
@ -371,18 +371,18 @@ function cuboid(
// Function&Module: prismoid() // Function&Module: prismoid()
// //
// Usage: Typical Prismoids // Usage: Typical Prismoids
// prismoid(size1, size2, h|l, <shift>, ...); // prismoid(size1, size2, h|l, [shift], ...);
// Usage: Attaching Children // Usage: Attaching Children
// prismoid(size1, size2, h|l, <shift>, ...) <attachments>; // prismoid(size1, size2, h|l, [shift], ...) [attachments];
// Usage: Chamfered Prismoids // Usage: Chamfered Prismoids
// prismoid(size1, size2, h|l, <chamfer=>, ...); // prismoid(size1, size2, h|l, [chamfer=], ...);
// prismoid(size1, size2, h|l, <chamfer1=>, <chamfer2=>, ...); // prismoid(size1, size2, h|l, [chamfer1=], [chamfer2=], ...);
// Usage: Rounded Prismoids // Usage: Rounded Prismoids
// prismoid(size1, size2, h|l, <rounding=>, ...); // prismoid(size1, size2, h|l, [rounding=], ...);
// prismoid(size1, size2, h|l, <rounding1=>, <rounding2=>, ...); // prismoid(size1, size2, h|l, [rounding1=], [rounding2=], ...);
// Usage: As Function // Usage: As Function
// vnf = prismoid(size1, size2, h|l, <shift>, <rounding>, <chamfer>); // vnf = prismoid(size1, size2, h|l, [shift], [rounding], [chamfer]);
// vnf = prismoid(size1, size2, h|l, <shift>, <rounding1>, <rounding2>, <chamfer1>, <chamfer2>); // vnf = prismoid(size1, size2, h|l, [shift], [rounding1], [rounding2], [chamfer1], [chamfer2]);
// //
// Description: // Description:
// Creates a rectangular prismoid shape with optional roundovers and chamfering. // Creates a rectangular prismoid shape with optional roundovers and chamfering.
@ -572,9 +572,9 @@ function prismoid(
// Module: rect_tube() // Module: rect_tube()
// Usage: Typical Rectangular Tubes // Usage: Typical Rectangular Tubes
// rect_tube(h, size, isize, <center>, <shift>); // rect_tube(h, size, isize, [center], [shift]);
// rect_tube(h, size, wall=, <center=>); // rect_tube(h, size, wall=, [center=]);
// rect_tube(h, isize=, wall=, <center=>); // rect_tube(h, isize=, wall=, [center=]);
// Usage: Tapering Rectangular Tubes // Usage: Tapering Rectangular Tubes
// rect_tube(h, size1=, size2=, wall=, ...); // rect_tube(h, size1=, size2=, wall=, ...);
// rect_tube(h, isize1=, isize2=, wall=, ...); // rect_tube(h, isize1=, isize2=, wall=, ...);
@ -592,7 +592,7 @@ function prismoid(
// rect_tube(h, size, isize, irounding1=, irounding2= ...); // rect_tube(h, size, isize, irounding1=, irounding2= ...);
// rect_tube(h, size, isize, rounding=, irounding=, ...); // rect_tube(h, size, isize, rounding=, irounding=, ...);
// Usage: Attaching Children // Usage: Attaching Children
// rect_tube(h, size, isize, ...) <attachments>; // rect_tube(h, size, isize, ...) [attachments];
// //
// Description: // Description:
// Creates a rectangular or prismoid tube with optional roundovers and/or chamfers. // Creates a rectangular or prismoid tube with optional roundovers and/or chamfers.
@ -766,7 +766,7 @@ function rect_tube(
// Module: right_triangle() // Module: right_triangle()
// //
// Usage: // Usage:
// right_triangle(size, <center>); // right_triangle(size, [center]);
// //
// Description: // Description:
// Creates a 3D right triangular prism with the hypotenuse in the X+Y+ quadrant. // Creates a 3D right triangular prism with the hypotenuse in the X+Y+ quadrant.
@ -816,16 +816,16 @@ function right_triangle(size=[1,1,1], center, anchor, spin=0, orient=UP) =
// the cylinder's length. // the cylinder's length.
// //
// Usage: Normal Cylinders // Usage: Normal Cylinders
// cyl(l|h, r, <center>, <circum=>, <realign=>); // cyl(l|h, r, [center], [circum=], [realign=]);
// cyl(l|h, d=, ...); // cyl(l|h, d=, ...);
// cyl(l|h, r1=, r2=, ...); // cyl(l|h, r1=, r2=, ...);
// cyl(l|h, d1=, d2=, ...); // cyl(l|h, d1=, d2=, ...);
// //
// Usage: Chamferred Cylinders // Usage: Chamferred Cylinders
// cyl(l|h, r|d, chamfer=, <chamfang=>, <from_end=>, ...); // cyl(l|h, r|d, chamfer=, [chamfang=], [from_end=], ...);
// cyl(l|h, r|d, chamfer1=, <chamfang1=>, <from_end=>, ...); // cyl(l|h, r|d, chamfer1=, [chamfang1=], [from_end=], ...);
// cyl(l|h, r|d, chamfer2=, <chamfang2=>, <from_end=>, ...); // cyl(l|h, r|d, chamfer2=, [chamfang2=], [from_end=], ...);
// cyl(l|h, r|d, chamfer1=, chamfer2=, <chamfang1=>, <chamfang2=>, <from_end=>, ...); // cyl(l|h, r|d, chamfer1=, chamfer2=, [chamfang1=], [chamfang2=], [from_end=], ...);
// //
// Usage: Rounded End Cylinders // Usage: Rounded End Cylinders
// cyl(l|h, r|d, rounding=, ...); // cyl(l|h, r|d, rounding=, ...);
@ -1016,11 +1016,11 @@ module cyl(
// Creates a cylinder oriented along the X axis. // Creates a cylinder oriented along the X axis.
// //
// Usage: Typical // Usage: Typical
// xcyl(l|h, r, <anchor=>); // xcyl(l|h, r, [anchor=]);
// xcyl(l|h, d=, <anchor=>); // xcyl(l|h, d=, [anchor=]);
// xcyl(l|h, r1=|d1=, r2=|d2=, <anchor=>); // xcyl(l|h, r1=|d1=, r2=|d2=, [anchor=]);
// Usage: Attaching Children // Usage: Attaching Children
// xcyl(l|h, r, <anchor=>) <attachments>; // xcyl(l|h, r, [anchor=]) [attachments];
// //
// Arguments: // Arguments:
// l / h = Length of cylinder along oriented axis. Default: 1 // l / h = Length of cylinder along oriented axis. Default: 1
@ -1063,11 +1063,11 @@ module xcyl(h, r, d, r1, r2, d1, d2, l, anchor=CENTER)
// Creates a cylinder oriented along the Y axis. // Creates a cylinder oriented along the Y axis.
// //
// Usage: Typical // Usage: Typical
// ycyl(l|h, r, <anchor=>); // ycyl(l|h, r, [anchor=]);
// ycyl(l|h, d=, <anchor=>); // ycyl(l|h, d=, [anchor=]);
// ycyl(l|h, r1=|d1=, r2=|d2=, <anchor=>); // ycyl(l|h, r1=|d1=, r2=|d2=, [anchor=]);
// Usage: Attaching Children // Usage: Attaching Children
// ycyl(l|h, r, <anchor=>) <attachments>; // ycyl(l|h, r, [anchor=]) [attachments];
// //
// Arguments: // Arguments:
// l / h = Length of cylinder along oriented axis. (Default: `1.0`) // l / h = Length of cylinder along oriented axis. (Default: `1.0`)
@ -1110,11 +1110,11 @@ module ycyl(h, r, d, r1, r2, d1, d2, l, anchor=CENTER)
// Creates a cylinder oriented along the Z axis. // Creates a cylinder oriented along the Z axis.
// //
// Usage: Typical // Usage: Typical
// zcyl(l|h, r, <anchor=>); // zcyl(l|h, r, [anchor=]);
// zcyl(l|h, d=, <anchor=>); // zcyl(l|h, d=, [anchor=]);
// zcyl(l|h, r1=|d1=, r2=|d2=, <anchor=>); // zcyl(l|h, r1=|d1=, r2=|d2=, [anchor=]);
// Usage: Attaching Children // Usage: Attaching Children
// zcyl(l|h, r, <anchor=>) <attachments>; // zcyl(l|h, r, [anchor=]) [attachments];
// //
// Arguments: // Arguments:
// l / h = Length of cylinder along oriented axis. (Default: 1.0) // l / h = Length of cylinder along oriented axis. (Default: 1.0)
@ -1151,15 +1151,15 @@ module zcyl(h, r, d, r1, r2, d1, d2, l, anchor=CENTER)
// Makes a hollow tube with the given outer size and wall thickness. // Makes a hollow tube with the given outer size and wall thickness.
// //
// Usage: Typical // Usage: Typical
// tube(h|l, or, ir, <center>, <realign=>); // tube(h|l, or, ir, [center], [realign=]);
// tube(h|l, or=|od=, ir=|id=, ...); // tube(h|l, or=|od=, ir=|id=, ...);
// tube(h|l, ir|id, wall, ...); // tube(h|l, ir|id, wall, ...);
// tube(h|l, or|od, wall, ...); // tube(h|l, or|od, wall, ...);
// tube(h|l, ir1|id1, ir2|id2, wall, ...); // tube(h|l, ir1|id1, ir2|id2, wall, ...);
// tube(h|l, or1|od1, or2|od2, wall, ...); // tube(h|l, or1|od1, or2|od2, wall, ...);
// tube(h|l, ir1|id1, ir2|id2, or1|od1, or2|od2, <realign>); // tube(h|l, ir1|id1, ir2|id2, or1|od1, or2|od2, [realign]);
// Usage: Attaching Children // Usage: Attaching Children
// tube(h|l, or, ir, <center>) <attachments>; // tube(h|l, or, ir, [center]) [attachments];
// //
// Arguments: // Arguments:
// h / l = height of tube. Default: 1 // h / l = height of tube. Default: 1
@ -1232,14 +1232,14 @@ module tube(
// Module: torus() // Module: torus()
// //
// Usage: Typical // Usage: Typical
// torus(r_maj|d_maj, r_min|d_min, <center>, ...); // torus(r_maj|d_maj, r_min|d_min, [center], ...);
// torus(or|od, ir|id, ...); // torus(or|od, ir|id, ...);
// torus(r_maj|d_maj, or|od, ...); // torus(r_maj|d_maj, or|od, ...);
// torus(r_maj|d_maj, ir|id, ...); // torus(r_maj|d_maj, ir|id, ...);
// torus(r_min|d_min, or|od, ...); // torus(r_min|d_min, or|od, ...);
// torus(r_min|d_min, ir|id, ...); // torus(r_min|d_min, ir|id, ...);
// Usage: Attaching Children // Usage: Attaching Children
// torus(or|od, ir|id, ...) <attachments>;; // torus(or|od, ir|id, ...) [attachments];
// //
// Description: // Description:
// Creates a torus shape. // Creates a torus shape.
@ -1333,11 +1333,11 @@ module torus(
// Function&Module: spheroid() // Function&Module: spheroid()
// Usage: Typical // Usage: Typical
// spheroid(r|d, <circum>, <style>); // spheroid(r|d, [circum], [style]);
// Usage: Attaching Children // Usage: Attaching Children
// spheroid(r|d, <circum>, <style>) <attachments>; // spheroid(r|d, [circum], [style]) [attachments];
// Usage: As Function // Usage: As Function
// vnf = spheroid(r|d, <circum>, <style>); // vnf = spheroid(r|d, [circum], [style]);
// Description: // Description:
// Creates a spheroid object, with support for anchoring and attachments. // Creates a spheroid object, with support for anchoring and attachments.
// This is a drop-in replacement for the built-in `sphere()` module. // This is a drop-in replacement for the built-in `sphere()` module.
@ -1559,13 +1559,13 @@ function spheroid(r, style="aligned", d, circum=false, anchor=CENTER, spin=0, or
// Makes a teardrop shape in the XZ plane. Useful for 3D printable holes. // Makes a teardrop shape in the XZ plane. Useful for 3D printable holes.
// //
// Usage: Typical // Usage: Typical
// teardrop(h|l, r, <ang>, <cap_h>, ...); // teardrop(h|l, r, [ang], [cap_h], ...);
// teardrop(h|l, d=, <ang=>, <cap_h=>, ...); // teardrop(h|l, d=, [ang=], [cap_h=], ...);
// Usage: Psuedo-Conical // Usage: Psuedo-Conical
// teardrop(h|l, r1=, r2=, <ang=>, <cap_h1=>, <cap_h2=>, ...); // teardrop(h|l, r1=, r2=, [ang=], [cap_h1=], [cap_h2=], ...);
// teardrop(h|l, d1=, d2=, <ang=>, <cap_h1=>, <cap_h2=>, ...); // teardrop(h|l, d1=, d2=, [ang=], [cap_h1=], [cap_h2=], ...);
// Usage: Attaching Children // Usage: Attaching Children
// teardrop(h|l, r, ...) <attachments>; // teardrop(h|l, r, ...) [attachments];
// //
// Arguments: // Arguments:
// h / l = Thickness of teardrop. Default: 1 // h / l = Thickness of teardrop. Default: 1
@ -1652,12 +1652,12 @@ module teardrop(h, r, ang=45, cap_h, r1, r2, d, d1, d2, cap_h1, cap_h2, l, ancho
// Creates a sphere with a conical hat, to make a 3D teardrop. // Creates a sphere with a conical hat, to make a 3D teardrop.
// //
// Usage: // Usage:
// onion(r|d, <ang>, <cap_h>); // onion(r|d, [ang], [cap_h]);
// Usage: Typical // Usage: Typical
// onion(r, <ang>, <cap_h>, ...); // onion(r, [ang], [cap_h], ...);
// onion(d=, <ang=>, <cap_h=>, ...); // onion(d=, [ang=], [cap_h=], ...);
// Usage: Attaching Children // Usage: Attaching Children
// onion(r, ...) <attachments>; // onion(r, ...) [attachments];
// //
// Arguments: // Arguments:
// r = radius of spherical portion of the bottom. Default: 1 // r = radius of spherical portion of the bottom. Default: 1
@ -1726,11 +1726,11 @@ module noop(spin=0, orient=UP) attachable(CENTER,spin,orient, d=0.01) {nil(); ch
// Creates a pie slice shape. // Creates a pie slice shape.
// //
// Usage: Typical // Usage: Typical
// pie_slice(l|h, r, ang, <center>); // pie_slice(l|h, r, ang, [center]);
// pie_slice(l|h, d=, ang=, ...); // pie_slice(l|h, d=, ang=, ...);
// pie_slice(l|h, r1=|d1=, r2=|d2=, ang=, ...); // pie_slice(l|h, r1=|d1=, r2=|d2=, ang=, ...);
// Usage: Attaching Children // Usage: Attaching Children
// pie_slice(l|h, r, ang, ...) <attachments>; // pie_slice(l|h, r, ang, ...) [attachments];
// //
// Arguments: // Arguments:
// h / l = height of pie slice. // h / l = height of pie slice.
@ -1782,10 +1782,10 @@ module pie_slice(
// Center this part along the concave edge to be chamfered and union it in. // Center this part along the concave edge to be chamfered and union it in.
// //
// Usage: Typical // Usage: Typical
// interior_fillet(l, r, <ang>, <overlap>, ...); // interior_fillet(l, r, [ang], [overlap], ...);
// interior_fillet(l, d=, <ang=>, <overlap=>, ...); // interior_fillet(l, d=, [ang=], [overlap=], ...);
// Usage: Attaching Children // Usage: Attaching Children
// interior_fillet(l, r, <ang>, <overlap>, ...) <attachments>; // interior_fillet(l, r, [ang], [overlap], ...) [attachments];
// //
// Arguments: // Arguments:
// l = Length of edge to fillet. // l = Length of edge to fillet.
@ -1843,11 +1843,11 @@ module interior_fillet(l=1.0, r, ang=90, overlap=0.01, d, anchor=FRONT+LEFT, spi
// Function&Module: heightfield() // Function&Module: heightfield()
// Usage: As Module // Usage: As Module
// heightfield(data, <size>, <bottom>, <maxz>, <xrange>, <yrange>, <style>, <convexity>, ...); // heightfield(data, [size], [bottom], [maxz], [xrange], [yrange], [style], [convexity], ...);
// Usage: Attaching Children // Usage: Attaching Children
// heightfield(data, <size>, ...) <attachments>; // heightfield(data, [size], ...) [attachments];
// Usage: As Function // Usage: As Function
// vnf = heightfield(data, <size>, <bottom>, <maxz>, <xrange>, <yrange>, <style>, ...); // vnf = heightfield(data, [size], [bottom], [maxz], [xrange], [yrange], [style], ...);
// Description: // Description:
// Given a regular rectangular 2D grid of scalar values, or a function literal, generates a 3D // Given a regular rectangular 2D grid of scalar values, or a function literal, generates a 3D
// surface where the height at any given point is the scalar value for that position. // surface where the height at any given point is the scalar value for that position.

View file

@ -9,8 +9,8 @@
// Module: stroke() // Module: stroke()
// Usage: // Usage:
// stroke(path, <width>, <closed>, <endcaps>, <endcap_width>, <endcap_length>, <endcap_extent>, <trim>); // stroke(path, [width], [closed], [endcaps], [endcap_width], [endcap_length], [endcap_extent], [trim]);
// stroke(path, <width>, <closed>, <endcap1>, <endcap2>, <endcap_width1>, <endcap_width2>, <endcap_length1>, <endcap_length2>, <endcap_extent1>, <endcap_extent2>, <trim1>, <trim2>); // stroke(path, [width], [closed], [endcap1], [endcap2], [endcap_width1], [endcap_width2], [endcap_length1], [endcap_length2], [endcap_extent1], [endcap_extent2], [trim1], [trim2]);
// Topics: Paths (2D), Paths (3D), Drawing Tools // Topics: Paths (2D), Paths (3D), Drawing Tools
// Description: // Description:
// Draws a 2D or 3D path with a given line width. Endcaps can be specified for each end individually. // Draws a 2D or 3D path with a given line width. Endcaps can be specified for each end individually.
@ -427,9 +427,9 @@ module stroke(
// Function&Module: dashed_stroke() // Function&Module: dashed_stroke()
// Usage: As a Module // Usage: As a Module
// dashed_stroke(path, dashpat, <closed=>); // dashed_stroke(path, dashpat, [closed=]);
// Usage: As a Function // Usage: As a Function
// dashes = dashed_stroke(path, dashpat, width=, <closed=>); // dashes = dashed_stroke(path, dashpat, width=, [closed=]);
// Topics: Paths, Drawing Tools // Topics: Paths, Drawing Tools
// See Also: stroke(), path_cut() // See Also: stroke(), path_cut()
// Description: // Description:
@ -489,7 +489,7 @@ module dashed_stroke(path, dashpat=[3,3], width=1, closed=false) {
// Usage: 2D circle segment by `width` and `thickness`, starting and ending on the X axis. // Usage: 2D circle segment by `width` and `thickness`, starting and ending on the X axis.
// arc(N, width=, thickness=) // arc(N, width=, thickness=)
// Usage: Shortest 2D or 3D arc around centerpoint `cp`, starting at P0 and ending on the vector pointing from `cp` to `P1`. // Usage: Shortest 2D or 3D arc around centerpoint `cp`, starting at P0 and ending on the vector pointing from `cp` to `P1`.
// arc(N, cp=, points=[P0,P1], <long=>, <cw=>, <ccw=>) // arc(N, cp=, points=[P0,P1], [long=], [cw=], [ccw=])
// Usage: 2D or 3D arc, starting at `P0`, passing through `P1` and ending at `P2`. // Usage: 2D or 3D arc, starting at `P0`, passing through `P1` and ending at `P2`.
// arc(N, points=[P0,P1,P2]) // arc(N, points=[P0,P1,P2])
// Topics: Paths (2D), Paths (3D), Shapes (2D), Path Generators // Topics: Paths (2D), Paths (3D), Shapes (2D), Path Generators
@ -628,7 +628,7 @@ function _normal_segment(p1,p2) =
// Function: turtle() // Function: turtle()
// Usage: // Usage:
// turtle(commands, <state>, <full_state=>, <repeat=>) // turtle(commands, [state], [full_state=], [repeat=])
// Topics: Shapes (2D), Path Generators (2D), Mini-Language // Topics: Shapes (2D), Path Generators (2D), Mini-Language
// See Also: turtle3d() // See Also: turtle3d()
// Description: // Description:
@ -890,11 +890,11 @@ function _turtle_command(command, parm, parm2, state, index) =
// Function&Module: rect() // Function&Module: rect()
// Usage: As Module // Usage: As Module
// rect(size, <center>, <rounding>, <chamfer>, ...); // rect(size, [center], [rounding], [chamfer], ...);
// Usage: With Attachments // Usage: With Attachments
// rect(size, <center>, ...) { attachables } // rect(size, [center], ...) { attachables }
// Usage: As Function // Usage: As Function
// path = rect(size, <center>, <rounding>, <chamfer>, ...); // path = rect(size, [center], [rounding], [chamfer], ...);
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
// See Also: square() // See Also: square()
// Description: // Description:
@ -994,7 +994,7 @@ function rect(size=1, center, rounding=0, chamfer=0, anchor, spin=0) =
// Function&Module: oval() // Function&Module: oval()
// Usage: // Usage:
// oval(r|d=, <realign=>, <circum=>) // oval(r|d=, [realign=], [circum=])
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
// See Also: circle() // See Also: circle()
// Description: // Description:
@ -1060,9 +1060,9 @@ function oval(r, d, realign=false, circum=false, anchor=CENTER, spin=0) =
// Function&Module: regular_ngon() // Function&Module: regular_ngon()
// Usage: // Usage:
// regular_ngon(n, r/d=/or=/od=, <realign=>); // regular_ngon(n, r/d=/or=/od=, [realign=]);
// regular_ngon(n, ir=/id=, <realign=>); // regular_ngon(n, ir=/id=, [realign=]);
// regular_ngon(n, side=, <realign=>); // regular_ngon(n, side=, [realign=]);
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
// See Also: circle(), pentagon(), hexagon(), octagon(), oval(), star() // See Also: circle(), pentagon(), hexagon(), octagon(), oval(), star()
// Description: // Description:
@ -1196,9 +1196,9 @@ module regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false,
// Function&Module: pentagon() // Function&Module: pentagon()
// Usage: // Usage:
// pentagon(or|od=, <realign=>); // pentagon(or|od=, [realign=]);
// pentagon(ir=|id=, <realign=>); // pentagon(ir=|id=, [realign=]);
// pentagon(side=, <realign=>); // pentagon(side=, [realign=]);
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
// See Also: circle(), regular_ngon(), hexagon(), octagon(), oval(), star() // See Also: circle(), regular_ngon(), hexagon(), octagon(), oval(), star()
// Description: // Description:
@ -1252,7 +1252,7 @@ module pentagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip
// Function&Module: hexagon() // Function&Module: hexagon()
// Usage: As Module // Usage: As Module
// hexagon(r/or, <realign=>, <align_tip=|align_side=>, <rounding=>, ...); // hexagon(r/or, [realign=], <align_tip=|align_side=>, [rounding=], ...);
// hexagon(d=/od=, ...); // hexagon(d=/od=, ...);
// hexagon(ir=/id=, ...); // hexagon(ir=/id=, ...);
// hexagon(side=, ...); // hexagon(side=, ...);
@ -1316,7 +1316,7 @@ module hexagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip,
// Function&Module: octagon() // Function&Module: octagon()
// Usage: As Module // Usage: As Module
// octagon(r/or, <realign=>, <align_tip=|align_side=>, <rounding=>, ...); // octagon(r/or, [realign=], <align_tip=|align_side=>, [rounding=], ...);
// octagon(d=/od=, ...); // octagon(d=/od=, ...);
// octagon(ir=/id=, ...); // octagon(ir=/id=, ...);
// octagon(side=, ...); // octagon(side=, ...);
@ -1383,7 +1383,7 @@ module octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip,
// Function&Module: trapezoid() // Function&Module: trapezoid()
// Usage: As Module // Usage: As Module
// trapezoid(h, w1, w2, <shift=>, <rounding=>, <chamfer=>, ...); // trapezoid(h, w1, w2, [shift=], [rounding=], [chamfer=], ...);
// trapezoid(h, w1, angle=, ...); // trapezoid(h, w1, angle=, ...);
// trapezoid(h, w2, angle=, ...); // trapezoid(h, w2, angle=, ...);
// trapezoid(w1, w2, angle=, ...); // trapezoid(w1, w2, angle=, ...);
@ -1492,11 +1492,11 @@ module trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENTER
// Makes a 2D teardrop shape. Useful for extruding into 3D printable holes. // Makes a 2D teardrop shape. Useful for extruding into 3D printable holes.
// //
// Usage: As Module // Usage: As Module
// teardrop2d(r/d=, <ang>, <cap_h>); // teardrop2d(r/d=, [ang], [cap_h]);
// Usage: With Attachments // Usage: With Attachments
// teardrop2d(r/d=, <ang>, <cap_h>, ...) { attachments } // teardrop2d(r/d=, [ang], [cap_h], ...) { attachments }
// Usage: As Function // Usage: As Function
// path = teardrop2d(r/d=, <ang>, <cap_h>); // path = teardrop2d(r/d=, [ang], [cap_h]);
// //
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
// //
@ -1556,11 +1556,11 @@ function teardrop2d(r, ang=45, cap_h, d, anchor=CENTER, spin=0) =
// Function&Module: glued_circles() // Function&Module: glued_circles()
// Usage: As Module // Usage: As Module
// glued_circles(r/d=, <spread=>, <tangent=>, ...); // glued_circles(r/d=, [spread=], [tangent=], ...);
// Usage: With Attachments // Usage: With Attachments
// glued_circles(r/d=, <spread=>, <tangent=>, ...) { attachments } // glued_circles(r/d=, [spread=], [tangent=], ...) { attachments }
// Usage: As Function // Usage: As Function
// path = glued_circles(r/d=, <spread=>, <tangent=>, ...); // path = glued_circles(r/d=, [spread=], [tangent=], ...);
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
// See Also: circle(), oval() // See Also: circle(), oval()
// Description: // Description:
@ -1619,12 +1619,12 @@ module glued_circles(r, spread=10, tangent=30, d, anchor=CENTER, spin=0) {
// Function&Module: star() // Function&Module: star()
// Usage: As Module // Usage: As Module
// star(n, r/or, ir, <realign=>, <align_tip=>, <align_pit=>, ...); // star(n, r/or, ir, [realign=], [align_tip=], [align_pit=], ...);
// star(n, r/or, step=, ...); // star(n, r/or, step=, ...);
// Usage: With Attachments // Usage: With Attachments
// star(n, r/or, ir, ...) { attachments } // star(n, r/or, ir, ...) { attachments }
// Usage: As Function // Usage: As Function
// path = star(n, r/or, ir, <realign=>, <align_tip=>, <align_pit=>, ...); // path = star(n, r/or, ir, [realign=], [align_tip=], [align_pit=], ...);
// path = star(n, r/or, step=, ...); // path = star(n, r/or, step=, ...);
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
// See Also: circle(), oval() // See Also: circle(), oval()
@ -1748,11 +1748,11 @@ function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) =
// Function&Module: supershape() // Function&Module: supershape()
// Usage: As Module // Usage: As Module
// supershape(step, <m1=>, <m2=>, <n1=>, <n2=>, <n3=>, <a=>, <b=>, <r=/d=>); // supershape(step, [m1=], [m2=], [n1=], [n2=], [n3=], [a=], [b=], <r=/d=>);
// Usage: With Attachments // Usage: With Attachments
// supershape(step, <m1=>, <m2=>, <n1=>, <n2=>, <n3=>, <a=>, <b=>, <r=/d=>) { attachments } // supershape(step, [m1=], [m2=], [n1=], [n2=], [n3=], [a=], [b=], <r=/d=>) { attachments }
// Usage: As Function // Usage: As Function
// path = supershape(step, <m1=>, <m2=>, <n1=>, <n2=>, <n3=>, <a=>, <b=>, <r=/d=>); // path = supershape(step, [m1=], [m2=], [n1=], [n2=], [n3=], [a=], [b=], <r=/d=>);
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
// See Also: circle(), oval() // See Also: circle(), oval()
// Description: // Description:
@ -1890,11 +1890,11 @@ function reuleaux_polygon(N=3, r, d, anchor=CENTER, spin=0) =
// Function&Module: mask2d_roundover() // Function&Module: mask2d_roundover()
// Usage: As Module // Usage: As Module
// mask2d_roundover(r|d, <inset>, <excess>); // mask2d_roundover(r|d, [inset], [excess]);
// Usage: With Attachments // Usage: With Attachments
// mask2d_roundover(r|d, <inset>, <excess>) { attachments } // mask2d_roundover(r|d, [inset], [excess]) { attachments }
// Usage: As Module // Usage: As Module
// path = mask2d_roundover(r|d, <inset>, <excess>); // path = mask2d_roundover(r|d, [inset], [excess]);
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D) // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D)
// See Also: corner_profile(), edge_profile(), face_profile() // See Also: corner_profile(), edge_profile(), face_profile()
// Description: // Description:
@ -1947,11 +1947,11 @@ function mask2d_roundover(r, inset=0, excess=0.01, d, anchor=CENTER,spin=0) =
// Function&Module: mask2d_cove() // Function&Module: mask2d_cove()
// Usage: As Module // Usage: As Module
// mask2d_cove(r|d, <inset>, <excess>); // mask2d_cove(r|d, [inset], [excess]);
// Usage: With Attachments // Usage: With Attachments
// mask2d_cove(r|d, <inset>, <excess>) { attachments } // mask2d_cove(r|d, [inset], [excess]) { attachments }
// Usage: As Function // Usage: As Function
// path = mask2d_cove(r|d, <inset>, <excess>); // path = mask2d_cove(r|d, [inset], [excess]);
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D) // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D)
// See Also: corner_profile(), edge_profile(), face_profile() // See Also: corner_profile(), edge_profile(), face_profile()
// Description: // Description:
@ -2004,15 +2004,15 @@ function mask2d_cove(r, inset=0, excess=0.01, d, anchor=CENTER,spin=0) =
// Function&Module: mask2d_chamfer() // Function&Module: mask2d_chamfer()
// Usage: As Module // Usage: As Module
// mask2d_chamfer(edge, <angle>, <inset>, <excess>); // mask2d_chamfer(edge, [angle], [inset], [excess]);
// mask2d_chamfer(y, <angle>, <inset>, <excess>); // mask2d_chamfer(y, [angle], [inset], [excess]);
// mask2d_chamfer(x, <angle>, <inset>, <excess>); // mask2d_chamfer(x, [angle], [inset], [excess]);
// Usage: With Attachments // Usage: With Attachments
// mask2d_chamfer(edge, <angle>, <inset>, <excess>) { attachments } // mask2d_chamfer(edge, [angle], [inset], [excess]) { attachments }
// Usage: As Function // Usage: As Function
// path = mask2d_chamfer(edge, <angle>, <inset>, <excess>); // path = mask2d_chamfer(edge, [angle], [inset], [excess]);
// path = mask2d_chamfer(y, <angle>, <inset>, <excess>); // path = mask2d_chamfer(y, [angle], [inset], [excess]);
// path = mask2d_chamfer(x, <angle>, <inset>, <excess>); // path = mask2d_chamfer(x, [angle], [inset], [excess]);
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D) // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D)
// See Also: corner_profile(), edge_profile(), face_profile() // See Also: corner_profile(), edge_profile(), face_profile()
// Description: // Description:
@ -2075,11 +2075,11 @@ function mask2d_chamfer(edge, angle=45, inset=0, excess=0.01, x, y, anchor=CENTE
// Function&Module: mask2d_rabbet() // Function&Module: mask2d_rabbet()
// Usage: As Module // Usage: As Module
// mask2d_rabbet(size, <excess>); // mask2d_rabbet(size, [excess]);
// Usage: With Attachments // Usage: With Attachments
// mask2d_rabbet(size, <excess>) { attachments } // mask2d_rabbet(size, [excess]) { attachments }
// Usage: As Function // Usage: As Function
// path = mask2d_rabbet(size, <excess>); // path = mask2d_rabbet(size, [excess]);
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D) // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D)
// See Also: corner_profile(), edge_profile(), face_profile() // See Also: corner_profile(), edge_profile(), face_profile()
// Description: // Description:
@ -2126,13 +2126,13 @@ function mask2d_rabbet(size, excess=0.01, anchor=CENTER,spin=0) =
// Function&Module: mask2d_dovetail() // Function&Module: mask2d_dovetail()
// Usage: As Module // Usage: As Module
// mask2d_dovetail(edge, <angle>, <inset>, <shelf>, <excess>, ...); // mask2d_dovetail(edge, [angle], [inset], [shelf], [excess], ...);
// mask2d_dovetail(x=, <angle=>, <inset=>, <shelf=>, <excess=>, ...); // mask2d_dovetail(x=, [angle=], [inset=], [shelf=], [excess=], ...);
// mask2d_dovetail(y=, <angle=>, <inset=>, <shelf=>, <excess=>, ...); // mask2d_dovetail(y=, [angle=], [inset=], [shelf=], [excess=], ...);
// Usage: With Attachments // Usage: With Attachments
// mask2d_dovetail(edge, <angle>, <inset>, <shelf>, ...) { attachments } // mask2d_dovetail(edge, [angle], [inset], [shelf], ...) { attachments }
// Usage: As Function // Usage: As Function
// path = mask2d_dovetail(edge, <angle>, <inset>, <shelf>, <excess>); // path = mask2d_dovetail(edge, [angle], [inset], [shelf], [excess]);
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D) // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D)
// See Also: corner_profile(), edge_profile(), face_profile() // See Also: corner_profile(), edge_profile(), face_profile()
// Description: // Description:
@ -2197,11 +2197,11 @@ function mask2d_dovetail(edge, angle=30, inset=0, shelf=0, excess=0.01, x, y, an
// Function&Module: mask2d_teardrop() // Function&Module: mask2d_teardrop()
// Usage: As Module // Usage: As Module
// mask2d_teardrop(r|d, <angle>, <excess>); // mask2d_teardrop(r|d, [angle], [excess]);
// Usage: With Attachments // Usage: With Attachments
// mask2d_teardrop(r|d, <angle>, <excess>) { attachments } // mask2d_teardrop(r|d, [angle], [excess]) { attachments }
// Usage: As Function // Usage: As Function
// path = mask2d_teardrop(r|d, <angle>, <excess>); // path = mask2d_teardrop(r|d, [angle], [excess]);
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D) // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D)
// See Also: corner_profile(), edge_profile(), face_profile() // See Also: corner_profile(), edge_profile(), face_profile()
// Description: // Description:
@ -2253,11 +2253,11 @@ module mask2d_teardrop(r, angle=45, excess=0.01, d, anchor=CENTER, spin=0) {
// Function&Module: mask2d_ogee() // Function&Module: mask2d_ogee()
// Usage: As Module // Usage: As Module
// mask2d_ogee(pattern, <excess>, ...); // mask2d_ogee(pattern, [excess], ...);
// Usage: With Attachments // Usage: With Attachments
// mask2d_ogee(pattern, <excess>, ...) { attachments } // mask2d_ogee(pattern, [excess], ...) { attachments }
// Usage: As Function // Usage: As Function
// path = mask2d_ogee(pattern, <excess>, ...); // path = mask2d_ogee(pattern, [excess], ...);
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D) // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D)
// See Also: corner_profile(), edge_profile(), face_profile() // See Also: corner_profile(), edge_profile(), face_profile()
// //

View file

@ -12,9 +12,9 @@
// Function&Module: skin() // Function&Module: skin()
// Usage: As module: // Usage: As module:
// skin(profiles, slices, <z=>, <refine=>, <method=>, <sampling=>, <caps=>, <closed=>, <style=>, <convexity=>, <anchor=>,<cp=>,<spin=>,<orient=>,<extent=>) <attachments>; // skin(profiles, slices, [z=], [refine=], [method=], [sampling=], [caps=], [closed=], [style=], [convexity=], [anchor=],[cp=],[spin=],[orient=],[extent=]) [attachments];
// Usage: As function: // Usage: As function:
// vnf = skin(profiles, slices, <z=>, <refine=>, <method=>, <sampling=>, <caps=>, <closed=>, <style=>); // vnf = skin(profiles, slices, [z=], [refine=], [method=], [sampling=], [caps=], [closed=], [style=]);
// Description: // Description:
// Given a list of two or more path `profiles` in 3d space, produces faces to skin a surface between // Given a list of two or more path `profiles` in 3d space, produces faces to skin a surface between
// the profiles. Optionally the first and last profiles can have endcaps, or the first and last profiles // the profiles. Optionally the first and last profiles can have endcaps, or the first and last profiles
@ -540,7 +540,7 @@ function _skin_core(profiles, caps) =
// Function: subdivide_and_slice() // Function: subdivide_and_slice()
// Topics: Paths, Path Subdivision // Topics: Paths, Path Subdivision
// Usage: // Usage:
// newprof = subdivide_and_slice(profiles, slices, <numpoints>, <method>, <closed>); // newprof = subdivide_and_slice(profiles, slices, [numpoints], [method], [closed]);
// Description: // Description:
// Subdivides the input profiles to have length `numpoints` where `numpoints` must be at least as // Subdivides the input profiles to have length `numpoints` where `numpoints` must be at least as
// big as the largest input profile. By default `numpoints` is set equal to the length of the // big as the largest input profile. By default `numpoints` is set equal to the length of the
@ -570,7 +570,7 @@ function subdivide_and_slice(profiles, slices, numpoints, method="length", close
// Topics: Paths, Path Subdivision // Topics: Paths, Path Subdivision
// See Also: subdivide_path(), subdivide_and_slice(), path_add_jitter(), jittered_poly() // See Also: subdivide_path(), subdivide_and_slice(), path_add_jitter(), jittered_poly()
// Usage: // Usage:
// spath = subdivide_long_segments(path, maxlen, <closed=>); // spath = subdivide_long_segments(path, maxlen, [closed=]);
// Description: // Description:
// Evenly subdivides long `path` segments until they are all shorter than `maxlen`. // Evenly subdivides long `path` segments until they are all shorter than `maxlen`.
// Arguments: // Arguments:
@ -600,7 +600,7 @@ function subdivide_long_segments(path, maxlen, closed=false) =
// Function: slice_profiles() // Function: slice_profiles()
// Topics: Paths, Path Subdivision // Topics: Paths, Path Subdivision
// Usage: // Usage:
// profs = slice_profiles(profiles, slices, <closed>); // profs = slice_profiles(profiles, slices, [closed]);
// Description: // Description:
// Given an input list of profiles, linearly interpolate between each pair to produce a // Given an input list of profiles, linearly interpolate between each pair to produce a
// more finely sampled list. The parameters `slices` specifies the number of slices to // more finely sampled list. The parameters `slices` specifies the number of slices to
@ -905,9 +905,9 @@ function associate_vertices(polygons, split, curpoly=0) =
// Function&Module: sweep() // Function&Module: sweep()
// Usage: As Module // Usage: As Module
// sweep(shape, transforms, <closed>, <caps>, <style>, <convexity=>, <anchor=>, <spin=>, <orient=>, <extent=>) <attachments>; // sweep(shape, transforms, [closed], [caps], [style], [convexity=], [anchor=], [spin=], [orient=], [extent=]) [attachments];
// Usage: As Function // Usage: As Function
// vnf = sweep(shape, transforms, <closed>, <caps>, <style>); // vnf = sweep(shape, transforms, [closed], [caps], [style]);
// Description: // Description:
// The input `shape` must be a non-self-intersecting 2D polygon or region, and `transforms` // The input `shape` must be a non-self-intersecting 2D polygon or region, and `transforms`
// is a list of 4x4 transformation matrices. The sweep algorithm applies each transformation in sequence // is a list of 4x4 transformation matrices. The sweep algorithm applies each transformation in sequence
@ -1000,9 +1000,9 @@ module sweep(shape, transforms, closed=false, caps, style="min_edge", convexity=
// Function&Module: path_sweep() // Function&Module: path_sweep()
// Usage: As module // Usage: As module
// path_sweep(shape, path, <method>, <normal=>, <closed=>, <twist=>, <twist_by_length=>, <symmetry=>, <last_normal=>, <tangent=>, <relaxed=>, <caps=>, <style=>, <convexity=>, <transforms=>, <anchor=>, <cp=>, <spin=>, <orient=>, <extent=>) <attachments>; // path_sweep(shape, path, [method], [normal=], [closed=], [twist=], [twist_by_length=], [symmetry=], [last_normal=], [tangent=], [relaxed=], [caps=], [style=], [convexity=], [transforms=], [anchor=], [cp=], [spin=], [orient=], [extent=]) [attachments];
// Usage: As function // Usage: As function
// vnf = path_sweep(shape, path, <method>, <normal=>, <closed=>, <twist=>, <twist_by_length=>, <symmetry=>, <last_normal=>, <tangent=>, <relaxed=>, <caps=>, <style=>, <convexity=>, <transforms=>); // vnf = path_sweep(shape, path, [method], [normal=], [closed=], [twist=], [twist_by_length=], [symmetry=], [last_normal=], [tangent=], [relaxed=], [caps=], [style=], [convexity=], [transforms=]);
// Description: // Description:
// Takes as input a 2D polygon path, and a 2d or 3d path and constructs a polyhedron by sweeping the shape along the path. // Takes as input a 2D polygon path, and a 2d or 3d path and constructs a polyhedron by sweeping the shape along the path.
// When run as a module returns the polyhedron geometry. When run as a function returns a VNF by default or if you set `transforms=true` // When run as a module returns the polyhedron geometry. When run as a function returns a VNF by default or if you set `transforms=true`
@ -1418,9 +1418,9 @@ function path_sweep(shape, path, method="incremental", normal, closed=false, twi
// Function&Module: path_sweep2d() // Function&Module: path_sweep2d()
// Usage: as module // Usage: as module
// path_sweep2d(shape, path, <closed>, <caps>, <quality>, <style>, <convexity=>, <anchor=>, <spin=>, <orient=>, <extent=>, <cp=>) <attachments>; // path_sweep2d(shape, path, [closed], [caps], [quality], [style], [convexity=], [anchor=], [spin=], [orient=], [extent=], [cp=]) [attachments];
// Usage: as function // Usage: as function
// vnf = path_sweep2d(shape, path, <closed>, <caps>, <quality>, <style>); // vnf = path_sweep2d(shape, path, [closed], [caps], [quality], [style]);
// Description: // Description:
// Takes an input 2D polygon (the shape) and a 2d path and constructs a polyhedron by sweeping the shape along the path. // Takes an input 2D polygon (the shape) and a 2d path and constructs a polyhedron by sweeping the shape along the path.
// When run as a module returns the polyhedron geometry. When run as a function returns a VNF. // When run as a module returns the polyhedron geometry. When run as a function returns a VNF.

View file

@ -11,7 +11,7 @@
// Module: thread_helix() // Module: thread_helix()
// Usage: // Usage:
// thread_helix(d, pitch, thread_depth, <thread_angle>, <twist>, <profile=>, <left_handed=>, <higbee=>, <internal=>); // thread_helix(d, pitch, thread_depth, [thread_angle], [twist], [profile=], [left_handed=], [higbee=], [internal=]);
// Description: // Description:
// Creates a helical thread with optional end tapering. // Creates a helical thread with optional end tapering.
// Arguments: // Arguments:

View file

@ -15,14 +15,14 @@
// Aliases: translate() // Aliases: translate()
// //
// Usage: As Module // Usage: As Module
// move(<x=>, <y=>, <z=>) ... // move([x=], [y=], [z=]) ...
// move(v) ... // move(v) ...
// Usage: Translate Points // Usage: Translate Points
// pts = move(v, p); // pts = move(v, p);
// pts = move(<x=>, <y=>, <z=>, p=); // pts = move([x=], [y=], [z=], p=);
// Usage: Get Translation Matrix // Usage: Get Translation Matrix
// mat = move(v); // mat = move(v);
// mat = move(<x=>, <y=>, <z=>); // mat = move([x=], [y=], [z=]);
// //
// Topics: Affine, Matrices, Transforms, Translation // Topics: Affine, Matrices, Transforms, Translation
// See Also: left(), right(), fwd(), back(), down(), up(), affine2d_translate(), affine3d_translate() // See Also: left(), right(), fwd(), back(), down(), up(), affine2d_translate(), affine3d_translate()
@ -325,20 +325,20 @@ function up(z=0, p) = move([0,0,z],p=p);
// Function&Module: rot() // Function&Module: rot()
// //
// Usage: As a Module // Usage: As a Module
// rot(a, <cp>, <reverse>) {...} // rot(a, [cp], [reverse]) {...}
// rot([X,Y,Z], <cp>, <reverse>) {...} // rot([X,Y,Z], [cp], [reverse]) {...}
// rot(a, v, <cp>, <reverse>) {...} // rot(a, v, [cp], [reverse]) {...}
// rot(from, to, <a>, <reverse>) {...} // rot(from, to, [a], [reverse]) {...}
// Usage: As a Function to transform data in `p` // Usage: As a Function to transform data in `p`
// pts = rot(a, p=, <cp=>, <reverse=>); // pts = rot(a, p=, [cp=], [reverse=]);
// pts = rot([X,Y,Z], p=, <cp=>, <reverse=>); // pts = rot([X,Y,Z], p=, [cp=], [reverse=]);
// pts = rot(a, v, p=, <cp=>, <reverse=>); // pts = rot(a, v, p=, [cp=], [reverse=]);
// pts = rot(<a>, from=, to=, p=, <reverse=>); // pts = rot([a], from=, to=, p=, [reverse=]);
// Usage: As a Function to return a transform matrix // Usage: As a Function to return a transform matrix
// M = rot(a, <cp=>, <reverse=>, <planar=>); // M = rot(a, [cp=], [reverse=], [planar=]);
// M = rot([X,Y,Z], <cp=>, <reverse=>, <planar=>); // M = rot([X,Y,Z], [cp=], [reverse=], [planar=]);
// M = rot(a, v, <cp=>, <reverse=>, <planar=>); // M = rot(a, v, [cp=], [reverse=], [planar=]);
// M = rot(from=, to=, <a=>, <reverse=>, <planar=>); // M = rot(from=, to=, [a=], [reverse=], [planar=]);
// //
// Topics: Affine, Matrices, Transforms, Rotation // Topics: Affine, Matrices, Transforms, Rotation
// See Also: xrot(), yrot(), zrot(), affine2d_zrot(), affine3d_xrot(), affine3d_yrot(), affine3d_zrot(), affine3d_rot_by_axis(), affine3d_rot_from_to() // See Also: xrot(), yrot(), zrot(), affine2d_zrot(), affine3d_xrot(), affine3d_yrot(), affine3d_zrot(), affine3d_rot_by_axis(), affine3d_rot_from_to()
@ -452,11 +452,11 @@ function rot(a=0, v, cp, from, to, reverse=false, planar=false, p, _m) =
// Function&Module: xrot() // Function&Module: xrot()
// //
// Usage: As Module // Usage: As Module
// xrot(a, <cp=>) ... // xrot(a, [cp=]) ...
// Usage: As a function to rotate points // Usage: As a function to rotate points
// rotated = xrot(a, p, <cp=>); // rotated = xrot(a, p, [cp=]);
// Usage: As a function to return rotation matrix // Usage: As a function to return rotation matrix
// mat = xrot(a, <cp=>); // mat = xrot(a, [cp=]);
// //
// Topics: Affine, Matrices, Transforms, Rotation // Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), yrot(), zrot(), affine2d_zrot(), affine3d_xrot(), affine3d_yrot(), affine3d_zrot() // See Also: rot(), yrot(), zrot(), affine2d_zrot(), affine3d_xrot(), affine3d_yrot(), affine3d_zrot()
@ -498,11 +498,11 @@ function xrot(a=0, p, cp) = rot([a,0,0], cp=cp, p=p);
// Function&Module: yrot() // Function&Module: yrot()
// //
// Usage: As Module // Usage: As Module
// yrot(a, <cp=>) ... // yrot(a, [cp=]) ...
// Usage: Rotate Points // Usage: Rotate Points
// rotated = yrot(a, p, <cp=>); // rotated = yrot(a, p, [cp=]);
// Usage: Get Rotation Matrix // Usage: Get Rotation Matrix
// mat = yrot(a, <cp=>); // mat = yrot(a, [cp=]);
// //
// Topics: Affine, Matrices, Transforms, Rotation // Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), zrot(), affine2d_zrot(), affine3d_xrot(), affine3d_yrot(), affine3d_zrot() // See Also: rot(), xrot(), zrot(), affine2d_zrot(), affine3d_xrot(), affine3d_yrot(), affine3d_zrot()
@ -544,11 +544,11 @@ function yrot(a=0, p, cp) = rot([0,a,0], cp=cp, p=p);
// Function&Module: zrot() // Function&Module: zrot()
// //
// Usage: As Module // Usage: As Module
// zrot(a, <cp=>) ... // zrot(a, [cp=]) ...
// Usage: As Function to rotate points // Usage: As Function to rotate points
// rotated = zrot(a, p, <cp=>); // rotated = zrot(a, p, [cp=]);
// Usage: As Function to return rotation matrix // Usage: As Function to return rotation matrix
// mat = zrot(a, <cp=>); // mat = zrot(a, [cp=]);
// //
// Topics: Affine, Matrices, Transforms, Rotation // Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), yrot(), affine2d_zrot(), affine3d_xrot(), affine3d_yrot(), affine3d_zrot() // See Also: rot(), xrot(), yrot(), affine2d_zrot(), affine3d_xrot(), affine3d_yrot(), affine3d_zrot()
@ -590,11 +590,11 @@ function zrot(a=0, p, cp) = rot(a, cp=cp, p=p);
// Function&Module: xyrot() // Function&Module: xyrot()
// //
// Usage: As Module // Usage: As Module
// xyrot(a, <cp=>) ... // xyrot(a, [cp=]) ...
// Usage: As a Function to rotate points // Usage: As a Function to rotate points
// rotated = xyrot(a, p, <cp=>); // rotated = xyrot(a, p, [cp=]);
// Usage: As a Function to get rotation matrix // Usage: As a Function to get rotation matrix
// mat = xyrot(a, <cp=>); // mat = xyrot(a, [cp=]);
// //
// Topics: Affine, Matrices, Transforms, Rotation // Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), yrot(), zrot(), xzrot(), yzrot(), xyzrot(), affine3d_rot_by_axis() // See Also: rot(), xrot(), yrot(), zrot(), xzrot(), yzrot(), xyzrot(), affine3d_rot_by_axis()
@ -634,11 +634,11 @@ function xyrot(a=0, p, cp) = rot(a=a, v=[1,1,0], cp=cp, p=p);
// Function&Module: xzrot() // Function&Module: xzrot()
// //
// Usage: As Module // Usage: As Module
// xzrot(a, <cp=>) ... // xzrot(a, [cp=]) ...
// Usage: As Function to rotate points // Usage: As Function to rotate points
// rotated = xzrot(a, p, <cp=>); // rotated = xzrot(a, p, [cp=]);
// Usage: As Function to return rotation matrix // Usage: As Function to return rotation matrix
// mat = xzrot(a, <cp=>); // mat = xzrot(a, [cp=]);
// //
// Topics: Affine, Matrices, Transforms, Rotation // Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), yrot(), zrot(), xyrot(), yzrot(), xyzrot(), affine3d_rot_by_axis() // See Also: rot(), xrot(), yrot(), zrot(), xyrot(), yzrot(), xyzrot(), affine3d_rot_by_axis()
@ -678,11 +678,11 @@ function xzrot(a=0, p, cp) = rot(a=a, v=[1,0,1], cp=cp, p=p);
// Function&Module: yzrot() // Function&Module: yzrot()
// //
// Usage: As Module // Usage: As Module
// yzrot(a, <cp=>) ... // yzrot(a, [cp=]) ...
// Usage: As Function to rotate points // Usage: As Function to rotate points
// rotated = yzrot(a, p, <cp=>); // rotated = yzrot(a, p, [cp=]);
// Usage: As Function to return rotation matrix // Usage: As Function to return rotation matrix
// mat = yzrot(a, <cp=>); // mat = yzrot(a, [cp=]);
// //
// Topics: Affine, Matrices, Transforms, Rotation // Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), yrot(), zrot(), xyrot(), xzrot(), xyzrot(), affine3d_rot_by_axis() // See Also: rot(), xrot(), yrot(), zrot(), xyrot(), xzrot(), xyzrot(), affine3d_rot_by_axis()
@ -722,11 +722,11 @@ function yzrot(a=0, p, cp) = rot(a=a, v=[0,1,1], cp=cp, p=p);
// Function&Module: xyzrot() // Function&Module: xyzrot()
// //
// Usage: As Module // Usage: As Module
// xyzrot(a, <cp=>) ... // xyzrot(a, [cp=]) ...
// Usage: As Function to rotate points // Usage: As Function to rotate points
// rotated = xyzrot(a, p, <cp=>); // rotated = xyzrot(a, p, [cp=]);
// Usage: As Function to return rotation matrix // Usage: As Function to return rotation matrix
// mat = xyzrot(a, <cp=>); // mat = xyzrot(a, [cp=]);
// //
// Topics: Affine, Matrices, Transforms, Rotation // Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), yrot(), zrot(), xyrot(), xzrot(), yzrot(), affine3d_rot_by_axis() // See Also: rot(), xrot(), yrot(), zrot(), xyrot(), xzrot(), yzrot(), affine3d_rot_by_axis()
@ -773,9 +773,9 @@ function xyzrot(a=0, p, cp) = rot(a=a, v=[1,1,1], cp=cp, p=p);
// scale(SCALAR) ... // scale(SCALAR) ...
// scale([X,Y,Z]) ... // scale([X,Y,Z]) ...
// Usage: Scale Points // Usage: Scale Points
// pts = scale(v, p, <cp=>); // pts = scale(v, p, [cp=]);
// Usage: Get Scaling Matrix // Usage: Get Scaling Matrix
// mat = scale(v, <cp=>); // mat = scale(v, [cp=]);
// Topics: Affine, Matrices, Transforms, Scaling // Topics: Affine, Matrices, Transforms, Scaling
// See Also: xscale(), yscale(), zscale(), affine2d_scale(), affine3d_scale() // See Also: xscale(), yscale(), zscale(), affine2d_scale(), affine3d_scale()
// Description: // Description:
@ -837,11 +837,11 @@ function scale(v=1, p, cp=[0,0,0]) =
// //
// //
// Usage: As Module // Usage: As Module
// xscale(x, <cp=>) ... // xscale(x, [cp=]) ...
// Usage: Scale Points // Usage: Scale Points
// scaled = xscale(x, p, <cp=>); // scaled = xscale(x, p, [cp=]);
// Usage: Get Affine Matrix // Usage: Get Affine Matrix
// mat = xscale(x, <cp=>, <planar=>); // mat = xscale(x, [cp=], [planar=]);
// //
// Topics: Affine, Matrices, Transforms, Scaling // Topics: Affine, Matrices, Transforms, Scaling
// See Also: scale(), yscale(), zscale(), affine2d_scale(), affine3d_scale() // See Also: scale(), yscale(), zscale(), affine2d_scale(), affine3d_scale()
@ -895,11 +895,11 @@ function xscale(x=1, p, cp=0, planar=false) =
// Function&Module: yscale() // Function&Module: yscale()
// //
// Usage: As Module // Usage: As Module
// yscale(y, <cp=>) ... // yscale(y, [cp=]) ...
// Usage: Scale Points // Usage: Scale Points
// scaled = yscale(y, p, <cp=>); // scaled = yscale(y, p, [cp=]);
// Usage: Get Affine Matrix // Usage: Get Affine Matrix
// mat = yscale(y, <cp=>, <planar=>); // mat = yscale(y, [cp=], [planar=]);
// //
// Topics: Affine, Matrices, Transforms, Scaling // Topics: Affine, Matrices, Transforms, Scaling
// See Also: scale(), xscale(), zscale(), affine2d_scale(), affine3d_scale() // See Also: scale(), xscale(), zscale(), affine2d_scale(), affine3d_scale()
@ -953,11 +953,11 @@ function yscale(y=1, p, cp=0, planar=false) =
// Function&Module: zscale() // Function&Module: zscale()
// //
// Usage: As Module // Usage: As Module
// zscale(z, <cp=>) ... // zscale(z, [cp=]) ...
// Usage: Scale Points // Usage: Scale Points
// scaled = zscale(z, p, <cp=>); // scaled = zscale(z, p, [cp=]);
// Usage: Get Affine Matrix // Usage: Get Affine Matrix
// mat = zscale(z, <cp=>); // mat = zscale(z, [cp=]);
// //
// Topics: Affine, Matrices, Transforms, Scaling // Topics: Affine, Matrices, Transforms, Scaling
// See Also: scale(), xscale(), yscale(), affine2d_scale(), affine3d_scale() // See Also: scale(), xscale(), yscale(), affine2d_scale(), affine3d_scale()
@ -1078,11 +1078,11 @@ function mirror(v, p) =
// Function&Module: xflip() // Function&Module: xflip()
// //
// Usage: As Module // Usage: As Module
// xflip(<x>) ... // xflip([x]) ...
// Usage: As Function // Usage: As Function
// pt = xflip(p, <x>); // pt = xflip(p, [x]);
// Usage: Get Affine Matrix // Usage: Get Affine Matrix
// pt = xflip(<x>, <planar=>); // pt = xflip([x], [planar=]);
// //
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring // Topics: Affine, Matrices, Transforms, Reflection, Mirroring
// See Also: mirror(), yflip(), zflip(), affine2d_mirror(), affine3d_mirror() // See Also: mirror(), yflip(), zflip(), affine2d_mirror(), affine3d_mirror()
@ -1138,11 +1138,11 @@ function xflip(p, x=0, planar=false) =
// Function&Module: yflip() // Function&Module: yflip()
// //
// Usage: As Module // Usage: As Module
// yflip(<y>) ... // yflip([y]) ...
// Usage: As Function // Usage: As Function
// pt = yflip(p, <y>); // pt = yflip(p, [y]);
// Usage: Get Affine Matrix // Usage: Get Affine Matrix
// pt = yflip(<y>, <planar=>); // pt = yflip([y], [planar=]);
// //
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring // Topics: Affine, Matrices, Transforms, Reflection, Mirroring
// See Also: mirror(), xflip(), zflip(), affine2d_mirror(), affine3d_mirror() // See Also: mirror(), xflip(), zflip(), affine2d_mirror(), affine3d_mirror()
@ -1198,11 +1198,11 @@ function yflip(p, y=0, planar=false) =
// Function&Module: zflip() // Function&Module: zflip()
// //
// Usage: As Module // Usage: As Module
// zflip(<z>) ... // zflip([z]) ...
// Usage: As Function // Usage: As Function
// pt = zflip(p, <z>); // pt = zflip(p, [z]);
// Usage: Get Affine Matrix // Usage: Get Affine Matrix
// pt = zflip(<z>); // pt = zflip([z]);
// //
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring // Topics: Affine, Matrices, Transforms, Reflection, Mirroring
// See Also: mirror(), xflip(), yflip(), affine2d_mirror(), affine3d_mirror() // See Also: mirror(), xflip(), yflip(), affine2d_mirror(), affine3d_mirror()
@ -1246,11 +1246,11 @@ function zflip(p, z=0) =
// Function&Module: xyflip() // Function&Module: xyflip()
// //
// Usage: As Module // Usage: As Module
// xyflip(<cp>) ... // xyflip([cp]) ...
// Usage: As Function // Usage: As Function
// pt = xyflip(p, <cp>); // pt = xyflip(p, [cp]);
// Usage: Get Affine Matrix // Usage: Get Affine Matrix
// pt = xyflip(<cp>, <planar=>); // pt = xyflip([cp], [planar=]);
// //
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring // Topics: Affine, Matrices, Transforms, Reflection, Mirroring
// See Also: mirror(), xflip(), yflip(), zflip(), xzflip(), yzflip(), affine2d_mirror(), affine3d_mirror() // See Also: mirror(), xflip(), yflip(), zflip(), xzflip(), yzflip(), affine2d_mirror(), affine3d_mirror()
@ -1316,11 +1316,11 @@ function xyflip(p, cp=0, planar=false) =
// Function&Module: xzflip() // Function&Module: xzflip()
// //
// Usage: As Module // Usage: As Module
// xzflip(<cp>) ... // xzflip([cp]) ...
// Usage: As Function // Usage: As Function
// pt = xzflip(<cp>, p); // pt = xzflip([cp], p);
// Usage: Get Affine Matrix // Usage: Get Affine Matrix
// pt = xzflip(<cp>); // pt = xzflip([cp]);
// //
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring // Topics: Affine, Matrices, Transforms, Reflection, Mirroring
// See Also: mirror(), xflip(), yflip(), zflip(), xyflip(), yzflip(), affine2d_mirror(), affine3d_mirror() // See Also: mirror(), xflip(), yflip(), zflip(), xyflip(), yzflip(), affine2d_mirror(), affine3d_mirror()
@ -1372,11 +1372,11 @@ function xzflip(p, cp=0) =
// Function&Module: yzflip() // Function&Module: yzflip()
// //
// Usage: As Module // Usage: As Module
// yzflip(<x=>) ... // yzflip([x=]) ...
// Usage: As Function // Usage: As Function
// pt = yzflip(p, <x=>); // pt = yzflip(p, [x=]);
// Usage: Get Affine Matrix // Usage: Get Affine Matrix
// pt = yzflip(<x=>); // pt = yzflip([x=]);
// //
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring // Topics: Affine, Matrices, Transforms, Reflection, Mirroring
// See Also: mirror(), xflip(), yflip(), zflip(), xyflip(), xzflip(), affine2d_mirror(), affine3d_mirror() // See Also: mirror(), xflip(), yflip(), zflip(), xyflip(), xzflip(), affine2d_mirror(), affine3d_mirror()
@ -1433,11 +1433,11 @@ function yzflip(p, cp=0) =
// Function&Module: skew() // Function&Module: skew()
// Usage: As Module // Usage: As Module
// skew(<sxy=>, <sxz=>, <syx=>, <syz=>, <szx=>, <szy=>) ... // skew([sxy=], [sxz=], [syx=], [syz=], [szx=], [szy=]) ...
// Usage: As Function // Usage: As Function
// pts = skew(p, <sxy=>, <sxz=>, <syx=>, <syz=>, <szx=>, <szy=>); // pts = skew(p, [sxy=], [sxz=], [syx=], [syz=], [szx=], [szy=]);
// Usage: Get Affine Matrix // Usage: Get Affine Matrix
// mat = skew(<sxy=>, <sxz=>, <syx=>, <syz=>, <szx=>, <szy=>, <planar=>); // mat = skew([sxy=], [sxz=], [syx=], [syz=], [szx=], [szy=], [planar=]);
// Topics: Affine, Matrices, Transforms, Skewing // Topics: Affine, Matrices, Transforms, Skewing
// See Also: affine2d_skew(), affine3d_skew(), affine3d_skew_xy(), affine3d_skew_xz(), affine3d_skew_yz() // See Also: affine2d_skew(), affine3d_skew(), affine3d_skew_xy(), affine3d_skew_xz(), affine3d_skew_yz()
// //

View file

@ -11,7 +11,7 @@
// Function: is_vector() // Function: is_vector()
// Usage: // Usage:
// is_vector(v, <length>, ...); // is_vector(v, [length], ...);
// Description: // Description:
// Returns true if v is a list of finite numbers. // Returns true if v is a list of finite numbers.
// Arguments: // Arguments:
@ -219,7 +219,7 @@ function vector_axis(v1,v2=undef,v3=undef) =
// Function: vp_tree() // Function: vp_tree()
// Usage: // Usage:
// tree = vp_tree(points, <leafsize>) // tree = vp_tree(points, [leafsize])
// Description: // Description:
// Organizes n-dimensional data into a Vantage Point Tree, which can be // Organizes n-dimensional data into a Vantage Point Tree, which can be
// efficiently searched for for nearest matches. The Vantage Point Tree // efficiently searched for for nearest matches. The Vantage Point Tree
@ -380,7 +380,7 @@ function vp_nearest(points, tree, p, k) =
// Function: search_radius() // Function: search_radius()
// Usage: // Usage:
// index_list = search_radius(points, queries, r, <leafsize>); // index_list = search_radius(points, queries, r, [leafsize]);
// Description: // Description:
// Given a list of points and a compatible list of queries, for each query // Given a list of points and a compatible list of queries, for each query
// search the points list for all points whose distance from the query // search the points list for all points whose distance from the query

View file

@ -51,7 +51,7 @@ function vnf_faces(vnf) = vnf[1];
// Function: vnf_quantize() // Function: vnf_quantize()
// Usage: // Usage:
// vnf2 = vnf_quantize(vnf,<q>); // vnf2 = vnf_quantize(vnf,[q]);
// Description: // Description:
// Quantizes the vertex coordinates of the VNF to the given quanta `q`. // Quantizes the vertex coordinates of the VNF to the given quanta `q`.
// Arguments: // Arguments:
@ -144,7 +144,7 @@ function vnf_add_faces(vnf=EMPTY_VNF, faces) =
// Function: vnf_merge() // Function: vnf_merge()
// Usage: // Usage:
// vnf = vnf_merge([VNF, VNF, VNF, ...], <cleanup>,<eps>); // vnf = vnf_merge([VNF, VNF, VNF, ...], [cleanup],[eps]);
// Description: // Description:
// Given a list of VNF structures, merges them all into a single VNF structure. // Given a list of VNF structures, merges them all into a single VNF structure.
// When cleanup=true, it consolidates all duplicate vertices with a tolerance `eps`, // When cleanup=true, it consolidates all duplicate vertices with a tolerance `eps`,
@ -213,7 +213,7 @@ function vnf_triangulate(vnf) =
// Function: vnf_vertex_array() // Function: vnf_vertex_array()
// Usage: // Usage:
// vnf = vnf_vertex_array(points, <caps>, <cap1>, <cap2>, <reverse>, <col_wrap>, <row_wrap>, <vnf>); // vnf = vnf_vertex_array(points, [caps], [cap1], [cap2], [reverse], [col_wrap], [row_wrap], [vnf]);
// Description: // Description:
// Creates a VNF structure from a vertex list, by dividing the vertices into columns and rows, // Creates a VNF structure from a vertex list, by dividing the vertices into columns and rows,
// adding faces to tile the surface. You can optionally have faces added to wrap the last column // adding faces to tile the surface. You can optionally have faces added to wrap the last column
@ -387,7 +387,7 @@ function vnf_vertex_array(
// Function: vnf_tri_array() // Function: vnf_tri_array()
// Usage: // Usage:
// vnf = vnf_tri_array(points, <row_wrap>, <reverse>) // vnf = vnf_tri_array(points, [row_wrap], [reverse])
// Description: // Description:
// Produces a vnf from an array of points where each row length can differ from the adjacent rows by up to 2 in length. This enables // Produces a vnf from an array of points where each row length can differ from the adjacent rows by up to 2 in length. This enables
// the construction of triangular VNF patches. The resulting VNF can be wrapped along the rows by setting `row_wrap` to true. // the construction of triangular VNF patches. The resulting VNF can be wrapped along the rows by setting `row_wrap` to true.
@ -713,7 +713,7 @@ function vnf_bend(vnf,r,d,axis="Z") =
// Usage: As Function // Usage: As Function
// fails = vnf_validate(vnf); // fails = vnf_validate(vnf);
// Usage: As Module // Usage: As Module
// vnf_validate(vnf, <size>); // vnf_validate(vnf, [size]);
// Description: // Description:
// When called as a function, returns a list of non-manifold errors with the given VNF. // When called as a function, returns a list of non-manifold errors with the given VNF.
// Each error has the format `[ERR_OR_WARN,CODE,MESG,POINTS,COLOR]`. // Each error has the format `[ERR_OR_WARN,CODE,MESG,POINTS,COLOR]`.
@ -1040,7 +1040,7 @@ module vnf_validate(vnf, size=1, show_warns=true, check_isects=false) {
// Function: vnf_halfspace() // Function: vnf_halfspace()
// Usage: // Usage:
// newvnf = vnf_halfspace(plane, vnf, <closed>); // newvnf = vnf_halfspace(plane, vnf, [closed]);
// Description: // Description:
// Returns the intersection of the vnf with a half space. The half space is defined by // Returns the intersection of the vnf with a half space. The half space is defined by
// plane = [A,B,C,D], taking the side where the normal [A,B,C] points: Ax+By+CzD. // plane = [A,B,C,D], taking the side where the normal [A,B,C] points: Ax+By+CzD.