mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
commit
6f1ac73d59
4 changed files with 121 additions and 116 deletions
44
beziers.scad
44
beziers.scad
|
@ -1124,7 +1124,7 @@ function is_patch(x) =
|
|||
|
||||
// Function: bezier_patch()
|
||||
// Usage:
|
||||
// vnf = bezier_patch(patch, [splinesteps], [vnf=], [style=]);
|
||||
// vnf = bezier_patch(patch, [splinesteps], [style=]);
|
||||
// Topics: Bezier Patches
|
||||
// See Also: bezier_points(), bezier_curve(), bezier_path(), bezier_patch_points(), bezier_triangle_point()
|
||||
// Description:
|
||||
|
@ -1137,7 +1137,6 @@ function is_patch(x) =
|
|||
// patch = The rectangular or triangular array of endpoints and control points for this bezier patch.
|
||||
// splinesteps = Number of steps to divide each bezier segment into. For rectangular patches you can specify [XSTEPS,YSTEPS]. Default: 16
|
||||
// ---
|
||||
// vnf = Vertices'n'Faces [VNF structure](vnf.scad) to add new vertices and faces to. Default: empty VNF
|
||||
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", and "quincunx".
|
||||
// Example(3D):
|
||||
// patch = [
|
||||
|
@ -1158,7 +1157,7 @@ function is_patch(x) =
|
|||
// ];
|
||||
// vnf = bezier_patch(tri, splinesteps=16);
|
||||
// vnf_polyhedron(vnf);
|
||||
// Example(3D,FlatSpin,VPD=444): Chaining Patches
|
||||
// Example(3D,FlatSpin,VPD=444): Merging multiple patches
|
||||
// patch = [
|
||||
// // u=0,v=0 u=1,v=0
|
||||
// [[0, 0,0], [33, 0, 0], [67, 0, 0], [100, 0,0]],
|
||||
|
@ -1167,13 +1166,15 @@ function is_patch(x) =
|
|||
// [[0,100,0], [33,100, 0], [67,100, 0], [100,100,0]],
|
||||
// // u=0,v=1 u=1,v=1
|
||||
// ];
|
||||
// vnf1 = bezier_patch(translate(p=patch,[-50,-50,50]));
|
||||
// vnf2 = bezier_patch(vnf=vnf1, rot(a=[90,0,0],p=translate(p=patch,[-50,-50,50])));
|
||||
// vnf3 = bezier_patch(vnf=vnf2, rot(a=[-90,0,0],p=translate(p=patch,[-50,-50,50])));
|
||||
// vnf4 = bezier_patch(vnf=vnf3, rot(a=[180,0,0],p=translate(p=patch,[-50,-50,50])));
|
||||
// vnf5 = bezier_patch(vnf=vnf4, rot(a=[0,90,0],p=translate(p=patch,[-50,-50,50])));
|
||||
// vnf6 = bezier_patch(vnf=vnf5, rot(a=[0,-90,0],p=translate(p=patch,[-50,-50,50])));
|
||||
// vnf_polyhedron(vnf6);
|
||||
// tpatch = translate([-50,-50,50], patch);
|
||||
// vnf = vnf_merge([
|
||||
// bezier_patch(tpatch),
|
||||
// bezier_patch(xrot(90, tpatch)),
|
||||
// bezier_patch(xrot(-90, tpatch)),
|
||||
// bezier_patch(xrot(180, tpatch)),
|
||||
// bezier_patch(yrot(90, tpatch)),
|
||||
// bezier_patch(yrot(-90, tpatch))]);
|
||||
// vnf_polyhedron(vnf);
|
||||
// Example(3D): Connecting Patches with Asymmetric Splinesteps
|
||||
// steps = 8;
|
||||
// edge_patch = [
|
||||
|
@ -1223,10 +1224,10 @@ function is_patch(x) =
|
|||
// )
|
||||
// ];
|
||||
// vnf_polyhedron(concat(edges,corners,faces));
|
||||
function bezier_patch(patch, splinesteps=16, vnf=EMPTY_VNF, style="default") =
|
||||
function bezier_patch(patch, splinesteps=16, style="default") =
|
||||
assert(is_num(splinesteps) || is_vector(splinesteps,2))
|
||||
assert(all_positive(splinesteps))
|
||||
is_tripatch(patch)? _bezier_triangle(patch, splinesteps=splinesteps, vnf=vnf) :
|
||||
is_tripatch(patch)? _bezier_triangle(patch, splinesteps=splinesteps) :
|
||||
let(
|
||||
splinesteps = is_list(splinesteps) ? splinesteps : [splinesteps,splinesteps],
|
||||
uvals = [
|
||||
|
@ -1238,7 +1239,7 @@ function bezier_patch(patch, splinesteps=16, vnf=EMPTY_VNF, style="default") =
|
|||
1-step/splinesteps.y
|
||||
],
|
||||
pts = bezier_patch_points(patch, uvals, vvals),
|
||||
vnf = vnf_vertex_array(pts, style=style, vnf=vnf, reverse=false)
|
||||
vnf = vnf_vertex_array(pts, style=style, reverse=false)
|
||||
) vnf;
|
||||
|
||||
|
||||
|
@ -1431,7 +1432,7 @@ function bezier_patch_degenerate(patch, splinesteps=16, reverse=false, return_ed
|
|||
function _tri_count(n) = (n*(1+n))/2;
|
||||
|
||||
|
||||
function _bezier_triangle(tri, splinesteps=16, vnf=EMPTY_VNF) =
|
||||
function _bezier_triangle(tri, splinesteps=16) =
|
||||
assert(is_num(splinesteps))
|
||||
let(
|
||||
pts = [
|
||||
|
@ -1456,7 +1457,7 @@ function _bezier_triangle(tri, splinesteps=16, vnf=EMPTY_VNF) =
|
|||
)
|
||||
) for (face=allfaces) face
|
||||
]
|
||||
) vnf_merge([vnf,[pts, faces]]);
|
||||
) [pts, faces];
|
||||
|
||||
|
||||
|
||||
|
@ -1507,7 +1508,7 @@ function patch_reverse(patch) =
|
|||
|
||||
// Function: bezier_surface()
|
||||
// Usage:
|
||||
// vnf = bezier_surface(patches, [splinesteps], [vnf=], [style=]);
|
||||
// vnf = bezier_surface(patches, [splinesteps], [style]);
|
||||
// Topics: Bezier Patches
|
||||
// See Also: bezier_patch_points(), bezier_patch_flat()
|
||||
// Description:
|
||||
|
@ -1520,8 +1521,6 @@ function patch_reverse(patch) =
|
|||
// Arguments:
|
||||
// patches = A list of triangular and/or rectangular bezier patches.
|
||||
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
||||
// ---
|
||||
// vnf = Vertices'n'Faces [VNF structure](vnf.scad) to add new vertices and faces to. Default: empty VNF
|
||||
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", and "quincunx".
|
||||
// Example(3D):
|
||||
// patch1 = [
|
||||
|
@ -1538,13 +1537,8 @@ function patch_reverse(patch) =
|
|||
// ];
|
||||
// vnf = bezier_surface(patches=[patch1, patch2], splinesteps=16);
|
||||
// polyhedron(points=vnf[0], faces=vnf[1]);
|
||||
function bezier_surface(patches=[], splinesteps=16, vnf=EMPTY_VNF, style="default", i=0) =
|
||||
let(
|
||||
vnf = (i >= len(patches))? vnf :
|
||||
bezier_patch(patches[i], splinesteps=splinesteps, vnf=vnf, style=style)
|
||||
) (i >= len(patches))? vnf :
|
||||
bezier_surface(patches=patches, splinesteps=splinesteps, vnf=vnf, style=style, i=i+1);
|
||||
|
||||
function bezier_surface(patches=[], splinesteps=16, style="default") =
|
||||
vnf_merge([for(patch=patches) bezier_patch(patch, splinesteps=splinesteps, style=style)]);
|
||||
|
||||
|
||||
// Module: trace_bezier_patches()
|
||||
|
|
|
@ -11,7 +11,7 @@ module test_skin() {
|
|||
assert_equal(vnf1, [[[-100,-100,0],[0,100,0],[0,100,0],[100,-100,0],[-100,-100,100],[-100,100,100],[100,100,100],[100,-100,100]],[[0,5,4],[0,1,5],[5,2,6],[2,3,6],[6,3,7],[3,0,7],[7,0,4]]]);
|
||||
|
||||
vnf2 = skin(profiles, slices=0, caps=true, method="distance");
|
||||
assert_equal(vnf2,[[[-100,-100,0],[0,100,0],[0,100,0],[100,-100,0],[-100,-100,100],[-100,100,100],[100,100,100],[100,-100,100]],[[0,5,4],[0,1,5],[5,2,6],[2,3,6],[6,3,7],[3,0,7],[7,0,4],[3,2,1,0],[4,5,6,7]]]);
|
||||
assert_equal(vnf2,[[[-100,-100,0],[0,100,0],[0,100,0],[100,-100,0],[-100,-100,100],[-100,100,100],[100,100,100],[100,-100,100]],[[3,2,1,0],[4,5,6,7],[0,5,4],[0,1,5],[5,2,6],[2,3,6],[6,3,7],[3,0,7],[7,0,4]]]);
|
||||
}
|
||||
test_skin();
|
||||
|
||||
|
|
|
@ -98,9 +98,9 @@ module test_vnf_vertex_array() {
|
|||
points=[for (h=[0:100:100]) [[100,-50,h],[-100,-50,h],[0,100,h]]],
|
||||
col_wrap=true, caps=true, style="quincunx"
|
||||
);
|
||||
assert(vnf1 == [[[100,-50,0],[-100,-50,0],[0,100,0],[100,-50,100],[-100,-50,100],[0,100,100]],[[0,4,3],[0,1,4],[1,5,4],[1,2,5],[2,3,5],[2,0,3],[2,1,0],[3,4,5]]]);
|
||||
assert(vnf2 == [[[100,-50,0],[-100,-50,0],[0,100,0],[100,-50,100],[-100,-50,100],[0,100,100]],[[0,1,3],[3,1,4],[1,2,4],[4,2,5],[2,0,5],[5,0,3],[2,1,0],[3,4,5]]]);
|
||||
assert(vnf3 == [[[100,-50,0],[-100,-50,0],[0,100,0],[100,-50,100],[-100,-50,100],[0,100,100],[0,-50,50],[-50,25,50],[50,25,50]],[[0,6,3],[3,6,4],[4,6,1],[1,6,0],[1,7,4],[4,7,5],[5,7,2],[2,7,1],[2,8,5],[5,8,3],[3,8,0],[0,8,2],[2,1,0],[3,4,5]]]);
|
||||
assert(vnf1 == [[[100,-50,0],[-100,-50,0],[0,100,0],[100,-50,100],[-100,-50,100],[0,100,100]],[[2,1,0],[3,4,5],[0,4,3],[0,1,4],[1,5,4],[1,2,5],[2,3,5],[2,0,3]]]);
|
||||
assert(vnf2 == [[[100,-50,0],[-100,-50,0],[0,100,0],[100,-50,100],[-100,-50,100],[0,100,100]],[[2,1,0],[3,4,5],[0,1,3],[3,1,4],[1,2,4],[4,2,5],[2,0,5],[5,0,3]]]);
|
||||
assert(vnf3 == [[[100,-50,0],[-100,-50,0],[0,100,0],[100,-50,100],[-100,-50,100],[0,100,100],[0,-50,50],[-50,25,50],[50,25,50]],[[2,1,0],[3,4,5],[0,6,3],[3,6,4],[4,6,1],[1,6,0],[1,7,4],[4,7,5],[5,7,2],[2,7,1],[2,8,5],[5,8,3],[3,8,0],[0,8,2]]]);
|
||||
}
|
||||
test_vnf_vertex_array();
|
||||
|
||||
|
|
185
vnf.scad
185
vnf.scad
|
@ -16,17 +16,17 @@
|
|||
// You can construct a `polyhedron()` in parts by describing each part in a self-contained VNF, then
|
||||
// merge the various VNFs to get the completed polyhedron vertex list and faces.
|
||||
|
||||
// Constant: EMPTY_VNF
|
||||
// Description:
|
||||
// The empty VNF data structure. Equal to `[[],[]]`.
|
||||
/// Constant: EMPTY_VNF
|
||||
/// Description:
|
||||
/// The empty VNF data structure. Equal to `[[],[]]`.
|
||||
EMPTY_VNF = [[],[]]; // The standard empty VNF with no vertices or faces.
|
||||
|
||||
|
||||
// Function: vnf_vertex_array()
|
||||
// Usage:
|
||||
// vnf = vnf_vertex_array(points, [caps], [cap1], [cap2], [style], [reverse], [col_wrap], [row_wrap], [vnf]);
|
||||
// vnf = vnf_vertex_array(points, [caps], [cap1], [cap2], [style], [reverse], [col_wrap], [row_wrap]);
|
||||
// Description:
|
||||
// Creates a VNF structure from a vertex list, by dividing the vertices into columns and rows,
|
||||
// Creates a VNF structure from a rectangular vertex list, by dividing the vertices into columns and rows,
|
||||
// adding faces to tile the surface. You can optionally have faces added to wrap the last column
|
||||
// back to the first column, or wrap the last row to the first. Endcaps can be added to either
|
||||
// the first and/or last rows. The style parameter determines how the quadrilaterals are divided into
|
||||
|
@ -34,17 +34,18 @@ EMPTY_VNF = [[],[]]; // The standard empty VNF with no vertices or faces.
|
|||
// is the uniform subdivision in the other (alternate) direction. The "min_edge" style picks the shorter edge to
|
||||
// subdivide for each quadrilateral, so the division may not be uniform across the shape. The "quincunx" style
|
||||
// adds a vertex in the center of each quadrilateral and creates four triangles, and the "convex" and "concave" styles
|
||||
// chooses the locally convex/concave subdivision.
|
||||
// chooses the locally convex/concave subdivision. Degenerate faces
|
||||
// are not included in the output, but if this results in unused vertices they will still appear in the output.
|
||||
// Arguments:
|
||||
// points = A list of vertices to divide into columns and rows.
|
||||
// ---
|
||||
// caps = If true, add endcap faces to the first AND last rows.
|
||||
// cap1 = If true, add an endcap face to the first row.
|
||||
// cap2 = If true, add an endcap face to the last row.
|
||||
// col_wrap = If true, add faces to connect the last column to the first.
|
||||
// row_wrap = If true, add faces to connect the last row to the first.
|
||||
// reverse = If true, reverse all face normals.
|
||||
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", "min_edge", "quincunx","convex" and "concave".
|
||||
// vnf = If given, add all the vertices and faces to this existing VNF structure.
|
||||
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", "min_edge", "quincunx", "convex" and "concave".
|
||||
// Example(3D):
|
||||
// vnf = vnf_vertex_array(
|
||||
// points=[
|
||||
|
@ -104,12 +105,12 @@ function vnf_vertex_array(
|
|||
col_wrap=false,
|
||||
row_wrap=false,
|
||||
reverse=false,
|
||||
style="default",
|
||||
vnf=EMPTY_VNF
|
||||
style="default"
|
||||
) =
|
||||
assert(!(any([caps,cap1,cap2]) && !col_wrap), "col_wrap must be true if caps are requested")
|
||||
assert(!(any([caps,cap1,cap2]) && row_wrap), "Cannot combine caps with row_wrap")
|
||||
assert(in_list(style,["default","alt","quincunx", "convex","concave", "min_edge"]))
|
||||
assert(is_matrix(points[0], n=3),"Point array has the wrong shape or points are not 3d")
|
||||
assert(is_consistent(points), "Non-rectangular or invalid point array")
|
||||
let(
|
||||
pts = flatten(points),
|
||||
|
@ -117,7 +118,7 @@ function vnf_vertex_array(
|
|||
rows = len(points),
|
||||
cols = len(points[0])
|
||||
)
|
||||
rows<=1 || cols<=1 ? vnf :
|
||||
rows<=1 || cols<=1 ? EMPTY_VNF :
|
||||
let(
|
||||
cap1 = first_defined([cap1,caps,false]),
|
||||
cap2 = first_defined([cap2,caps,false]),
|
||||
|
@ -134,66 +135,61 @@ function vnf_vertex_array(
|
|||
i4 = ((r+0)%rows)*cols + ((c+1)%cols)
|
||||
)
|
||||
mean([pts[i1], pts[i2], pts[i3], pts[i4]])
|
||||
],
|
||||
allfaces = [
|
||||
if (cap1) count(cols,reverse=!reverse),
|
||||
if (cap2) count(cols,(rows-1)*cols, reverse=reverse),
|
||||
for (r = [0:1:rowcnt-1], c=[0:1:colcnt-1])
|
||||
each
|
||||
let(
|
||||
i1 = ((r+0)%rows)*cols + ((c+0)%cols),
|
||||
i2 = ((r+1)%rows)*cols + ((c+0)%cols),
|
||||
i3 = ((r+1)%rows)*cols + ((c+1)%cols),
|
||||
i4 = ((r+0)%rows)*cols + ((c+1)%cols),
|
||||
faces =
|
||||
style=="quincunx"?
|
||||
let(i5 = pcnt + r*colcnt + c)
|
||||
[[i1,i5,i2],[i2,i5,i3],[i3,i5,i4],[i4,i5,i1]]
|
||||
: style=="alt"?
|
||||
[[i1,i4,i2],[i2,i4,i3]]
|
||||
: style=="min_edge"?
|
||||
let(
|
||||
d42=norm(pts[i4]-pts[i2]),
|
||||
d13=norm(pts[i1]-pts[i3]),
|
||||
shortedge = d42<=d13 ? [[i1,i4,i2],[i2,i4,i3]]
|
||||
: [[i1,i3,i2],[i1,i4,i3]]
|
||||
)
|
||||
shortedge
|
||||
: style=="convex"?
|
||||
let( // Find normal for 3 of the points. Is the other point above or below?
|
||||
n = (reverse?-1:1)*cross(pts[i2]-pts[i1],pts[i3]-pts[i1]),
|
||||
convexfaces = n==0 ? [[i1,i4,i3]]
|
||||
: n*pts[i4] > n*pts[i1] ? [[i1,i4,i2],[i2,i4,i3]]
|
||||
: [[i1,i3,i2],[i1,i4,i3]]
|
||||
)
|
||||
convexfaces
|
||||
: style=="concave"?
|
||||
let( // Find normal for 3 of the points. Is the other point above or below?
|
||||
n = (reverse?-1:1)*cross(pts[i2]-pts[i1],pts[i3]-pts[i1]),
|
||||
concavefaces = n==0 ? [[i1,i4,i3]]
|
||||
: n*pts[i4] <= n*pts[i1] ? [[i1,i4,i2],[i2,i4,i3]]
|
||||
: [[i1,i3,i2],[i1,i4,i3]]
|
||||
)
|
||||
concavefaces
|
||||
: [[i1,i3,i2],[i1,i4,i3]],
|
||||
// remove degenerate faces
|
||||
culled_faces= [for(face=faces)
|
||||
if (norm(verts[face[0]]-verts[face[1]])>EPSILON &&
|
||||
norm(verts[face[1]]-verts[face[2]])>EPSILON &&
|
||||
norm(verts[face[2]]-verts[face[0]])>EPSILON)
|
||||
face
|
||||
],
|
||||
rfaces = reverse? [for (face=culled_faces) reverse(face)] : culled_faces
|
||||
)
|
||||
rfaces,
|
||||
]
|
||||
)
|
||||
vnf_merge(cleanup=false, [
|
||||
vnf,
|
||||
[
|
||||
verts,
|
||||
[
|
||||
for (r = [0:1:rowcnt-1], c=[0:1:colcnt-1])
|
||||
each
|
||||
let(
|
||||
i1 = ((r+0)%rows)*cols + ((c+0)%cols),
|
||||
i2 = ((r+1)%rows)*cols + ((c+0)%cols),
|
||||
i3 = ((r+1)%rows)*cols + ((c+1)%cols),
|
||||
i4 = ((r+0)%rows)*cols + ((c+1)%cols),
|
||||
faces =
|
||||
style=="quincunx"?
|
||||
let(i5 = pcnt + r*colcnt + c)
|
||||
[[i1,i5,i2],[i2,i5,i3],[i3,i5,i4],[i4,i5,i1]]
|
||||
: style=="alt"?
|
||||
[[i1,i4,i2],[i2,i4,i3]]
|
||||
: style=="min_edge"?
|
||||
let(
|
||||
d42=norm(pts[i4]-pts[i2]),
|
||||
d13=norm(pts[i1]-pts[i3]),
|
||||
shortedge = d42<=d13 ? [[i1,i4,i2],[i2,i4,i3]]
|
||||
: [[i1,i3,i2],[i1,i4,i3]]
|
||||
)
|
||||
shortedge
|
||||
: style=="convex"?
|
||||
let( // Find normal for 3 of the points. Is the other point above or below?
|
||||
n = (reverse?-1:1)*cross(pts[i2]-pts[i1],pts[i3]-pts[i1]),
|
||||
convexfaces = n==0 ? [[i1,i4,i3]]
|
||||
: n*pts[i4] > n*pts[i1] ? [[i1,i4,i2],[i2,i4,i3]]
|
||||
: [[i1,i3,i2],[i1,i4,i3]]
|
||||
)
|
||||
convexfaces
|
||||
: style=="concave"?
|
||||
let( // Find normal for 3 of the points. Is the other point above or below?
|
||||
n = (reverse?-1:1)*cross(pts[i2]-pts[i1],pts[i3]-pts[i1]),
|
||||
concavefaces = n==0 ? [[i1,i4,i3]]
|
||||
: n*pts[i4] <= n*pts[i1] ? [[i1,i4,i2],[i2,i4,i3]]
|
||||
: [[i1,i3,i2],[i1,i4,i3]]
|
||||
)
|
||||
concavefaces
|
||||
: [[i1,i3,i2],[i1,i4,i3]],
|
||||
// remove degenerate faces
|
||||
culled_faces= [for(face=faces)
|
||||
if (norm(verts[face[0]]-verts[face[1]])>EPSILON &&
|
||||
norm(verts[face[1]]-verts[face[2]])>EPSILON &&
|
||||
norm(verts[face[2]]-verts[face[0]])>EPSILON)
|
||||
face
|
||||
],
|
||||
rfaces = reverse? [for (face=culled_faces) reverse(face)] : culled_faces
|
||||
)
|
||||
rfaces,
|
||||
if (cap1) count(cols,reverse=!reverse),
|
||||
if (cap2) count(cols,(rows-1)*cols, reverse=reverse)
|
||||
]
|
||||
]
|
||||
]);
|
||||
[verts,allfaces];
|
||||
|
||||
|
||||
// Function: vnf_tri_array()
|
||||
|
@ -202,7 +198,8 @@ function vnf_vertex_array(
|
|||
// Description:
|
||||
// Produces a vnf from an array of points where each row length can differ from the adjacent rows by up to 2 in length. This enables
|
||||
// the construction of triangular VNF patches. The resulting VNF can be wrapped along the rows by setting `row_wrap` to true.
|
||||
// You cannot wrap columns: if you need to do that you'll need to combine two VNF arrays that share edges.
|
||||
// You cannot wrap columns: if you need to do that you'll need to merge two VNF arrays that share edges. Degenerate faces
|
||||
// are not included in the output, but if this results in unused vertices they will still appear in the output.
|
||||
// Arguments:
|
||||
// points = List of point lists for each row
|
||||
// row_wrap = If true then add faces connecting the first row and last row. These rows must differ by at most 2 in length.
|
||||
|
@ -217,18 +214,18 @@ function vnf_vertex_array(
|
|||
// vnf = vnf_tri_array(pts);
|
||||
// vnf_wireframe(vnf,width=0.1);
|
||||
// color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9);
|
||||
// Example(3D): Chaining two VNFs to construct a cone with one point length change between rows.
|
||||
// Example(3D): Merging two VNFs to construct a cone with one point length change between rows.
|
||||
// pts1 = [for(z=[0:10]) path3d(arc(3+z,r=z/2+1, angle=[0,180]),10-z)];
|
||||
// pts2 = [for(z=[0:10]) path3d(arc(3+z,r=z/2+1, angle=[180,360]),10-z)];
|
||||
// vnf = vnf_tri_array(pts1,
|
||||
// vnf=vnf_tri_array(pts2));
|
||||
// vnf = vnf_merge([vnf_tri_array(pts1),
|
||||
// vnf_tri_array(pts2)]);
|
||||
// color("green")vnf_wireframe(vnf,width=0.1);
|
||||
// vnf_polyhedron(vnf);
|
||||
// Example(3D): Cone with length change two between rows
|
||||
// pts1 = [for(z=[0:1:10]) path3d(arc(3+2*z,r=z/2+1, angle=[0,180]),10-z)];
|
||||
// pts2 = [for(z=[0:1:10]) path3d(arc(3+2*z,r=z/2+1, angle=[180,360]),10-z)];
|
||||
// vnf = vnf_tri_array(pts1,
|
||||
// vnf=vnf_tri_array(pts2));
|
||||
// vnf = vnf_merge([vnf_tri_array(pts1),
|
||||
// vnf_tri_array(pts2)]);
|
||||
// color("green")vnf_wireframe(vnf,width=0.1);
|
||||
// vnf_polyhedron(vnf);
|
||||
// Example(3D,NoAxes): Point count can change irregularly
|
||||
|
@ -237,8 +234,8 @@ function vnf_vertex_array(
|
|||
// vnf = vnf_tri_array(pts);
|
||||
// vnf_wireframe(vnf,width=0.1);
|
||||
// color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9);
|
||||
function vnf_tri_array(points, row_wrap=false, reverse=false, vnf=EMPTY_VNF) =
|
||||
let(
|
||||
function vnf_tri_array(points, row_wrap=false, reverse=false) =
|
||||
let(
|
||||
lens = [for(row=points) len(row)],
|
||||
rowstarts = [0,each cumsum(lens)],
|
||||
faces =
|
||||
|
@ -273,8 +270,17 @@ function vnf_tri_array(points, row_wrap=false, reverse=false, vnf=EMPTY_VNF) =
|
|||
for(j=[count:1:select(lens,i+1)]) reverse ? [ j+nextrow-1, j+rowstart+1, j+rowstart]: [ j+nextrow-1, j+rowstart, j+rowstart+1],
|
||||
] :
|
||||
assert(false,str("Unsupported row length difference of ",delta, " between row ",i," and ",(i+1)%len(points)))
|
||||
])
|
||||
vnf_merge(cleanup=true, [vnf, [flatten(points), faces]]);
|
||||
],
|
||||
verts = flatten(points),
|
||||
culled_faces=
|
||||
[for(face=faces)
|
||||
if (norm(verts[face[0]]-verts[face[1]])>EPSILON &&
|
||||
norm(verts[face[1]]-verts[face[2]])>EPSILON &&
|
||||
norm(verts[face[2]]-verts[face[0]])>EPSILON)
|
||||
face
|
||||
]
|
||||
)
|
||||
[flatten(points), culled_faces];
|
||||
|
||||
|
||||
|
||||
|
@ -292,7 +298,9 @@ function vnf_tri_array(points, row_wrap=false, reverse=false, vnf=EMPTY_VNF) =
|
|||
// eps = the tolerance in finding duplicates when cleanup=true. Default: EPSILON
|
||||
function vnf_merge(vnfs, cleanup=false, eps=EPSILON) =
|
||||
is_vnf(vnfs) ? vnf_merge([vnfs], cleanup, eps) :
|
||||
assert( is_vnf_list(vnfs) , "Improper vnf or vnf list")
|
||||
assert( is_vnf_list(vnfs) , "Improper vnf or vnf list")
|
||||
len(vnfs)==1 ? (cleanup ? _vnf_cleanup(vnfs[0][0],vnfs[0][1],eps) : vnfs[0])
|
||||
:
|
||||
let (
|
||||
offs = cumsum([ 0, for (vnf = vnfs) len(vnf[0]) ]),
|
||||
verts = [for (vnf=vnfs) each vnf[0]],
|
||||
|
@ -307,7 +315,11 @@ function vnf_merge(vnfs, cleanup=false, eps=EPSILON) =
|
|||
offs[i] + j ]
|
||||
]
|
||||
)
|
||||
! cleanup ? [verts, faces] :
|
||||
cleanup? _vnf_cleanup(verts,faces,eps) : [verts,faces];
|
||||
|
||||
|
||||
|
||||
function _vnf_cleanup(verts,faces,eps) =
|
||||
let(
|
||||
dedup = vector_search(verts,eps,verts), // collect vertex duplicates
|
||||
map = [for(i=idx(verts)) min(dedup[i]) ], // remap duplic vertices
|
||||
|
@ -405,7 +417,7 @@ function _cleave_connected_region(region) =
|
|||
|
||||
// Function: vnf_from_region()
|
||||
// Usage:
|
||||
// vnf = vnf_from_region(region, [transform], [reverse], [vnf]);
|
||||
// vnf = vnf_from_region(region, [transform], [reverse]);
|
||||
// Description:
|
||||
// Given a (two-dimensional) region, applies the given transformation matrix to it and makes a (three-dimensional) triangulated VNF of
|
||||
// faces for that region, reversed if desired.
|
||||
|
@ -413,7 +425,6 @@ function _cleave_connected_region(region) =
|
|||
// region = The region to conver to a vnf.
|
||||
// transform = If given, a transformation matrix to apply to the faces generated from the region. Default: No transformation applied.
|
||||
// reverse = If true, reverse the normals of the faces generated from the region. An untransformed region will have face normals pointing `UP`. Default: false
|
||||
// vnf = If given, the faces are added to this VNF. Default: `EMPTY_VNF`
|
||||
// Example(3D):
|
||||
// region = [square([20,10],center=true),
|
||||
// right(5,square(4,center=true)),
|
||||
|
@ -422,11 +433,10 @@ function _cleave_connected_region(region) =
|
|||
// color("gray")down(.125)
|
||||
// linear_extrude(height=.125)region(region);
|
||||
// vnf_wireframe(vnf,width=.25);
|
||||
function vnf_from_region(region, transform, reverse=false, vnf=EMPTY_VNF) =
|
||||
function vnf_from_region(region, transform, reverse=false) =
|
||||
let (
|
||||
regions = region_parts(force_region(region)),
|
||||
vnfs = [
|
||||
if (vnf != EMPTY_VNF) vnf,
|
||||
for (rgn = regions) let(
|
||||
cleaved = path3d(_cleave_connected_region(rgn)),
|
||||
face = is_undef(transform)? cleaved : apply(transform,cleaved),
|
||||
|
@ -684,11 +694,11 @@ module vnf_polyhedron(vnf, convexity=2, extent=true, cp=[0,0,0], anchor="origin"
|
|||
|
||||
// Module: vnf_wireframe()
|
||||
// Usage:
|
||||
// vnf_wireframe(vnf, <r|d>);
|
||||
// vnf_wireframe(vnf, [width]);
|
||||
// Description:
|
||||
// Given a VNF, creates a wire frame ball-and-stick model of the polyhedron with a cylinder for
|
||||
// each edge and a sphere at each vertex. The width parameter specifies the width of the sticks
|
||||
// that form the wire frame.
|
||||
// that form the wire frame and the diameter of the balls.
|
||||
// Arguments:
|
||||
// vnf = A vnf structure
|
||||
// width = width of the cylinders forming the wire frame. Default: 1
|
||||
|
@ -930,6 +940,7 @@ function _triangulate_planar_convex_polygons(polys) =
|
|||
// Arguments:
|
||||
// vnf = The original VNF to bend.
|
||||
// r = If given, the radius where the size of the original shape is the same as in the original.
|
||||
// ---
|
||||
// d = If given, the diameter where the size of the original shape is the same as in the original.
|
||||
// axis = The axis to wrap around. "X", "Y", or "Z". Default: "Z"
|
||||
// Example(3D):
|
||||
|
|
Loading…
Reference in a new issue