Merge pull request #1269 from adrianVmariano/master

fix arg handling bugs for trapezohedron and tweak docs
This commit is contained in:
Revar Desmera 2023-09-02 20:32:37 -07:00 committed by GitHub
commit 7121278078
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -51,10 +51,16 @@ function _unique_groups(m) = [
// regular_polyhedron("trapezohedron", [longside=],[h=], ...) [CHILDREN]; // regular_polyhedron("trapezohedron", [longside=],[h=], ...) [CHILDREN];
// Description: // Description:
// Creates a regular polyhedron with optional rounding. Children are placed on the polyhedron's faces. (Note that this is not attachable.) // Creates a regular polyhedron with optional rounding. Children are placed on the polyhedron's faces. (Note that this is not attachable.)
// The regular_polyhedron module knows about many different regular and semi-regular polyhedra. You can refer to them
// by name. The complete list with their names appears below in the examples. You can also search the polyhedra
// for ones that meet various critera using `type=`, `faces=`, `facetype=` or `hasfaces=`. This will result in a list of polyhedra in a
// canonical order that might include several options. By default if you give specifications that produce several polyhedra, the first
// one will be returned. You can use the `index=` argument to select others from your list of hits. Examples of polyhedron selection appear
// after the full list of polyhedra below.
// . // .
// **Selecting the polyhedron:** // **Selecting the polyhedron:**
// You constrain the polyhedra list by specifying different characteristics, that must all be met // You constrain the polyhedra list by specifying different characteristics, that must all be met
// * `name`: e.g. `"dodecahedron"` or `"pentagonal icositetrahedron"` // * `name`: e.g. `"dodecahedron"` or `"pentagonal icositetrahedron"`. The name fully identifies the polyhedron, so no other characteristic should be given.
// * `type`: Options are `"platonic"`, `"archimedean"` and `"catalan"` // * `type`: Options are `"platonic"`, `"archimedean"` and `"catalan"`
// * `faces`: The required number of faces // * `faces`: The required number of faces
// * `facetype`: The required face type(s). List of vertex counts for the faces. Exactly the listed types of faces must appear: // * `facetype`: The required face type(s). List of vertex counts for the faces. Exactly the listed types of faces must appear:
@ -114,31 +120,31 @@ function _unique_groups(m) = [
// parameters. // parameters.
// * Trapezohedron: a family of solids with an even number of kite shaped sides. // * Trapezohedron: a family of solids with an even number of kite shaped sides.
// One example of a trapezohedron is the d10 die, which is a 10 face trapezohedron. // One example of a trapezohedron is the d10 die, which is a 10 face trapezohedron.
// You must specify exactly two of `side`, `longside`, `h`, and `r` (or `d`). // You must specify exactly two of `side`, `longside`, `h` (or `height`), and `r` (or `d`).
// You cannot create trapezohedron shapes using `mr`, `ir`, or `or`. // You cannot create trapezohedron shapes using `mr`, `ir`, or `or`.
// * `side`: Length of the short side. // * `side`: Length of the short side.
// * `longside`: Length of the long side that extends to the apex. // * `longside`: Length of the long side that extends to the apex.
// * `h`: Distance from the center to the apex. // * `h` or `height`: Distance from the center to the apex.
// * `r`: Radius of the polygon that defines the equatorial vertices. // * `r`: Radius of the polygon that defines the equatorial vertices.
// * `d`: Diameter of the polygon that defines the equatorial vertices. // * `d`: Diameter of the polygon that defines the equatorial vertices.
// . // .
// * Named stellations: various polyhedra such as the Kepler-Poinsot solids are stellations with // * Named stellations: various polyhedra such as three of the four Kepler-Poinsot solids are stellations with
// specific pyramid heights. To make them easier to generate you can specify them by name. // specific pyramid heights. To make them easier to generate you can specify them by name.
// This is equivalent to giving the name of the appropriate base solid and the magic stellate // This is equivalent to giving the name of the appropriate base solid and the magic stellate
// parameter needed to produce that shape. The supported solids are: // parameter needed to produce that shape. The supported solids are:
// * `"great dodecahedron"` // * `"great dodecahedron"`
// * `"small stellated dodecahedron"` // * `"small stellated dodecahedron"`
// * `"great stellated dodecahedron"` // * `"great stellated dodecahedron"`
// * `"small triambic icosahedron"` // * `"small triambic icosahedron"` (not a Kepler-Poinsot solid)
// //
// Arguments: // Arguments:
// name = Name of polyhedron to create. // name = Name of polyhedron to create.
// --- // ---
// index = Index to select from polyhedron list. Default: 0.
// type = Type of polyhedron: "platonic", "archimedean", "catalan". // type = Type of polyhedron: "platonic", "archimedean", "catalan".
// faces = Number of faces. // faces = Number of faces.
// facetype = Scalar or vector listing required type of faces as vertex count. Polyhedron must have faces of every type listed and no other types. // facetype = Scalar or vector listing required type of faces as vertex count. Polyhedron must have faces of every type listed and no other types.
// hasfaces = Scalar of vector list face vertex counts. Polyhedron must have at least one of the listed types of face. // hasfaces = Scalar of vector list face vertex counts. Polyhedron must have at least one of the listed types of face.
// index = Index to select from polyhedron list. Default: 0.
// side = Length of the smallest edge of the polyhedron. Default: 1 (if no radius or diameter is given). // side = Length of the smallest edge of the polyhedron. Default: 1 (if no radius or diameter is given).
// ir = inner radius. Polyhedron is scaled so it has the specified inner radius. // ir = inner radius. Polyhedron is scaled so it has the specified inner radius.
// mr = middle radius. Polyhedron is scaled so it has the specified middle radius. // mr = middle radius. Polyhedron is scaled so it has the specified middle radius.
@ -197,7 +203,7 @@ function _unique_groups(m) = [
// regular_polyhedron("small triambic icosahedron"); // regular_polyhedron("small triambic icosahedron");
// Example: Third Archimedean solid // Example: Third Archimedean solid
// regular_polyhedron(type="archimedean", index=2); // regular_polyhedron(type="archimedean", index=2);
// Example(Med): Solids that have 8 or 10 vertex faces // Example(Med): Solids that have at least one face with either 8 vertices or 10 vertices
// N = len(regular_polyhedron_info("index set", hasfaces=[8,10])); // N = len(regular_polyhedron_info("index set", hasfaces=[8,10]));
// for(i=[0:N-1]) right(3*i) // for(i=[0:N-1]) right(3*i)
// regular_polyhedron(hasfaces=[8,10], index=i, mr=1); // regular_polyhedron(hasfaces=[8,10], index=i, mr=1);
@ -237,7 +243,7 @@ function _unique_groups(m) = [
// cylinder(r=.1, h=.5); // cylinder(r=.1, h=.5);
// right(2) regular_polyhedron(name="tetrahedron", anchor=UP, rotate_children=false) // right(2) regular_polyhedron(name="tetrahedron", anchor=UP, rotate_children=false)
// cylinder(r=.1, h=.5); // cylinder(r=.1, h=.5);
// Example(FlatSpin,Med,VPD=15): Using `$face` you can have full control of the construction of your children. This example constructs the Great Icosahedron. // Example(FlatSpin,Med,VPD=15): Using `$face` you can have full control of the construction of your children. This example constructs the Great Icosahedron, the one Kepler-Poinsot solid that cannot be made directly with {{regular_polyhedron()}}.
// module makestar(pts) { // Make a star from a point list // module makestar(pts) { // Make a star from a point list
// polygon( // polygon(
// [ // [
@ -309,8 +315,8 @@ module regular_polyhedron(
draw=true, draw=true,
rotate_children=true, rotate_children=true,
stellate = false, stellate = false,
longside=undef, // special parameter for trapezohedron longside=undef, // special parameter for trapezohedron
h=undef // special parameter for trapezohedron h=undef,height=undef // special parameter for trapezohedron
) { ) {
dummy=assert(is_num(rounding) && rounding>=0, "'rounding' must be nonnegative"); dummy=assert(is_num(rounding) && rounding>=0, "'rounding' must be nonnegative");
entry = regular_polyhedron_info( entry = regular_polyhedron_info(
@ -322,7 +328,7 @@ module regular_polyhedron(
anchor=anchor, anchor=anchor,
facedown=facedown, facedown=facedown,
stellate=stellate, stellate=stellate,
longside=longside, h=h longside=longside, h=h, height=height
); );
scaled_points = entry[0]; scaled_points = entry[0];
translation = entry[1]; translation = entry[1];
@ -584,11 +590,11 @@ _stellated_polyhedra_ = [
// info = Desired information to return for the polyhedron // info = Desired information to return for the polyhedron
// name = Name of polyhedron to create. // name = Name of polyhedron to create.
// --- // ---
// index = Index to select from polyhedron list. Default: 0.
// type = Type of polyhedron: "platonic", "archimedean", "catalan". // type = Type of polyhedron: "platonic", "archimedean", "catalan".
// faces = Number of faces. // faces = Number of faces.
// facetype = Scalar or vector listing required type of faces as vertex count. Polyhedron must have faces of every type listed and no other types. // facetype = Scalar or vector listing required type of faces as vertex count. Polyhedron must have faces of every type listed and no other types.
// hasfaces = Scalar of vector list face vertex counts. Polyhedron must have at least one of the listed types of face. // hasfaces = Scalar of vector list face vertex counts. Polyhedron must have at least one of the listed types of face.
// index = Index to select from polyhedron list. Default: 0.
// side = Length of the smallest edge of the polyhedron. Default: 1 (if no radius or diameter is given). // side = Length of the smallest edge of the polyhedron. Default: 1 (if no radius or diameter is given).
// or / r / d = outer radius. Polyhedron is scaled so it has the specified outer radius or diameter. // or / r / d = outer radius. Polyhedron is scaled so it has the specified outer radius or diameter.
// mr = middle radius. Polyhedron is scaled so it has the specified middle radius. // mr = middle radius. Polyhedron is scaled so it has the specified middle radius.
@ -607,11 +613,12 @@ function regular_polyhedron_info(
r=undef, d=undef, r=undef, d=undef,
anchor=CENTER, anchor=CENTER,
facedown=true, stellate=false, facedown=true, stellate=false,
longside=undef, h=undef // special parameters for trapezohedron longside=undef, h=undef, height=undef // special parameters for trapezohedron
) = let( ) = let(
argcount = num_defined([side,ir,mr,or,r,d]) argcount = num_defined([side,ir,mr,or,r,d])
) )
assert(argcount<=1, "You must specify only one of 'side', 'ir', 'mr', 'or', 'r', and 'd'") assert(name=="trapezohedron" || argcount<=1, "You must specify only one of 'side', 'ir', 'mr', 'or', 'r', and 'd'")
assert(name!="trapezohedron" || num_defined([ir,mr,or])==0, "Trapezohedron does not accept 'ir', 'mr' or 'or'")
let( let(
////////////////////// //////////////////////
//Index values into the _polyhedra_ array //Index values into the _polyhedra_ array
@ -662,7 +669,7 @@ function regular_polyhedron_info(
let( let(
entry = ( entry = (
name == "trapezohedron"? ( name == "trapezohedron"? (
_trapezohedron(faces=faces, side=side, longside=longside, h=h, r=r) _trapezohedron(faces=faces, side=side, longside=longside, h=h, r=r, d=d, height=height)
) : ( ) : (
_polyhedra_[!is_undef(index)? _polyhedra_[!is_undef(index)?
indexlist[index] : indexlist[index] :
@ -671,7 +678,7 @@ function regular_polyhedron_info(
), ),
valid_facedown = is_bool(facedown) || in_list(facedown, entry[facevertices]) valid_facedown = is_bool(facedown) || in_list(facedown, entry[facevertices])
) )
assert(name == "trapezohedron" || num_defined([longside,h])==0, "The 'longside' and 'h' parameters are only allowed with trapezohedrons") assert(name == "trapezohedron" || num_defined([longside,h,height])==0, "The 'longside', 'h' and 'height' parameters are only allowed with trapezohedrons")
assert(valid_facedown,str("'facedown' set to ",facedown," but selected polygon only has faces with size(s) ",entry[facevertices])) assert(valid_facedown,str("'facedown' set to ",facedown," but selected polygon only has faces with size(s) ",entry[facevertices]))
let( let(
scalefactor = ( scalefactor = (
@ -739,14 +746,16 @@ function _stellate_faces(scalefactor,stellate,vertices,faces_normals) =
) [newfaces, normals, allpts]; ) [newfaces, normals, allpts];
function _trapezohedron(faces, r, side, longside, h, d) = function _trapezohedron(faces, r, side, longside, h, height, d) =
assert(faces%2==0, "Must set 'faces' to an even number for trapezohedron") assert(faces%2==0, "Must set 'faces' to an even number for trapezohedron")
assert(is_undef(h) || is_undef(height), "Cannot define both 'h' and 'height'")
let( let(
r = get_radius(r=r, d=d), r = get_radius(r=r, d=d),
h = first_defined([h,height]),
N = faces/2, N = faces/2,
parmcount = num_defined([r,side,longside,h]) parmcount = num_defined([r,side,longside,h])
) )
assert(parmcount==2,"Must define exactly two of 'r', 'side', 'longside', and 'height'") assert(parmcount==2,"Must define exactly two of 'r' (or 'd'), 'side', 'longside', and 'h' (or 'height')")
let( let(
separation = ( // z distance between non-apex vertices that aren't in the same plane separation = ( // z distance between non-apex vertices that aren't in the same plane
!is_undef(h) ? 2*h*sqr(tan(90/N)) : !is_undef(h) ? 2*h*sqr(tan(90/N)) :