helix rewrite

make skin() take regions
This commit is contained in:
Adrian Mariano 2021-10-01 21:27:52 -04:00
parent df5971ba0f
commit 71b22e5850
2 changed files with 42 additions and 22 deletions

View file

@ -688,32 +688,49 @@ module arc(N, r, angle, d, cp, points, width, thickness, start, wedge=false)
// Function: helix() // Function: helix()
// Description:
// Returns a 3D helical path.
// Usage: // Usage:
// helix(turns, h, n, r|d, [cp], [scale]); // helix([l|h], [turns], [angle], r|r1|r2, d|d1|d2)
// Description:
// Returns a 3D helical path on a cone, including the degerate case of flat spirals.
// You can specify start and end radii. You can give the length, the helix angle, or the number of turns: two
// of these three parameters define the helix. For a flat helix you must give length 0 and a turn count.
// Helix will be right handed if turns is positive and left handed if it is negative.
// The angle is calculateld based on the radius at the base of the helix.
// Arguments: // Arguments:
// h = Height of spiral. // h|l = Height/length of helix, zero for a flat spiral
// turns = Number of turns in spiral. // ---
// n = Number of spiral sides. // turns = Number of turns in helix, positive for right handed
// r = Radius of spiral. // angle = helix angle
// d = Radius of spiral. // r = Radius of helix
// cp = Centerpoint of spiral. Default: `[0,0]` // r1 = Radius of bottom of helix
// scale = [X,Y] scaling factors for each axis. Default: `[1,1]` // r2 = Radius of top of helix
// d = Diameter of helix
// d1 = Diameter of bottom of helix
// d2 = Diameter of top of helix
// Example(3D): // Example(3D):
// trace_path(helix(turns=2.5, h=100, n=24, r=50), N=1, showpts=true); // trace_path(helix(turns=2.5, h=100, r=50), N=1, showpts=true);
function helix(turns=3, h=100, n=12, r, d, cp=[0,0], scale=[1,1]) = let( // Example(3D): Helix that turns the other way
rr=get_radius(r=r, d=d, dflt=100), // trace_path(helix(turns=-2.5, h=100, r=50), N=1, showpts=true);
cnt=floor(turns*n), // Example(3D): Flat helix (note points are still 3d)
dz=h/cnt // stroke(helix(h=0,r1=50,r2=25,l=0, turns=4));
) [ function helix(l,h,turns,angle, r, r1, r2, d, d1, d2)=
for (i=[0:1:cnt]) [ let(
rr * cos(i*360/n) * scale.x + cp.x, r1=get_radius(r=r,r1=r1,d=d,d1=d1,dflt=1),
rr * sin(i*360/n) * scale.y + cp.y, r2=get_radius(r=r,r1=r2,d=d,d1=d2,dflt=1),
i*dz length = first_defined([l,h])
] )
]; assert(num_defined([length,turns,angle])==2,"Must define exactly two of l/h, turns, and angle")
assert(is_undef(angle) || length!=0, "Cannot give length 0 with an angle")
let(
// length advances dz for each turn
dz = is_def(angle) && length!=0 ? 2*PI*r1*tan(angle) : length/abs(turns),
maxtheta = is_def(turns) ? 360*turns : 360*length/dz,
N = segs(max(r1,r2))
)
[for(theta=lerpn(0,maxtheta, max(3,ceil(abs(maxtheta)*N/360))))
let(R=lerp(r1,r2,theta/maxtheta))
[R*cos(theta), R*sin(theta), abs(theta)/360 * dz]];
function _normal_segment(p1,p2) = function _normal_segment(p1,p2) =

View file

@ -395,6 +395,9 @@ module skin(profiles, slices, refine=1, method="direct", sampling, caps, closed=
function skin(profiles, slices, refine=1, method="direct", sampling, caps, closed=false, z, style="min_edge") = function skin(profiles, slices, refine=1, method="direct", sampling, caps, closed=false, z, style="min_edge") =
assert(is_def(slices),"The slices argument must be specified.") assert(is_def(slices),"The slices argument must be specified.")
assert(is_list(profiles) && len(profiles)>1, "Must provide at least two profiles") assert(is_list(profiles) && len(profiles)>1, "Must provide at least two profiles")
let(
profiles = [for(p=profiles) if (is_region(p) && len(p)==1) p[0] else p]
)
let( bad = [for(i=idx(profiles)) if (!(is_path(profiles[i]) && len(profiles[i])>2)) i]) let( bad = [for(i=idx(profiles)) if (!(is_path(profiles[i]) && len(profiles[i])>2)) i])
assert(len(bad)==0, str("Profiles ",bad," are not a paths or have length less than 3")) assert(len(bad)==0, str("Profiles ",bad," are not a paths or have length less than 3"))
let( let(