Add synopsis to coords and linalg

This commit is contained in:
Adrian Mariano 2023-04-30 22:43:11 -04:00
parent 1bee8c96f9
commit 7368878256
3 changed files with 50 additions and 7 deletions

View file

@ -16,6 +16,7 @@
// pt = point2d(p, [fill]);
// Topics: Coordinates, Points
// See Also: path2d(), point3d(), path3d()
// Synopsis: Convert a vector to 2d.
// Description:
// Returns a 2D vector/point from a 2D or 3D vector. If given a 3D point, removes the Z coordinate.
// Arguments:
@ -29,6 +30,7 @@ function point2d(p, fill=0) = assert(is_list(p)) [for (i=[0:1]) (p[i]==undef)? f
// pts = path2d(points);
// Topics: Coordinates, Points, Paths
// See Also: point2d(), point3d(), path3d()
// Synopsis: Convert a path to 2d.
// Description:
// Returns a list of 2D vectors/points from a list of 2D, 3D or higher dimensional vectors/points.
// Removes the extra coordinates from higher dimensional points. The input must be a path, where
@ -47,6 +49,7 @@ function path2d(points) =
// pt = point3d(p, [fill]);
// Topics: Coordinates, Points
// See Also: path2d(), point2d(), path3d()
// Synopsis: Convert a vector to 3d.
// Description:
// Returns a 3D vector/point from a 2D or 3D vector.
// Arguments:
@ -61,6 +64,7 @@ function point3d(p, fill=0) =
// Usage:
// pts = path3d(points, [fill]);
// Topics: Coordinates, Points, Paths
// Synopsis: Convert a path to 3d.
// See Also: point2d(), path2d(), point3d()
// Description:
// Returns a list of 3D vectors/points from a list of 2D or higher dimensional vectors/points
@ -85,6 +89,7 @@ function path3d(points, fill=0) =
// Usage:
// pt = point4d(p, [fill]);
// Topics: Coordinates, Points
// Synopsis: Convert a vector to 4d.
// See Also: point2d(), path2d(), point3d(), path3d(), path4d()
// Description:
// Returns a 4D vector/point from a 2D or 3D vector.
@ -100,6 +105,7 @@ function point4d(p, fill=0) = assert(is_list(p))
// pt = path4d(points, [fill]);
// Topics: Coordinates, Points, Paths
// See Also: point2d(), path2d(), point3d(), path3d(), point4d()
// Convert a path to 4d.
// Description:
// Returns a list of 4D vectors/points from a list of 2D or 3D vectors/points.
// Arguments:
@ -132,6 +138,7 @@ function path4d(points, fill=0) =
// pt = polar_to_xy(r, theta);
// pt = polar_to_xy([r, theta]);
// Topics: Coordinates, Points, Paths
// Synopsis: Convert 2d polar coordinates to cartesian coordinates.
// See Also: xy_to_polar(), xyz_to_cylindrical(), cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz()
// Description:
// Convert polar coordinates to 2D cartesian coordinates.
@ -161,6 +168,7 @@ function polar_to_xy(r,theta=undef) = let(
// r_theta = xy_to_polar(x,y);
// r_theta = xy_to_polar([X,Y]);
// Topics: Coordinates, Points, Paths
// Synopsis: Convert 2d cartesian coordinates to polar coordinates (radius and angle)
// See Also: polar_to_xy(), xyz_to_cylindrical(), cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz()
// Description:
// Convert 2D cartesian coordinates to polar coordinates.
@ -189,6 +197,7 @@ function xy_to_polar(x,y=undef) = let(
// xy = project_plane(plane, p);
// Usage: To get a transform matrix
// M = project_plane(plane)
// Synopsis: Project a set of points onto a specified plane, returning 2d points.
// Description:
// Maps the provided 3d point(s) from 3D coordinates to a 2d coordinate system defined by `plane`. Points that are not
// on the specified plane will be projected orthogonally onto the plane. This coordinate system is useful if you need
@ -264,6 +273,7 @@ function project_plane(plane,p) =
// xyz = lift_plane(plane, p);
// Usage: to get transform matrix
// M = lift_plane(plane);
// Synopsis: Map a list of 2d points onto a plane in 3d.
// Topics: Coordinates, Points, Paths
// See Also: project_plane()
// Description:
@ -316,7 +326,8 @@ function lift_plane(plane, p) =
// pt = cylindrical_to_xyz(r, theta, z);
// pt = cylindrical_to_xyz([r, theta, z]);
// Topics: Coordinates, Points, Paths
// See Also: xyz_to_cylindrical(), xyz_to_spherical(), spherical_to_xyz()
// See Also: xyz_to_cylindrical(), xy_to_polar(), polar_to_xy(), xyz_to_spherical(), spherical_to_xyz()
// Synopsis: Convert cylindrical coordinates to cartesian coordinates.
// Description:
// Convert cylindrical coordinates to 3D cartesian coordinates. Returns [X,Y,Z] cartesian coordinates.
// Arguments:
@ -338,7 +349,8 @@ function cylindrical_to_xyz(r,theta=undef,z=undef) = let(
// rtz = xyz_to_cylindrical(x,y,z);
// rtz = xyz_to_cylindrical([X,Y,Z]);
// Topics: Coordinates, Points, Paths
// See Also: cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz()
// Synopsis: Convert 3d cartesian coordinates to cylindrical coordinates.
// See Also: cylindrical_to_xyz(), xy_to_polar(), polar_to_xy(), xyz_to_spherical(), spherical_to_xyz()
// Description:
// Convert 3D cartesian coordinates to cylindrical coordinates. Returns [radius,theta,Z].
// Theta is the angle counter-clockwise of X+ on the XY plane. Z is height above the XY plane.
@ -360,8 +372,9 @@ function xyz_to_cylindrical(x,y=undef,z=undef) = let(
// pt = spherical_to_xyz([r, theta, phi]);
// Description:
// Convert spherical coordinates to 3D cartesian coordinates. Returns [X,Y,Z] cartesian coordinates.
// Synopsis: Convert spherical coordinates to 3d cartesian coordinates.
// Topics: Coordinates, Points, Paths
// See Also: cylindrical_to_xyz(), xyz_to_spherical(), xyz_to_cylindrical()
// See Also: cylindrical_to_xyz(), xyz_to_spherical(), xyz_to_cylindrical(), altaz_to_xyz(), xyz_to_altaz()
// Arguments:
// r = distance from origin.
// theta = angle in degrees, counter-clockwise of X+ on the XY plane.
@ -381,7 +394,8 @@ function spherical_to_xyz(r,theta=undef,phi=undef) = let(
// r_theta_phi = xyz_to_spherical(x,y,z)
// r_theta_phi = xyz_to_spherical([X,Y,Z])
// Topics: Coordinates, Points, Paths
// See Also: cylindrical_to_xyz(), spherical_to_xyz(), xyz_to_cylindrical()
// Synopsis: Convert 3d cartesian coordinates to spherical coordinates.
// See Also: cylindrical_to_xyz(), spherical_to_xyz(), xyz_to_cylindrical(), altaz_to_xyz(), xyz_to_altaz()
// Description:
// Convert 3D cartesian coordinates to spherical coordinates. Returns [r,theta,phi], where phi is
// the angle from the Z+ pole, and theta is degrees counter-clockwise of X+ on the XY plane.
@ -403,6 +417,7 @@ function xyz_to_spherical(x,y=undef,z=undef) = let(
// pt = altaz_to_xyz([alt, az, r]);
// Topics: Coordinates, Points, Paths
// See Also: cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz(), xyz_to_cylindrical(), xyz_to_altaz()
// Synopsis: Convert altitude/azimuth/range to 3d cartesian coordinates.
// Description:
// Convert altitude/azimuth/range coordinates to 3D cartesian coordinates.
// Returns [X,Y,Z] cartesian coordinates.
@ -426,6 +441,7 @@ function altaz_to_xyz(alt,az=undef,r=undef) = let(
// alt_az_r = xyz_to_altaz([X,Y,Z]);
// Topics: Coordinates, Points, Paths
// See Also: cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz(), xyz_to_cylindrical(), altaz_to_xyz()
// Synopsis: Convert 3d cartesian coordinates to [altitude,azimuth,range].
// Description:
// Convert 3D cartesian coordinates to altitude/azimuth/range coordinates.
// Returns [altitude,azimuth,range], where altitude is angle above the

View file

@ -34,6 +34,7 @@
// Usage:
// test = is_matrix(A, [m], [n], [square])
// Topics: Matrices
// Synopsis: Check if input is a numeric matrix, optionally of specified size
// Description:
// Returns true if A is a numeric matrix of height m and width n with finite entries. If m or n
// are omitted or set to undef then true is returned for any positive dimension.
@ -57,6 +58,7 @@ function is_matrix(A,m,n,square=false) =
// Description:
// Returns true if the input matrix is symmetric, meaning it approximately equals its transpose.
// The matrix can have arbitrary entries.
// Synopsis: Checks if matrix is symmetric
// Arguments:
// A = matrix to test
// eps = epsilon for comparing equality. Default: 1e-12
@ -73,6 +75,7 @@ function is_matrix_symmetric(A,eps=1e-12) =
// or around the origin if `centered` is true.
// The matrix must be 3x3 (representing a 2d transformation) or 4x4 (representing a 3d transformation).
// You can set `dim` to 2 to require a 2d transform (3x3 matrix) or to 3 to require a 3d transform (4x4 matrix).
// Synopsis: Check if a transformation matrix represents a rotation.
// Arguments:
// A = matrix to test
// dim = if set, specify dimension in which the transform operates (2 or 3)
@ -97,6 +100,7 @@ function is_rotation(A,dim,centered=false) =
// echo_matrix(M, [description], [sig], [sep], [eps]);
// dummy = echo_matrix(M, [description], [sig], [sep], [eps]),
// Topics: Matrices
// Synopsis: Print a matrix neatly to the console.
// Description:
// Display a numerical matrix in a readable columnar format with `sig` significant
// digits. Values smaller than eps display as zero. If you give a description
@ -138,6 +142,7 @@ module echo_matrix(M,description,sig=4,sep=1,eps=1e-9)
// Description:
// Extracts entry `i` from each list in M, or equivalently column i from the matrix M, and returns it as a vector.
// This function will return `undef` at all entry positions indexed by i not found in M.
// Synopsis: Extract a column from a matrix.
// Arguments:
// M = The given list of lists.
// i = The index to fetch
@ -161,6 +166,7 @@ function column(M, i) =
// mat = submatrix(M, idx1, idx2);
// Topics: Matrices, Arrays
// See Also: column(), block_matrix(), submatrix_set()
// Synopsis: Extract a submatrix from a matrix
// Description:
// The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columns listed in idx2.
// Arguments:
@ -195,6 +201,7 @@ function submatrix(M,idx1,idx2) =
// Topics: Affine, Matrices, Transforms
// Description:
// Create an `n` by `n` square identity matrix.
// Synopsis: Return identity matrix.
// Arguments:
// n = The size of the identity matrix square, `n` by `n`.
// Example:
@ -229,7 +236,8 @@ function ident(n) = [
// Description:
// Creates a square matrix with the items in the list `diag` on
// its diagonal. The off diagonal entries are set to offdiag,
// which is zero by default.
// which is zero by default.
// Synopsis: Make a diagonal matrix.
// Arguments:
// diag = A list of items to put in the diagnal cells of the matrix.
// offdiag = Value to put in non-diagonal matrix cells.
@ -242,6 +250,7 @@ function diagonal_matrix(diag, offdiag=0) =
// Usage:
// M = transpose(M, [reverse]);
// Topics: Linear Algebra, Matrices
// Synopsis: Transpose a matrix
// See Also: submatrix(), block_matrix(), hstack(), flatten()
// Description:
// Returns the transpose of the given input matrix. The input can be a matrix with arbitrary entries or
@ -320,8 +329,9 @@ function transpose(M, reverse=false) =
// Usage:
// x = outer_product(u,v);
// Topics: Linear Algebra, Matrices
// Synopsis: Compute the outer product of two vectors.
// Description:
// Compute the outer product of two vectors, a matrix.
// Compute the outer product of two vectors, which is a matrix.
// Usage:
// M = outer_product(u,v);
function outer_product(u,v) =
@ -333,6 +343,7 @@ function outer_product(u,v) =
// mat = submatrix_set(M, A, [m], [n]);
// Topics: Matrices, Arrays
// See Also: column(), submatrix()
// Synopsis: Takes a matrix as input and change values in a submatrix.
// Description:
// Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but
// you can specify offset coordinates m and n. If A (as adjusted by m and n) extends beyond the bounds
@ -361,6 +372,7 @@ function submatrix_set(M,A,m=0,n=0) =
// A = hstack(M1, M2)
// A = hstack(M1, M2, M3)
// A = hstack([M1, M2, M3, ...])
// Synopsis: Make a new matrix by stacking matrices horizontally.
// Topics: Matrices, Arrays
// See Also: column(), submatrix(), block_matrix()
// Description:
@ -415,6 +427,7 @@ function hstack(M1, M2, M3) =
// bmat = block_matrix([[M11, M12,...],[M21, M22,...], ... ]);
// Topics: Matrices, Arrays
// See Also: column(), submatrix()
// Make a new matrix from a block of matrices.
// Description:
// Create a block matrix by supplying a matrix of matrices, which will
// be combined into one unified matrix. Every matrix in one row
@ -461,6 +474,7 @@ function block_matrix(M) =
// Usage:
// solv = linear_solve(A,b,[pivot])
// Topics: Matrices, Linear Algebra
// Synopsis: Solve Ax=b or, for overdetermined case, solve the least square problem.
// Description:
// Solves the linear system Ax=b. If `A` is square and non-singular the unique solution is returned. If `A` is overdetermined
// the least squares solution is returned. If `A` is underdetermined, the minimal norm solution is returned.
@ -498,6 +512,7 @@ function linear_solve(A,b,pivot=true) =
// Usage:
// x = linear_solve3(A,b)
// Topics: Matrices, Linear Algebra
// Synopsis: Fast solution to Ax=b where A is 3x3.
// Description:
// Fast solution to a 3x3 linear system using Cramer's rule (which appears to be the fastest
// method in OpenSCAD). The input `A` must be a 3x3 matrix. Returns undef if `A` is singular.
@ -523,6 +538,7 @@ function linear_solve3(A,b) =
// Usage:
// mat = matrix_inverse(A)
// Topics: Matrices, Linear Algebra
// Synopsis: General matrix inverse.
// Description:
// Compute the matrix inverse of the square matrix `A`. If `A` is singular, returns `undef`.
// Note that if you just want to solve a linear system of equations you should NOT use this function.
@ -536,6 +552,7 @@ function matrix_inverse(A) =
// Function: rot_inverse()
// Usage:
// B = rot_inverse(A)
// Synopsis: Invert 2d or 3d rotation transformations.
// Topics: Matrices, Linear Algebra, Affine
// Description:
// Inverts a 2d (3x3) or 3d (4x4) rotation matrix. The matrix can be a rotation around any center,
@ -558,6 +575,7 @@ function rot_inverse(T) =
// Usage:
// x = null_space(A)
// Topics: Matrices, Linear Algebra
// Synopsis: Return basis for the null space of A.
// Description:
// Returns an orthonormal basis for the null space of `A`, namely the vectors {x} such that Ax=0.
// If the null space is just the origin then returns an empty list.
@ -575,6 +593,7 @@ function null_space(A,eps=1e-12) =
// Usage:
// qr = qr_factor(A,[pivot]);
// Topics: Matrices, Linear Algebra
// Synopsis: Compute QR factorization of a matrix.
// Description:
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R,P]. This factorization can be
// used to solve linear systems of equations. The factorization is `A = Q*R*transpose(P)`. If pivot is false (the default)
@ -626,6 +645,7 @@ function _swap_matrix(n,i,j) =
// Usage:
// x = back_substitute(R, b, [transpose]);
// Topics: Matrices, Linear Algebra
// Synopsis: Solve an upper triangular system, Rx=b.
// Description:
// Solves the problem Rx=b where R is an upper triangular square matrix. The lower triangular entries of R are
// ignored. If transpose==true then instead solve transpose(R)*x=b.
@ -658,6 +678,7 @@ function _back_substitute(R, b, x=[]) =
// Usage:
// L = cholesky(A);
// Topics: Matrices, Linear Algebra
// Synopsis: Compute the Cholesky factorization of a matrix.
// Description:
// Compute the cholesky factor, L, of the symmetric positive definite matrix A.
// The matrix L is lower triangular and `L * transpose(L) = A`. If the A is
@ -694,6 +715,7 @@ function _cholesky(A,L,n) =
// Usage:
// d = det2(M);
// Topics: Matrices, Linear Algebra
// Synopsis: Compute determinant of 2x2 matrix.
// Description:
// Rturns the determinant for the given 2x2 matrix.
// Arguments:
@ -710,6 +732,7 @@ function det2(M) =
// Usage:
// d = det3(M);
// Topics: Matrices, Linear Algebra
// Synopsis: Compute determinant of 3x3 matrix.
// Description:
// Returns the determinant for the given 3x3 matrix.
// Arguments:
@ -727,6 +750,7 @@ function det3(M) =
// Usage:
// d = det4(M);
// Topics: Matrices, Linear Algebra
// Synopsis: Compute determinant of 4x4 matrix.
// Description:
// Returns the determinant for the given 4x4 matrix.
// Arguments:
@ -751,6 +775,7 @@ function det4(M) =
// Topics: Matrices, Linear Algebra
// Description:
// Returns the determinant for the given square matrix.
// Synopsis: compute determinant of an arbitrary square matrix.
// Arguments:
// M = The NxN square matrix to get the determinant of.
// Example:
@ -782,6 +807,7 @@ function determinant(M) =
// Usage:
// norm_fro(A)
// Topics: Matrices, Linear Algebra
// Synopsis: Compute Frobenius norm of a matrix
// Description:
// Computes frobenius norm of input matrix. The frobenius norm is the square root of the sum of the
// squares of all of the entries of the matrix. On vectors it is the same as the usual 2-norm.
@ -795,6 +821,7 @@ function norm_fro(A) =
// Usage:
// matrix_trace(M)
// Topics: Matrices, Linear Algebra
// Synopsis: Compute the trace of a square matrix.
// Description:
// Computes the trace of a square matrix, the sum of the entries on the diagonal.
function matrix_trace(M) =

View file

@ -3159,7 +3159,7 @@ module path_text(path, text, font, size, thickness, lettersize, offset=0, revers
start = center ? (path_length(path) - textlength)/2 : 0;
pts = path_cut_points(path, add_scalar([ each cumsum(lcenter)],start+0*lsize[0]/2), direction=true);
pts = path_cut_points(path, add_scalar(cumsum(lcenter),start), direction=true);
usernorm = is_def(normal);
usetop = is_def(top);