mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-19 19:09:36 +00:00
commit
75a7dabfd2
13 changed files with 399 additions and 131 deletions
|
@ -1235,6 +1235,8 @@ module show(tags="")
|
|||
// }
|
||||
module diff(neg, pos=undef, keep=undef)
|
||||
{
|
||||
// Don't perform the operation if the current tags are hidden
|
||||
if (attachment_is_shown($tags)) {
|
||||
difference() {
|
||||
if (pos != undef) {
|
||||
show(pos) children();
|
||||
|
@ -1247,6 +1249,7 @@ module diff(neg, pos=undef, keep=undef)
|
|||
}
|
||||
show(neg) children();
|
||||
}
|
||||
}
|
||||
if (keep!=undef) {
|
||||
show(keep) children();
|
||||
} else if (pos!=undef) {
|
||||
|
@ -1280,6 +1283,8 @@ module diff(neg, pos=undef, keep=undef)
|
|||
// }
|
||||
module intersect(a, b=undef, keep=undef)
|
||||
{
|
||||
// Don't perform the operation if the current tags are hidden
|
||||
if (attachment_is_shown($tags)) {
|
||||
intersection() {
|
||||
if (b != undef) {
|
||||
show(b) children();
|
||||
|
@ -1292,6 +1297,7 @@ module intersect(a, b=undef, keep=undef)
|
|||
}
|
||||
show(a) children();
|
||||
}
|
||||
}
|
||||
if (keep!=undef) {
|
||||
show(keep) children();
|
||||
} else if (b!=undef) {
|
||||
|
|
14
beziers.scad
14
beziers.scad
|
@ -356,7 +356,7 @@ function bezier_segment_length(curve, start_u=0, end_u=1, max_deflect=0.01) =
|
|||
|
||||
// Function: fillet3pts()
|
||||
// Usage:
|
||||
// fillet3pts(p0, p1, p2, r);
|
||||
// fillet3pts(p0, p1, p2, r|d);
|
||||
// Description:
|
||||
// Takes three points, defining two line segments, and works out the
|
||||
// cubic (degree 3) bezier segment (and surrounding control points)
|
||||
|
@ -368,7 +368,8 @@ function bezier_segment_length(curve, start_u=0, end_u=1, max_deflect=0.01) =
|
|||
// p1 = The middle point.
|
||||
// p2 = The ending point.
|
||||
// r = The radius of the fillet/rounding.
|
||||
// maxerr = Max amount bezier curve should diverge from actual radius curve. Default: 0.1
|
||||
// d = The diameter of the fillet/rounding.
|
||||
// maxerr = Max amount bezier curve should diverge from actual curve. Default: 0.1
|
||||
// Example(2D):
|
||||
// p0 = [40, 0];
|
||||
// p1 = [0, 0];
|
||||
|
@ -376,7 +377,8 @@ function bezier_segment_length(curve, start_u=0, end_u=1, max_deflect=0.01) =
|
|||
// trace_polyline([p0,p1,p2], showpts=true, size=0.5, color="green");
|
||||
// fbez = fillet3pts(p0,p1,p2, 10);
|
||||
// trace_bezier(slice(fbez, 1, -2), size=1);
|
||||
function fillet3pts(p0, p1, p2, r, maxerr=0.1, w=0.5, dw=0.25) = let(
|
||||
function fillet3pts(p0, p1, p2, r, d, maxerr=0.1, w=0.5, dw=0.25) = let(
|
||||
r = get_radius(r=r,d=d),
|
||||
v0 = unit(p0-p1),
|
||||
v1 = unit(p2-p1),
|
||||
midv = unit((v0+v1)/2),
|
||||
|
@ -391,8 +393,8 @@ function fillet3pts(p0, p1, p2, r, maxerr=0.1, w=0.5, dw=0.25) = let(
|
|||
bp = bezier_points([tp0, cp0, cp1, tp1], 0.5),
|
||||
tdist = norm(cp-bp)
|
||||
) (abs(tdist-cpr) <= maxerr)? [tp0, tp0, cp0, cp1, tp1, tp1] :
|
||||
(tdist<cpr)? fillet3pts(p0, p1, p2, r, maxerr=maxerr, w=w+dw, dw=dw/2) :
|
||||
fillet3pts(p0, p1, p2, r, maxerr=maxerr, w=w-dw, dw=dw/2);
|
||||
(tdist<cpr)? fillet3pts(p0, p1, p2, r=r, maxerr=maxerr, w=w+dw, dw=dw/2) :
|
||||
fillet3pts(p0, p1, p2, r=r, maxerr=maxerr, w=w-dw, dw=dw/2);
|
||||
|
||||
|
||||
|
||||
|
@ -613,7 +615,7 @@ function fillet_path(pts, fillet, maxerr=0.1) = concat(
|
|||
p1 = pts[p],
|
||||
p0 = (pts[p-1]+p1)/2,
|
||||
p2 = (pts[p+1]+p1)/2
|
||||
) for (pt = fillet3pts(p0, p1, p2, fillet, maxerr=maxerr)) pt
|
||||
) for (pt = fillet3pts(p0, p1, p2, r=fillet, maxerr=maxerr)) pt
|
||||
],
|
||||
[pts[len(pts)-1], pts[len(pts)-1]]
|
||||
);
|
||||
|
|
|
@ -686,7 +686,7 @@ module rot_copies(rots=[], v=undef, cp=[0,0,0], n=undef, sa=0, offset=0, delta=[
|
|||
// cp = Centerpoint to rotate around.
|
||||
// n = Optional number of evenly distributed copies to be rotated around the ring.
|
||||
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from Y+, when facing the origin from X+. First unrotated copy is placed at that angle.
|
||||
// r = Radius to move children back, away from cp, before rotating. Makes rings of copies.
|
||||
// r = Radius to move children back (Y+), away from cp, before rotating. Makes rings of copies.
|
||||
// subrot = If false, don't sub-rotate children as they are copied around the ring.
|
||||
//
|
||||
// Side Effects:
|
||||
|
@ -743,7 +743,7 @@ module xrot_copies(rots=[], cp=[0,0,0], n=undef, sa=0, r=0, subrot=true)
|
|||
// cp = Centerpoint to rotate around.
|
||||
// n = Optional number of evenly distributed copies to be rotated around the ring.
|
||||
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from X-, when facing the origin from Y+.
|
||||
// r = Radius to move children left, away from cp, before rotating. Makes rings of copies.
|
||||
// r = Radius to move children left (X-), away from cp, before rotating. Makes rings of copies.
|
||||
// subrot = If false, don't sub-rotate children as they are copied around the ring.
|
||||
//
|
||||
// Side Effects:
|
||||
|
@ -800,7 +800,7 @@ module yrot_copies(rots=[], cp=[0,0,0], n=undef, sa=0, r=0, subrot=true)
|
|||
// cp = Centerpoint to rotate around. Default: [0,0,0]
|
||||
// n = Optional number of evenly distributed copies to be rotated around the ring.
|
||||
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from X+, when facing the origin from Z+. Default: 0
|
||||
// r = Radius to move children right, away from cp, before rotating. Makes rings of copies. Default: 0
|
||||
// r = Radius to move children right (X+), away from cp, before rotating. Makes rings of copies. Default: 0
|
||||
// subrot = If false, don't sub-rotate children as they are copied around the ring. Default: true
|
||||
//
|
||||
// Side Effects:
|
||||
|
|
182
masks.scad
182
masks.scad
|
@ -12,8 +12,8 @@
|
|||
|
||||
// Module: angle_pie_mask()
|
||||
// Usage:
|
||||
// angle_pie_mask(r|d, l, ang);
|
||||
// angle_pie_mask(r1|d1, r2|d2, l, ang);
|
||||
// angle_pie_mask(r|d, l, ang, [excess]);
|
||||
// angle_pie_mask(r1|d1, r2|d2, l, ang, [excess]);
|
||||
// Description:
|
||||
// Creates a pie wedge shape that can be used to mask other shapes.
|
||||
// Arguments:
|
||||
|
@ -25,6 +25,7 @@
|
|||
// d = Diameter of circle wedge is created from. (optional)
|
||||
// d1 = Bottom diameter of cone that wedge is created from. (optional)
|
||||
// d2 = Upper diameter of cone that wedge is created from. (optional)
|
||||
// excess = The extra thickness of the mask. Default: `0.1`.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
||||
|
@ -34,14 +35,14 @@ module angle_pie_mask(
|
|||
ang=45, l=undef,
|
||||
r=undef, r1=undef, r2=undef,
|
||||
d=undef, d1=undef, d2=undef,
|
||||
h=undef,
|
||||
h=undef, excess=0.1,
|
||||
anchor=CENTER, spin=0, orient=UP
|
||||
) {
|
||||
l = first_defined([l, h, 1]);
|
||||
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=10);
|
||||
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=10);
|
||||
attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) {
|
||||
pie_slice(ang=ang, l=l+0.1, r1=r1, r2=r2, anchor=CENTER);
|
||||
pie_slice(ang=ang, l=l+excess, r1=r1, r2=r2, anchor=CENTER);
|
||||
children();
|
||||
}
|
||||
}
|
||||
|
@ -49,13 +50,13 @@ module angle_pie_mask(
|
|||
|
||||
// Module: cylinder_mask()
|
||||
// Usage: Mask objects
|
||||
// cylinder_mask(l, r|d, chamfer, [chamfang], [from_end], [circum], [overage], [ends_only]);
|
||||
// cylinder_mask(l, r|d, rounding, [circum], [overage], [ends_only]);
|
||||
// cylinder_mask(l, r|d, [chamfer1|rounding1], [chamfer2|rounding2], [chamfang1], [chamfang2], [from_end], [circum], [overage], [ends_only]);
|
||||
// cylinder_mask(l, r|d, chamfer, [chamfang], [from_end], [circum], [excess], [ends_only]);
|
||||
// cylinder_mask(l, r|d, rounding, [circum], [excess], [ends_only]);
|
||||
// cylinder_mask(l, r|d, [chamfer1|rounding1], [chamfer2|rounding2], [chamfang1], [chamfang2], [from_end], [circum], [excess], [ends_only]);
|
||||
// Usage: Masking operators
|
||||
// cylinder_mask(l, r|d, chamfer, [chamfang], [from_end], [circum], [overage], [ends_only]) ...
|
||||
// cylinder_mask(l, r|d, rounding, [circum], [overage], [ends_only]) ...
|
||||
// cylinder_mask(l, r|d, [chamfer1|rounding1], [chamfer2|rounding2], [chamfang1], [chamfang2], [from_end], [circum], [overage], [ends_only]) ...
|
||||
// cylinder_mask(l, r|d, chamfer, [chamfang], [from_end], [circum], [excess], [ends_only]) ...
|
||||
// cylinder_mask(l, r|d, rounding, [circum], [excess], [ends_only]) ...
|
||||
// cylinder_mask(l, r|d, [chamfer1|rounding1], [chamfer2|rounding2], [chamfang1], [chamfang2], [from_end], [circum], [excess], [ends_only]) ...
|
||||
// Description:
|
||||
// If passed children, bevels/chamfers and/or rounds one or both
|
||||
// ends of the origin-centered cylindrical region specified. If
|
||||
|
@ -83,7 +84,7 @@ module angle_pie_mask(
|
|||
// rounding2 = The radius of the rounding on the axis-positive end of the region.
|
||||
// circum = If true, region will circumscribe the circle of the given radius/diameter.
|
||||
// from_end = If true, chamfer/bevel size is measured from end of region. If false, chamfer/bevel is measured outset from the radius of the region. (Default: false)
|
||||
// overage = The extra thickness of the mask. Default: `10`.
|
||||
// excess = The extra thickness of the mask. Default: `10`.
|
||||
// ends_only = If true, only mask the ends and not around the middle of the cylinder.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
|
@ -105,7 +106,7 @@ module cylinder_mask(
|
|||
chamfang=undef, chamfang1=undef, chamfang2=undef,
|
||||
rounding=undef, rounding1=undef, rounding2=undef,
|
||||
circum=false, from_end=false,
|
||||
overage=10, ends_only=false,
|
||||
excess=10, ends_only=false,
|
||||
anchor=CENTER, spin=0, orient=UP
|
||||
) {
|
||||
r1 = get_radius(r=r, d=d, r1=r1, d1=d1, dflt=1);
|
||||
|
@ -132,12 +133,12 @@ module cylinder_mask(
|
|||
chlen1 = cham1 / (from_end? 1 : tan(ang1));
|
||||
chlen2 = cham2 / (from_end? 1 : tan(ang2));
|
||||
if (!ends_only) {
|
||||
cylinder(r=maxd+overage, h=l+2*overage, center=true);
|
||||
cylinder(r=maxd+excess, h=l+2*excess, center=true);
|
||||
} else {
|
||||
if (cham2>0) up(l/2-chlen2) cylinder(r=maxd+overage, h=chlen2+overage, center=false);
|
||||
if (cham1>0) down(l/2+overage) cylinder(r=maxd+overage, h=chlen1+overage, center=false);
|
||||
if (fil2>0) up(l/2-fil2) cylinder(r=maxd+overage, h=fil2+overage, center=false);
|
||||
if (fil1>0) down(l/2+overage) cylinder(r=maxd+overage, h=fil1+overage, center=false);
|
||||
if (cham2>0) up(l/2-chlen2) cylinder(r=maxd+excess, h=chlen2+excess, center=false);
|
||||
if (cham1>0) down(l/2+excess) cylinder(r=maxd+excess, h=chlen1+excess, center=false);
|
||||
if (fil2>0) up(l/2-fil2) cylinder(r=maxd+excess, h=fil2+excess, center=false);
|
||||
if (fil1>0) down(l/2+excess) cylinder(r=maxd+excess, h=fil1+excess, center=false);
|
||||
}
|
||||
}
|
||||
cyl(r1=sc*r1, r2=sc*r2, l=l, chamfer1=cham1, chamfer2=cham2, chamfang1=ang1, chamfang2=ang2, from_end=from_end, rounding1=fil1, rounding2=fil2);
|
||||
|
@ -154,14 +155,15 @@ module cylinder_mask(
|
|||
|
||||
// Module: chamfer_mask()
|
||||
// Usage:
|
||||
// chamfer_mask(l, chamfer);
|
||||
// chamfer_mask(l, chamfer, [excess]);
|
||||
// Description:
|
||||
// Creates a shape that can be used to chamfer a 90 degree edge.
|
||||
// Difference it from the object to be chamfered. The center of
|
||||
// the mask object should align exactly with the edge to be chamfered.
|
||||
// Arguments:
|
||||
// l = Length of mask.
|
||||
// chamfer = Size of chamfer
|
||||
// chamfer = Size of chamfer.
|
||||
// excess = The extra amount to add to the length of the mask so that it differences away from other shapes cleanly. Default: `0.1`
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
||||
|
@ -170,9 +172,9 @@ module cylinder_mask(
|
|||
// cube(50, anchor=BOTTOM+FRONT);
|
||||
// #chamfer_mask(l=50, chamfer=10, orient=RIGHT);
|
||||
// }
|
||||
module chamfer_mask(l=1, chamfer=1, anchor=CENTER, spin=0, orient=UP) {
|
||||
module chamfer_mask(l=1, chamfer=1, excess=0.1, anchor=CENTER, spin=0, orient=UP) {
|
||||
attachable(anchor,spin,orient, size=[chamfer*2, chamfer*2, l]) {
|
||||
cylinder(r=chamfer, h=l+0.1, center=true, $fn=4);
|
||||
cylinder(r=chamfer, h=l+excess, center=true, $fn=4);
|
||||
children();
|
||||
}
|
||||
}
|
||||
|
@ -180,14 +182,15 @@ module chamfer_mask(l=1, chamfer=1, anchor=CENTER, spin=0, orient=UP) {
|
|||
|
||||
// Module: chamfer_mask_x()
|
||||
// Usage:
|
||||
// chamfer_mask_x(l, chamfer, [anchor]);
|
||||
// chamfer_mask_x(l, chamfer, [excess]);
|
||||
// Description:
|
||||
// Creates a shape that can be used to chamfer a 90 degree edge along the X axis.
|
||||
// Difference it from the object to be chamfered. The center of the mask
|
||||
// object should align exactly with the edge to be chamfered.
|
||||
// Arguments:
|
||||
// l = Height of mask
|
||||
// chamfer = size of chamfer
|
||||
// l = Length of mask.
|
||||
// chamfer = Size of chamfer.
|
||||
// excess = The extra amount to add to the length of the mask so that it differences away from other shapes cleanly. Default: `0.1`
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the X axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Example:
|
||||
|
@ -195,21 +198,22 @@ module chamfer_mask(l=1, chamfer=1, anchor=CENTER, spin=0, orient=UP) {
|
|||
// cube(50, anchor=BOTTOM+FRONT);
|
||||
// #chamfer_mask_x(l=50, chamfer=10);
|
||||
// }
|
||||
module chamfer_mask_x(l=1.0, chamfer=1.0, anchor=CENTER, spin=0) {
|
||||
chamfer_mask(l=l, chamfer=chamfer, anchor=anchor, spin=spin, orient=RIGHT) children();
|
||||
module chamfer_mask_x(l=1.0, chamfer=1.0, excess=0.1, anchor=CENTER, spin=0) {
|
||||
chamfer_mask(l=l, chamfer=chamfer, excess=excess, anchor=anchor, spin=spin, orient=RIGHT) children();
|
||||
}
|
||||
|
||||
|
||||
// Module: chamfer_mask_y()
|
||||
// Usage:
|
||||
// chamfer_mask_y(l, chamfer, [anchor]);
|
||||
// chamfer_mask_y(l, chamfer, [excess]);
|
||||
// Description:
|
||||
// Creates a shape that can be used to chamfer a 90 degree edge along the Y axis.
|
||||
// Difference it from the object to be chamfered. The center of the mask
|
||||
// object should align exactly with the edge to be chamfered.
|
||||
// Arguments:
|
||||
// l = Height of mask
|
||||
// chamfer = size of chamfer
|
||||
// l = Length of mask.
|
||||
// chamfer = Size of chamfer.
|
||||
// excess = The extra amount to add to the length of the mask so that it differences away from other shapes cleanly. Default: `0.1`
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Y axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Example:
|
||||
|
@ -217,21 +221,22 @@ module chamfer_mask_x(l=1.0, chamfer=1.0, anchor=CENTER, spin=0) {
|
|||
// cube(50, anchor=BOTTOM+RIGHT);
|
||||
// #chamfer_mask_y(l=50, chamfer=10);
|
||||
// }
|
||||
module chamfer_mask_y(l=1.0, chamfer=1.0, anchor=CENTER, spin=0) {
|
||||
chamfer_mask(l=l, chamfer=chamfer, anchor=anchor, spin=spin, orient=BACK) children();
|
||||
module chamfer_mask_y(l=1.0, chamfer=1.0, excess=0.1, anchor=CENTER, spin=0) {
|
||||
chamfer_mask(l=l, chamfer=chamfer, excess=excess, anchor=anchor, spin=spin, orient=BACK) children();
|
||||
}
|
||||
|
||||
|
||||
// Module: chamfer_mask_z()
|
||||
// Usage:
|
||||
// chamfer_mask_z(l, chamfer, [anchor]);
|
||||
// chamfer_mask_z(l, chamfer, [excess]);
|
||||
// Description:
|
||||
// Creates a shape that can be used to chamfer a 90 degree edge along the Z axis.
|
||||
// Difference it from the object to be chamfered. The center of the mask
|
||||
// object should align exactly with the edge to be chamfered.
|
||||
// Arguments:
|
||||
// l = Height of mask
|
||||
// chamfer = size of chamfer
|
||||
// l = Length of mask.
|
||||
// chamfer = Size of chamfer.
|
||||
// excess = The extra amount to add to the length of the mask so that it differences away from other shapes cleanly. Default: `0.1`
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Example:
|
||||
|
@ -239,8 +244,8 @@ module chamfer_mask_y(l=1.0, chamfer=1.0, anchor=CENTER, spin=0) {
|
|||
// cube(50, anchor=FRONT+RIGHT);
|
||||
// #chamfer_mask_z(l=50, chamfer=10);
|
||||
// }
|
||||
module chamfer_mask_z(l=1.0, chamfer=1.0, anchor=CENTER, spin=0) {
|
||||
chamfer_mask(l=l, chamfer=chamfer, anchor=anchor, spin=spin, orient=UP) children();
|
||||
module chamfer_mask_z(l=1.0, chamfer=1.0, excess=0.1, anchor=CENTER, spin=0) {
|
||||
chamfer_mask(l=l, chamfer=chamfer, excess=excess, anchor=anchor, spin=spin, orient=UP) children();
|
||||
}
|
||||
|
||||
|
||||
|
@ -313,7 +318,7 @@ module chamfer_cylinder_mask(r=undef, d=undef, chamfer=0.25, ang=45, from_end=fa
|
|||
|
||||
// Module: chamfer_hole_mask()
|
||||
// Usage:
|
||||
// chamfer_hole_mask(r|d, chamfer, [ang], [from_end]);
|
||||
// chamfer_hole_mask(r|d, chamfer, [ang], [from_end], [excess]);
|
||||
// Description:
|
||||
// Create a mask that can be used to bevel/chamfer the end of a cylindrical hole.
|
||||
// Difference it from the hole to be chamfered. The center of the mask object
|
||||
|
@ -324,7 +329,7 @@ module chamfer_cylinder_mask(r=undef, d=undef, chamfer=0.25, ang=45, from_end=fa
|
|||
// chamfer = Size of the chamfer. (Default: 0.25)
|
||||
// ang = Angle of chamfer in degrees from vertical. (Default: 45)
|
||||
// from_end = If true, chamfer size is measured from end of hole. If false, chamfer is measured outset from the radius of the hole. (Default: false)
|
||||
// overage = The extra thickness of the mask. Default: `0.1`.
|
||||
// excess = The extra thickness of the mask. Default: `0.1`.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
||||
|
@ -341,8 +346,8 @@ module chamfer_cylinder_mask(r=undef, d=undef, chamfer=0.25, ang=45, from_end=fa
|
|||
// up(50) chamfer_hole_mask(d=50, chamfer=10);
|
||||
// }
|
||||
// Example:
|
||||
// chamfer_hole_mask(d=100, chamfer=25, ang=30, overage=10);
|
||||
module chamfer_hole_mask(r=undef, d=undef, chamfer=0.25, ang=45, from_end=false, overage=0.1, anchor=CENTER, spin=0, orient=UP)
|
||||
// chamfer_hole_mask(d=100, chamfer=25, ang=30, excess=10);
|
||||
module chamfer_hole_mask(r=undef, d=undef, chamfer=0.25, ang=45, from_end=false, excess=0.1, anchor=CENTER, spin=0, orient=UP)
|
||||
{
|
||||
r = get_radius(r=r, d=d, dflt=1);
|
||||
h = chamfer * (from_end? 1 : tan(90-ang));
|
||||
|
@ -350,7 +355,7 @@ module chamfer_hole_mask(r=undef, d=undef, chamfer=0.25, ang=45, from_end=false,
|
|||
$fn = segs(r);
|
||||
attachable(anchor,spin,orient, r1=r, r2=r2, l=h*2) {
|
||||
union() {
|
||||
cylinder(r=r2, h=overage, center=false);
|
||||
cylinder(r=r2, h=excess, center=false);
|
||||
down(h) cylinder(r1=r, r2=r2, h=h, center=false);
|
||||
}
|
||||
children();
|
||||
|
@ -363,8 +368,8 @@ module chamfer_hole_mask(r=undef, d=undef, chamfer=0.25, ang=45, from_end=false,
|
|||
|
||||
// Module: rounding_mask()
|
||||
// Usage:
|
||||
// rounding_mask(l|h, r)
|
||||
// rounding_mask(l|h, r1, r2)
|
||||
// rounding_mask(l|h, r|d)
|
||||
// rounding_mask(l|h, r1|d1, r2|d2)
|
||||
// Description:
|
||||
// Creates a shape that can be used to round a vertical 90 degree edge.
|
||||
// Difference it from the object to be rounded. The center of the mask
|
||||
|
@ -374,6 +379,9 @@ module chamfer_hole_mask(r=undef, d=undef, chamfer=0.25, ang=45, from_end=false,
|
|||
// r = Radius of the rounding.
|
||||
// r1 = Bottom radius of rounding.
|
||||
// r2 = Top radius of rounding.
|
||||
// d = Diameter of the rounding.
|
||||
// d1 = Bottom diameter of rounding.
|
||||
// d2 = Top diameter of rounding.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
||||
|
@ -404,11 +412,11 @@ module chamfer_hole_mask(r=undef, d=undef, chamfer=0.25, ang=45, from_end=false,
|
|||
// rounding_mask(l=p.x, r=25, spin=45, orient=RIGHT);
|
||||
// }
|
||||
// }
|
||||
module rounding_mask(l=undef, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0, orient=UP, h=undef)
|
||||
module rounding_mask(l, r, r1, r2, d, d1, d2, anchor=CENTER, spin=0, orient=UP, h=undef)
|
||||
{
|
||||
l = first_defined([l, h, 1]);
|
||||
r1 = get_radius(r1=r1, r=r, dflt=1);
|
||||
r2 = get_radius(r1=r2, r=r, dflt=1);
|
||||
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1);
|
||||
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1);
|
||||
sides = quantup(segs(max(r1,r2)),4);
|
||||
attachable(anchor,spin,orient, size=[2*r1,2*r1,l], size2=[2*r2,2*r2]) {
|
||||
if (r1<r2) {
|
||||
|
@ -435,8 +443,8 @@ module rounding_mask(l=undef, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
|
|||
|
||||
// Module: rounding_mask_x()
|
||||
// Usage:
|
||||
// rounding_mask_x(l, r, [anchor])
|
||||
// rounding_mask_x(l, r1, r2, [anchor])
|
||||
// rounding_mask_x(l, r|d, [anchor])
|
||||
// rounding_mask_x(l, r1|d1, r2|d2, [anchor])
|
||||
// Description:
|
||||
// Creates a shape that can be used to round a 90 degree edge oriented
|
||||
// along the X axis. Difference it from the object to be rounded.
|
||||
|
@ -447,6 +455,9 @@ module rounding_mask(l=undef, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
|
|||
// r = Radius of the rounding.
|
||||
// r1 = Left end radius of rounding.
|
||||
// r2 = Right end radius of rounding.
|
||||
// d = Diameter of the rounding.
|
||||
// d1 = Left end diameter of rounding.
|
||||
// d2 = Right end diameter of rounding.
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Example:
|
||||
// difference() {
|
||||
|
@ -458,10 +469,10 @@ module rounding_mask(l=undef, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
|
|||
// cube(size=100, center=false);
|
||||
// #rounding_mask_x(l=100, r1=10, r2=30, anchor=LEFT);
|
||||
// }
|
||||
module rounding_mask_x(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0)
|
||||
module rounding_mask_x(l=1.0, r, r1, r2, d, d1, d2, anchor=CENTER, spin=0)
|
||||
{
|
||||
anchor = rot(p=anchor, from=RIGHT, to=TOP);
|
||||
rounding_mask(l=l, r=r, r1=r1, r2=r2, anchor=anchor, spin=spin, orient=RIGHT) {
|
||||
rounding_mask(l=l, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, anchor=anchor, spin=spin, orient=RIGHT) {
|
||||
for (i=[0:1:$children-2]) children(i);
|
||||
if ($children) children($children-1);
|
||||
}
|
||||
|
@ -470,8 +481,8 @@ module rounding_mask_x(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
|
|||
|
||||
// Module: rounding_mask_y()
|
||||
// Usage:
|
||||
// rounding_mask_y(l, r, [anchor])
|
||||
// rounding_mask_y(l, r1, r2, [anchor])
|
||||
// rounding_mask_y(l, r|d, [anchor])
|
||||
// rounding_mask_y(l, r1|d1, r2|d2, [anchor])
|
||||
// Description:
|
||||
// Creates a shape that can be used to round a 90 degree edge oriented
|
||||
// along the Y axis. Difference it from the object to be rounded.
|
||||
|
@ -482,6 +493,9 @@ module rounding_mask_x(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
|
|||
// r = Radius of the rounding.
|
||||
// r1 = Front end radius of rounding.
|
||||
// r2 = Back end radius of rounding.
|
||||
// d = Diameter of the rounding.
|
||||
// d1 = Front end diameter of rounding.
|
||||
// d2 = Back end diameter of rounding.
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Example:
|
||||
// difference() {
|
||||
|
@ -493,10 +507,10 @@ module rounding_mask_x(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
|
|||
// cube(size=100, center=false);
|
||||
// right(100) #rounding_mask_y(l=100, r1=10, r2=30, anchor=FRONT);
|
||||
// }
|
||||
module rounding_mask_y(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0)
|
||||
module rounding_mask_y(l=1.0, r, r1, r2, d, d1, d2, anchor=CENTER, spin=0)
|
||||
{
|
||||
anchor = rot(p=anchor, from=BACK, to=TOP);
|
||||
rounding_mask(l=l, r=r, r1=r1, r2=r2, anchor=anchor, spin=spin, orient=BACK) {
|
||||
rounding_mask(l=l, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, anchor=anchor, spin=spin, orient=BACK) {
|
||||
for (i=[0:1:$children-2]) children(i);
|
||||
if ($children) children($children-1);
|
||||
}
|
||||
|
@ -505,8 +519,8 @@ module rounding_mask_y(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
|
|||
|
||||
// Module: rounding_mask_z()
|
||||
// Usage:
|
||||
// rounding_mask_z(l, r, [anchor])
|
||||
// rounding_mask_z(l, r1, r2, [anchor])
|
||||
// rounding_mask_z(l, r|d, [anchor])
|
||||
// rounding_mask_z(l, r1|d1, r2|d2, [anchor])
|
||||
// Description:
|
||||
// Creates a shape that can be used to round a 90 degree edge oriented
|
||||
// along the Z axis. Difference it from the object to be rounded.
|
||||
|
@ -517,6 +531,9 @@ module rounding_mask_y(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
|
|||
// r = Radius of the rounding.
|
||||
// r1 = Bottom radius of rounding.
|
||||
// r2 = Top radius of rounding.
|
||||
// d = Diameter of the rounding.
|
||||
// d1 = Bottom diameter of rounding.
|
||||
// d2 = Top diameter of rounding.
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Example:
|
||||
// difference() {
|
||||
|
@ -528,9 +545,9 @@ module rounding_mask_y(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
|
|||
// cube(size=100, center=false);
|
||||
// #rounding_mask_z(l=100, r1=10, r2=30, anchor=BOTTOM);
|
||||
// }
|
||||
module rounding_mask_z(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0)
|
||||
module rounding_mask_z(l=1.0, r, r1, r2, d, d1, d2, anchor=CENTER, spin=0)
|
||||
{
|
||||
rounding_mask(l=l, r=r, r1=r1, r2=r2, anchor=anchor, spin=spin, orient=UP) {
|
||||
rounding_mask(l=l, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, anchor=anchor, spin=spin, orient=UP) {
|
||||
for (i=[0:1:$children-2]) children(i);
|
||||
if ($children) children($children-1);
|
||||
}
|
||||
|
@ -539,11 +556,12 @@ module rounding_mask_z(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
|
|||
|
||||
// Module: rounding()
|
||||
// Usage:
|
||||
// rounding(r, size, [edges]) ...
|
||||
// rounding(r|d, size, [edges]) ...
|
||||
// Description:
|
||||
// Rounds the edges of a cuboid region containing the given children.
|
||||
// Arguments:
|
||||
// r = Radius of the rounding. (Default: 1)
|
||||
// d = Diameter of the rounding. (Default: 1)
|
||||
// size = The size of the rectangular cuboid we want to chamfer.
|
||||
// edges = Edges to round. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: All edges.
|
||||
// except_edges = Edges to explicitly NOT round. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: No edges.
|
||||
|
@ -555,8 +573,9 @@ module rounding_mask_z(l=1.0, r=undef, r1=undef, r2=undef, anchor=CENTER, spin=0
|
|||
// rounding(r=10, size=[50,50,75], edges=[TOP,FRONT+RIGHT], except_edges=TOP+LEFT, $fn=24) {
|
||||
// cube(size=[50,50,75], center=true);
|
||||
// }
|
||||
module rounding(r=1, size=[1,1,1], edges=EDGES_ALL, except_edges=[])
|
||||
module rounding(r, size=[1,1,1], d, edges=EDGES_ALL, except_edges=[])
|
||||
{
|
||||
r = get_radius(r=r, d=d, dflt=1);
|
||||
difference() {
|
||||
children();
|
||||
difference() {
|
||||
|
@ -569,8 +588,8 @@ module rounding(r=1, size=[1,1,1], edges=EDGES_ALL, except_edges=[])
|
|||
|
||||
// Module: rounding_angled_edge_mask()
|
||||
// Usage:
|
||||
// rounding_angled_edge_mask(h, r, [ang]);
|
||||
// rounding_angled_edge_mask(h, r1, r2, [ang]);
|
||||
// rounding_angled_edge_mask(h, r|d, [ang]);
|
||||
// rounding_angled_edge_mask(h, r1|d1, r2|d2, [ang]);
|
||||
// Description:
|
||||
// Creates a vertical mask that can be used to round the edge where two face meet, at any arbitrary
|
||||
// angle. Difference it from the object to be rounded. The center of the mask should align exactly
|
||||
|
@ -580,6 +599,9 @@ module rounding(r=1, size=[1,1,1], edges=EDGES_ALL, except_edges=[])
|
|||
// r = Radius of the rounding.
|
||||
// r1 = Bottom radius of rounding.
|
||||
// r2 = Top radius of rounding.
|
||||
// d = Diameter of the rounding.
|
||||
// d1 = Bottom diameter of rounding.
|
||||
// d2 = Top diameter of rounding.
|
||||
// ang = Angle that the planes meet at.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
|
@ -594,7 +616,7 @@ module rounding(r=1, size=[1,1,1], edges=EDGES_ALL, except_edges=[])
|
|||
// angle_pie_mask(ang=70, h=50, d=100);
|
||||
// #rounding_angled_edge_mask(h=51, r1=10, r2=25, ang=70, $fn=32);
|
||||
// }
|
||||
module rounding_angled_edge_mask(h=1.0, r=undef, r1=undef, r2=undef, ang=90, anchor=CENTER, spin=0, orient=UP)
|
||||
module rounding_angled_edge_mask(h=1.0, r, r1, r2, d, d1, d2, ang=90, anchor=CENTER, spin=0, orient=UP)
|
||||
{
|
||||
function _mask_shape(r) = [
|
||||
for (i = [0:1:n]) let (a=90+ang+i*sweep/n) [r*cos(a)+x, r*sin(a)+r],
|
||||
|
@ -604,8 +626,8 @@ module rounding_angled_edge_mask(h=1.0, r=undef, r1=undef, r2=undef, ang=90, anc
|
|||
];
|
||||
|
||||
sweep = 180-ang;
|
||||
r1 = get_radius(r1=r1, r=r, dflt=1);
|
||||
r2 = get_radius(r1=r2, r=r, dflt=1);
|
||||
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1);
|
||||
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1);
|
||||
n = ceil(segs(max(r1,r2))*sweep/360);
|
||||
x = sin(90-(ang/2))/sin(ang/2) * (r1<r2? r2 : r1);
|
||||
if(r1<r2) {
|
||||
|
@ -630,13 +652,14 @@ module rounding_angled_edge_mask(h=1.0, r=undef, r1=undef, r2=undef, ang=90, anc
|
|||
|
||||
// Module: rounding_angled_corner_mask()
|
||||
// Usage:
|
||||
// rounding_angled_corner_mask(r, ang);
|
||||
// rounding_angled_corner_mask(r|d, ang);
|
||||
// Description:
|
||||
// Creates a shape that can be used to round the corner of an angle.
|
||||
// Difference it from the object to be rounded. The center of the mask
|
||||
// object should align exactly with the point of the corner to be rounded.
|
||||
// Arguments:
|
||||
// r = Radius of the rounding.
|
||||
// d = Diameter of the rounding.
|
||||
// ang = Angle between planes that you need to round the corner of.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
|
@ -651,8 +674,9 @@ module rounding_angled_edge_mask(h=1.0, r=undef, r1=undef, r2=undef, ang=90, anc
|
|||
// }
|
||||
// rounding_angled_edge_mask(h=51, r=20, ang=ang);
|
||||
// }
|
||||
module rounding_angled_corner_mask(r=1.0, ang=90, anchor=CENTER, spin=0, orient=UP)
|
||||
module rounding_angled_corner_mask(r, ang=90, d, anchor=CENTER, spin=0, orient=UP)
|
||||
{
|
||||
r = get_radius(r=r, d=d, dflt=1);
|
||||
dx = r / tan(ang/2);
|
||||
dx2 = dx / cos(ang/2) + 1;
|
||||
fn = quantup(segs(r), 4);
|
||||
|
@ -678,13 +702,14 @@ module rounding_angled_corner_mask(r=1.0, ang=90, anchor=CENTER, spin=0, orient=
|
|||
|
||||
// Module: rounding_corner_mask()
|
||||
// Usage:
|
||||
// rounding_corner_mask(r, [anchor]);
|
||||
// rounding_corner_mask(r|d, [anchor]);
|
||||
// Description:
|
||||
// Creates a shape that you can use to round 90 degree corners.
|
||||
// Difference it from the object to be rounded. The center of the mask
|
||||
// object should align exactly with the corner to be rounded.
|
||||
// Arguments:
|
||||
// r = Radius of corner rounding.
|
||||
// d = Diameter of corner rounding.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
||||
|
@ -698,8 +723,9 @@ module rounding_angled_corner_mask(r=1.0, ang=90, anchor=CENTER, spin=0, orient=
|
|||
// translate([15, 25, 0]) rounding_mask_z(l=81, r=15);
|
||||
// translate([15, 25, 40]) #rounding_corner_mask(r=15);
|
||||
// }
|
||||
module rounding_corner_mask(r=1.0, anchor=CENTER, spin=0, orient=UP)
|
||||
module rounding_corner_mask(r, d, anchor=CENTER, spin=0, orient=UP)
|
||||
{
|
||||
r = get_radius(r=r, d=d, dflt=1);
|
||||
attachable(anchor,spin,orient, size=[2,2,2]*r) {
|
||||
difference() {
|
||||
cube(size=r*2, center=true);
|
||||
|
@ -714,7 +740,7 @@ module rounding_corner_mask(r=1.0, anchor=CENTER, spin=0, orient=UP)
|
|||
|
||||
// Module: rounding_cylinder_mask()
|
||||
// Usage:
|
||||
// rounding_cylinder_mask(r, rounding);
|
||||
// rounding_cylinder_mask(r|d, rounding);
|
||||
// Description:
|
||||
// Create a mask that can be used to round the end of a cylinder.
|
||||
// Difference it from the cylinder to be rounded. The center of the
|
||||
|
@ -722,6 +748,7 @@ module rounding_corner_mask(r=1.0, anchor=CENTER, spin=0, orient=UP)
|
|||
// cylinder to be rounded.
|
||||
// Arguments:
|
||||
// r = Radius of cylinder. (Default: 1.0)
|
||||
// d = Diameter of cylinder. (Default: 1.0)
|
||||
// rounding = Radius of the edge rounding. (Default: 0.25)
|
||||
// Example:
|
||||
// difference() {
|
||||
|
@ -733,16 +760,17 @@ module rounding_corner_mask(r=1.0, anchor=CENTER, spin=0, orient=UP)
|
|||
// cylinder(r=50, h=50, center=false);
|
||||
// up(50) rounding_cylinder_mask(r=50, rounding=10);
|
||||
// }
|
||||
module rounding_cylinder_mask(r=1.0, rounding=0.25)
|
||||
module rounding_cylinder_mask(r, rounding=0.25, d)
|
||||
{
|
||||
cylinder_mask(l=rounding*3, r=r, rounding2=rounding, overage=rounding, ends_only=true, anchor=TOP);
|
||||
r = get_radius(r=r, d=d, dflt=1);
|
||||
cylinder_mask(l=rounding*3, r=r, rounding2=rounding, excess=rounding, ends_only=true, anchor=TOP);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Module: rounding_hole_mask()
|
||||
// Usage:
|
||||
// rounding_hole_mask(r|d, rounding);
|
||||
// rounding_hole_mask(r|d, rounding, [excess]);
|
||||
// Description:
|
||||
// Create a mask that can be used to round the edge of a circular hole.
|
||||
// Difference it from the hole to be rounded. The center of the
|
||||
|
@ -752,7 +780,7 @@ module rounding_cylinder_mask(r=1.0, rounding=0.25)
|
|||
// r = Radius of hole.
|
||||
// d = Diameter of hole to rounding.
|
||||
// rounding = Radius of the rounding. (Default: 0.25)
|
||||
// overage = The extra thickness of the mask. Default: `0.1`.
|
||||
// excess = The extra thickness of the mask. Default: `0.1`.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
||||
|
@ -770,13 +798,13 @@ module rounding_cylinder_mask(r=1.0, rounding=0.25)
|
|||
// }
|
||||
// Example:
|
||||
// rounding_hole_mask(r=40, rounding=20, $fa=2, $fs=2);
|
||||
module rounding_hole_mask(r=undef, d=undef, rounding=0.25, overage=0.1, anchor=CENTER, spin=0, orient=UP)
|
||||
module rounding_hole_mask(r, rounding=0.25, excess=0.1, d, anchor=CENTER, spin=0, orient=UP)
|
||||
{
|
||||
r = get_radius(r=r, d=d, dflt=1);
|
||||
attachable(anchor,spin,orient, r=r+rounding, l=2*rounding) {
|
||||
rotate_extrude(convexity=4) {
|
||||
difference() {
|
||||
right(r-overage) fwd(rounding) square(rounding+overage, center=false);
|
||||
right(r-excess) fwd(rounding) square(rounding+excess, center=false);
|
||||
right(r+rounding) fwd(rounding) circle(r=rounding);
|
||||
}
|
||||
}
|
||||
|
@ -808,7 +836,7 @@ module rounding_hole_mask(r=undef, d=undef, rounding=0.25, overage=0.1, anchor=C
|
|||
// corner_profile(BOT,r=10)
|
||||
// mask2d_teardrop(r=10, angle=40);
|
||||
// }
|
||||
module teardrop_corner_mask(r, d, angle, excess=0.1, anchor=CENTER, spin=0, orient=UP) {
|
||||
module teardrop_corner_mask(r, angle, excess=0.1, d, anchor=CENTER, spin=0, orient=UP) {
|
||||
assert(is_num(angle));
|
||||
assert(is_num(excess));
|
||||
assert(angle>0 && angle<90);
|
||||
|
|
117
math.scad
117
math.scad
|
@ -864,6 +864,123 @@ function is_matrix(A,m,n,square=false) =
|
|||
|
||||
// Section: Comparisons and Logic
|
||||
|
||||
// Function: is_zero()
|
||||
// Usage:
|
||||
// is_zero(x);
|
||||
// Description:
|
||||
// Returns true if the number passed to it is approximately zero, to within `eps`.
|
||||
// If passed a list, recursively checks if all items in the list are approximately zero.
|
||||
// Otherwise, returns false.
|
||||
// Arguments:
|
||||
// x = The value to check.
|
||||
// eps = The maximum allowed variance. Default: `EPSILON` (1e-9)
|
||||
// Example:
|
||||
// is_zero(0); // Returns: true.
|
||||
// is_zero(1e-3); // Returns: false.
|
||||
// is_zero([0,0,0]); // Returns: true.
|
||||
// is_zero([0,0,1e-3]); // Returns: false.
|
||||
function is_zero(x, eps=EPSILON) =
|
||||
is_list(x)? (x != [] && [for (xx=x) if(!is_zero(xx,eps=eps)) 1] == []) :
|
||||
is_num(x)? approx(x,eps) :
|
||||
false;
|
||||
|
||||
|
||||
// Function: is_positive()
|
||||
// Usage:
|
||||
// is_positive(x);
|
||||
// Description:
|
||||
// Returns true if the number passed to it is greater than zero.
|
||||
// If passed a list, recursively checks if all items in the list are positive.
|
||||
// Otherwise, returns false.
|
||||
// Arguments:
|
||||
// x = The value to check.
|
||||
// Example:
|
||||
// is_positive(-2); // Returns: false.
|
||||
// is_positive(0); // Returns: false.
|
||||
// is_positive(2); // Returns: true.
|
||||
// is_positive([0,0,0]); // Returns: false.
|
||||
// is_positive([0,1,2]); // Returns: false.
|
||||
// is_positive([3,1,2]); // Returns: true.
|
||||
// is_positive([3,-1,2]); // Returns: false.
|
||||
function is_positive(x) =
|
||||
is_list(x)? (x != [] && [for (xx=x) if(!is_positive(xx)) 1] == []) :
|
||||
is_num(x)? x>0 :
|
||||
false;
|
||||
|
||||
|
||||
// Function: is_negative()
|
||||
// Usage:
|
||||
// is_negative(x);
|
||||
// Description:
|
||||
// Returns true if the number passed to it is less than zero.
|
||||
// If passed a list, recursively checks if all items in the list are negative.
|
||||
// Otherwise, returns false.
|
||||
// Arguments:
|
||||
// x = The value to check.
|
||||
// Example:
|
||||
// is_negative(-2); // Returns: true.
|
||||
// is_negative(0); // Returns: false.
|
||||
// is_negative(2); // Returns: false.
|
||||
// is_negative([0,0,0]); // Returns: false.
|
||||
// is_negative([0,1,2]); // Returns: false.
|
||||
// is_negative([3,1,2]); // Returns: false.
|
||||
// is_negative([3,-1,2]); // Returns: false.
|
||||
// is_negative([-3,-1,-2]); // Returns: true.
|
||||
function is_negative(x) =
|
||||
is_list(x)? (x != [] && [for (xx=x) if(!is_negative(xx)) 1] == []) :
|
||||
is_num(x)? x<0 :
|
||||
false;
|
||||
|
||||
|
||||
// Function: is_nonpositive()
|
||||
// Usage:
|
||||
// is_nonpositive(x);
|
||||
// Description:
|
||||
// Returns true if the number passed to it is less than or equal to zero.
|
||||
// If passed a list, recursively checks if all items in the list are nonpositive.
|
||||
// Otherwise, returns false.
|
||||
// Arguments:
|
||||
// x = The value to check.
|
||||
// Example:
|
||||
// is_nonpositive(-2); // Returns: true.
|
||||
// is_nonpositive(0); // Returns: true.
|
||||
// is_nonpositive(2); // Returns: false.
|
||||
// is_nonpositive([0,0,0]); // Returns: true.
|
||||
// is_nonpositive([0,1,2]); // Returns: false.
|
||||
// is_nonpositive([3,1,2]); // Returns: false.
|
||||
// is_nonpositive([3,-1,2]); // Returns: false.
|
||||
// is_nonpositive([-3,-1,-2]); // Returns: true.
|
||||
function is_nonpositive(x) =
|
||||
is_list(x)? (x != [] && [for (xx=x) if(!is_nonpositive(xx)) 1] == []) :
|
||||
is_num(x)? x<=0 :
|
||||
false;
|
||||
|
||||
|
||||
// Function: is_nonnegative()
|
||||
// Usage:
|
||||
// is_nonnegative(x);
|
||||
// Description:
|
||||
// Returns true if the number passed to it is greater than or equal to zero.
|
||||
// If passed a list, recursively checks if all items in the list are nonnegative.
|
||||
// Otherwise, returns false.
|
||||
// Arguments:
|
||||
// x = The value to check.
|
||||
// Example:
|
||||
// is_nonnegative(-2); // Returns: false.
|
||||
// is_nonnegative(0); // Returns: true.
|
||||
// is_nonnegative(2); // Returns: true.
|
||||
// is_nonnegative([0,0,0]); // Returns: true.
|
||||
// is_nonnegative([0,1,2]); // Returns: true.
|
||||
// is_nonnegative([0,-1,-2]); // Returns: false.
|
||||
// is_nonnegative([3,1,2]); // Returns: true.
|
||||
// is_nonnegative([3,-1,2]); // Returns: false.
|
||||
// is_nonnegative([-3,-1,-2]); // Returns: false.
|
||||
function is_nonnegative(x) =
|
||||
is_list(x)? (x != [] && [for (xx=x) if(!is_nonnegative(xx)) 1] == []) :
|
||||
is_num(x)? x>=0 :
|
||||
false;
|
||||
|
||||
|
||||
// Function: approx()
|
||||
// Usage:
|
||||
// approx(a,b,[eps])
|
||||
|
|
|
@ -321,7 +321,7 @@ module chain_hull()
|
|||
// Usage:
|
||||
// cylindrical_extrude(size, ir|id, or|od, [convexity]) ...
|
||||
// Description:
|
||||
// Cylindrically extrudes all 2D children, curved around a cylidrical shape.
|
||||
// Extrudes all 2D children outwards, curved around a cylindrical shape.
|
||||
// Arguments:
|
||||
// or = The outer radius to extrude to.
|
||||
// od = The outer diameter to extrude to.
|
||||
|
|
16
paths.scad
16
paths.scad
|
@ -418,7 +418,7 @@ function path_torsion(path, closed=false) =
|
|||
// scale = [X,Y] scaling factors for each axis. Default: `[1,1]`
|
||||
// Example(3D):
|
||||
// trace_polyline(path3d_spiral(turns=2.5, h=100, n=24, r=50), N=1, showpts=true);
|
||||
function path3d_spiral(turns=3, h=100, n=12, r=undef, d=undef, cp=[0,0], scale=[1,1]) = let(
|
||||
function path3d_spiral(turns=3, h=100, n=12, r, d, cp=[0,0], scale=[1,1]) = let(
|
||||
rr=get_radius(r=r, d=d, dflt=100),
|
||||
cnt=floor(turns*n),
|
||||
dz=h/cnt
|
||||
|
@ -774,15 +774,19 @@ function assemble_path_fragments(fragments, eps=EPSILON, _finished=[]) =
|
|||
|
||||
|
||||
// Module: modulated_circle()
|
||||
// Usage:
|
||||
// modulated_circle(r|d, sines);
|
||||
// Description:
|
||||
// Creates a 2D polygon circle, modulated by one or more superimposed sine waves.
|
||||
// Arguments:
|
||||
// r = radius of the base circle.
|
||||
// r = Radius of the base circle. Default: 40
|
||||
// d = Diameter of the base circle.
|
||||
// sines = array of [amplitude, frequency] pairs, where the frequency is the number of times the cycle repeats around the circle.
|
||||
// Example(2D):
|
||||
// modulated_circle(r=40, sines=[[3, 11], [1, 31]], $fn=6);
|
||||
module modulated_circle(r=40, sines=[10])
|
||||
module modulated_circle(r, sines=[10], d)
|
||||
{
|
||||
r = get_radius(r=r, d=d, dflt=40);
|
||||
freqs = len(sines)>0? [for (i=sines) i[1]] : [5];
|
||||
points = [
|
||||
for (a = [0 : (360/segs(r)/max(freqs)) : 360])
|
||||
|
@ -829,7 +833,8 @@ module extrude_from_to(pt1, pt2, convexity=undef, twist=undef, scale=undef, slic
|
|||
// Arguments:
|
||||
// polyline = Array of points of a polyline path, to be extruded.
|
||||
// h = height of the spiral to extrude along.
|
||||
// r = radius of the spiral to extrude along.
|
||||
// r = Radius of the spiral to extrude along. Default: 50
|
||||
// d = Diameter of the spiral to extrude along.
|
||||
// twist = number of degrees of rotation to spiral up along height.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
|
@ -838,7 +843,8 @@ module extrude_from_to(pt1, pt2, convexity=undef, twist=undef, scale=undef, slic
|
|||
// Example:
|
||||
// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]];
|
||||
// spiral_sweep(poly, h=200, r=50, twist=1080, $fn=36);
|
||||
module spiral_sweep(polyline, h, r, twist=360, center, anchor, spin=0, orient=UP) {
|
||||
module spiral_sweep(polyline, h, r, twist=360, center, d, anchor, spin=0, orient=UP) {
|
||||
r = get_radius(r=r, d=d, dflt=50);
|
||||
polyline = path3d(polyline);
|
||||
pline_count = len(polyline);
|
||||
steps = ceil(segs(r)*(twist/360));
|
||||
|
|
|
@ -730,9 +730,10 @@ function stellate_faces(scalefactor,stellate,vertices,faces_normals) =
|
|||
) [newfaces, normals, allpts];
|
||||
|
||||
|
||||
function trapezohedron(faces, r, side, longside, h) =
|
||||
function trapezohedron(faces, r, side, longside, h, d) =
|
||||
assert(faces%2==0, "Number of faces must be even")
|
||||
let(
|
||||
r = get_radius(r=r, d=d, dflt=1),
|
||||
N = faces/2,
|
||||
parmcount = num_defined([r,side,longside,h])
|
||||
)
|
||||
|
|
14
shapes.scad
14
shapes.scad
|
@ -1498,13 +1498,14 @@ module pie_slice(
|
|||
// Center this part along the concave edge to be chamfered and union it in.
|
||||
//
|
||||
// Usage:
|
||||
// interior_fillet(l, r, [ang], [overlap]);
|
||||
// interior_fillet(l, r|d, [ang], [overlap]);
|
||||
//
|
||||
// Arguments:
|
||||
// l = length of edge to fillet.
|
||||
// r = radius of fillet.
|
||||
// ang = angle between faces to fillet.
|
||||
// overlap = overlap size for unioning with faces.
|
||||
// l = Length of edge to fillet.
|
||||
// r = Radius of fillet.
|
||||
// d = Diameter of fillet.
|
||||
// ang = Angle between faces to fillet.
|
||||
// overlap = Overlap size for unioning with faces.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `FRONT+LEFT`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
||||
|
@ -1526,7 +1527,8 @@ module pie_slice(
|
|||
// position(BOT+FRONT)
|
||||
// interior_fillet(l=50, r=10, spin=180, orient=RIGHT);
|
||||
// }
|
||||
module interior_fillet(l=1.0, r=1.0, ang=90, overlap=0.01, anchor=FRONT+LEFT, spin=0, orient=UP) {
|
||||
module interior_fillet(l=1.0, r, ang=90, overlap=0.01, d, anchor=FRONT+LEFT, spin=0, orient=UP) {
|
||||
r = get_radius(r=r, d=d, dflt=1);
|
||||
dy = r/tan(ang/2);
|
||||
steps = ceil(segs(r)*ang/360);
|
||||
step = ang/steps;
|
||||
|
|
|
@ -29,6 +29,7 @@ test_point3d();
|
|||
|
||||
module test_path3d() {
|
||||
assert(path3d([[1,2], [3,4], [5,6], [7,8]])==[[1,2,0],[3,4,0],[5,6,0],[7,8,0]]);
|
||||
assert(path3d([[1,2], [3,4], [5,6], [7,8]],9)==[[1,2,9],[3,4,9],[5,6,9],[7,8,9]]);
|
||||
assert(path3d([[1,2,3], [2,3,4], [3,4,5], [4,5,6]])==[[1,2,3],[2,3,4],[3,4,5],[4,5,6]]);
|
||||
assert(path3d([[1,2,3,4], [2,3,4,5], [3,4,5,6], [4,5,6,7]])==[[1,2,3],[2,3,4],[3,4,5],[4,5,6]]);
|
||||
}
|
||||
|
@ -41,6 +42,9 @@ module test_point4d() {
|
|||
assert(point4d([1,2,3])==[1,2,3,0]);
|
||||
assert(point4d([2,3])==[2,3,0,0]);
|
||||
assert(point4d([1])==[1,0,0,0]);
|
||||
assert(point4d([1,2,3],9)==[1,2,3,9]);
|
||||
assert(point4d([2,3],9)==[2,3,9,9]);
|
||||
assert(point4d([1],9)==[1,9,9,9]);
|
||||
}
|
||||
test_point4d();
|
||||
|
||||
|
|
|
@ -100,6 +100,106 @@ module test_is_matrix() {
|
|||
test_is_matrix();
|
||||
|
||||
|
||||
module test_is_zero() {
|
||||
assert(is_zero(0));
|
||||
assert(is_zero([0,0,0]));
|
||||
assert(is_zero([[0,0,0],[0,0]]));
|
||||
assert(is_zero([EPSILON/2,EPSILON/2,EPSILON/2]));
|
||||
assert(!is_zero(1e-3));
|
||||
assert(!is_zero([0,0,1e-3]));
|
||||
assert(!is_zero([EPSILON*10,0,0]));
|
||||
assert(!is_zero([0,EPSILON*10,0]));
|
||||
assert(!is_zero([0,0,EPSILON*10]));
|
||||
assert(!is_zero(true));
|
||||
assert(!is_zero(false));
|
||||
assert(!is_zero(INF));
|
||||
assert(!is_zero(-INF));
|
||||
assert(!is_zero(NAN));
|
||||
assert(!is_zero("foo"));
|
||||
assert(!is_zero([]));
|
||||
assert(!is_zero([0:1:2]));
|
||||
}
|
||||
test_is_zero();
|
||||
|
||||
|
||||
module test_is_positive() {
|
||||
assert(!is_positive(-2));
|
||||
assert(!is_positive(0));
|
||||
assert(is_positive(2));
|
||||
assert(!is_positive([0,0,0]));
|
||||
assert(!is_positive([0,1,2]));
|
||||
assert(is_positive([3,1,2]));
|
||||
assert(!is_positive([3,-1,2]));
|
||||
assert(!is_positive([]));
|
||||
assert(!is_positive(true));
|
||||
assert(!is_positive(false));
|
||||
assert(!is_positive("foo"));
|
||||
assert(!is_positive([0:1:2]));
|
||||
}
|
||||
test_is_positive();
|
||||
|
||||
|
||||
module test_is_negative() {
|
||||
assert(is_negative(-2));
|
||||
assert(!is_negative(0));
|
||||
assert(!is_negative(2));
|
||||
assert(!is_negative([0,0,0]));
|
||||
assert(!is_negative([0,1,2]));
|
||||
assert(!is_negative([3,1,2]));
|
||||
assert(!is_negative([3,-1,2]));
|
||||
assert(is_negative([-3,-1,-2]));
|
||||
assert(!is_negative([-3,1,-2]));
|
||||
assert(is_negative([[-5,-7],[-3,-1,-2]]));
|
||||
assert(!is_negative([[-5,-7],[-3,1,-2]]));
|
||||
assert(!is_negative([]));
|
||||
assert(!is_negative(true));
|
||||
assert(!is_negative(false));
|
||||
assert(!is_negative("foo"));
|
||||
assert(!is_negative([0:1:2]));
|
||||
}
|
||||
test_is_negative();
|
||||
|
||||
|
||||
module test_is_nonpositive() {
|
||||
assert(is_nonpositive(-2));
|
||||
assert(is_nonpositive(0));
|
||||
assert(!is_nonpositive(2));
|
||||
assert(is_nonpositive([0,0,0]));
|
||||
assert(!is_nonpositive([0,1,2]));
|
||||
assert(is_nonpositive([0,-1,-2]));
|
||||
assert(!is_nonpositive([3,1,2]));
|
||||
assert(!is_nonpositive([3,-1,2]));
|
||||
assert(!is_nonpositive([]));
|
||||
assert(!is_nonpositive(true));
|
||||
assert(!is_nonpositive(false));
|
||||
assert(!is_nonpositive("foo"));
|
||||
assert(!is_nonpositive([0:1:2]));
|
||||
}
|
||||
test_is_nonpositive();
|
||||
|
||||
|
||||
module test_is_nonnegative() {
|
||||
assert(!is_nonnegative(-2));
|
||||
assert(is_nonnegative(0));
|
||||
assert(is_nonnegative(2));
|
||||
assert(is_nonnegative([0,0,0]));
|
||||
assert(is_nonnegative([0,1,2]));
|
||||
assert(is_nonnegative([3,1,2]));
|
||||
assert(!is_nonnegative([3,-1,2]));
|
||||
assert(!is_nonnegative([-3,-1,-2]));
|
||||
assert(!is_nonnegative([[-5,-7],[-3,-1,-2]]));
|
||||
assert(!is_nonnegative([[-5,-7],[-3,1,-2]]));
|
||||
assert(!is_nonnegative([[5,7],[3,-1,2]]));
|
||||
assert(is_nonnegative([[5,7],[3,1,2]]));
|
||||
assert(!is_nonnegative([]));
|
||||
assert(!is_nonnegative(true));
|
||||
assert(!is_nonnegative(false));
|
||||
assert(!is_nonnegative("foo"));
|
||||
assert(!is_nonnegative([0:1:2]));
|
||||
}
|
||||
test_is_nonnegative();
|
||||
|
||||
|
||||
module test_approx() {
|
||||
assert_equal(approx(PI, 3.141592653589793236), true);
|
||||
assert_equal(approx(PI, 3.1415926), false);
|
||||
|
|
|
@ -306,11 +306,11 @@ function up(z=0,p=undef) = move([0,0,z],p=p);
|
|||
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
|
||||
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
|
||||
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
|
||||
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
|
||||
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix. Requires that `a` is a finite scalar.
|
||||
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
|
||||
//
|
||||
// Arguments:
|
||||
// a = Scalar angle or vector of XYZ rotation angles to rotate by, in degrees.
|
||||
// a = Scalar angle or vector of XYZ rotation angles to rotate by, in degrees. If `planar` is true and `p` is not given, then `a` must be a finite scalar. Default: `0`
|
||||
// v = vector for the axis of rotation. Default: [0,0,1] or UP
|
||||
// cp = centerpoint to rotate around. Default: [0,0,0]
|
||||
// from = Starting vector for vector-based rotations.
|
||||
|
@ -343,16 +343,21 @@ module rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false)
|
|||
|
||||
function rot(a=0, v, cp, from, to, reverse=false, planar=false, p, _m) =
|
||||
assert(is_undef(from)==is_undef(to), "from and to must be specified together.")
|
||||
assert(is_undef(from) || is_vector(from, zero=false), "'from' must be a non-zero vector.")
|
||||
assert(is_undef(to) || is_vector(to, zero=false), "'to' must be a non-zero vector.")
|
||||
assert(is_undef(v) || is_vector(v, zero=false), "'v' must be a non-zero vector.")
|
||||
assert(is_undef(cp) || is_vector(cp), "'cp' must be a vector.")
|
||||
assert(is_finite(a) || is_vector(a), "'a' must be a finite scalar or a vector.")
|
||||
assert(is_bool(reverse))
|
||||
assert(is_bool(planar))
|
||||
is_undef(p)? (
|
||||
planar? let(
|
||||
check = assert(is_num(a)),
|
||||
cp = is_undef(cp)? cp : point2d(cp),
|
||||
m1 = is_undef(from)? affine2d_zrot(a) :
|
||||
assert(is_vector(from))
|
||||
assert(!approx(norm(from),0))
|
||||
assert(approx(point3d(from).z, 0))
|
||||
assert(is_vector(to))
|
||||
assert(!approx(norm(to),0))
|
||||
assert(approx(point3d(to).z, 0))
|
||||
assert(a==0, "'from' and 'to' cannot be used with 'a' when 'planar' is true.")
|
||||
assert(approx(point3d(from).z, 0), "'from' must be a 2D vector when 'planar' is true.")
|
||||
assert(approx(point3d(to).z, 0), "'to' must be a 2D vector when 'planar' is true.")
|
||||
affine2d_zrot(
|
||||
vang(point2d(to)) -
|
||||
vang(point2d(from))
|
||||
|
@ -364,13 +369,10 @@ function rot(a=0, v, cp, from, to, reverse=false, planar=false, p, _m) =
|
|||
to = is_undef(to)? undef : point3d(to),
|
||||
cp = is_undef(cp)? undef : point3d(cp),
|
||||
m1 = !is_undef(from)? (
|
||||
assert(is_vector(from))
|
||||
assert(!approx(norm(from),0))
|
||||
assert(is_vector(to))
|
||||
assert(!approx(norm(to),0))
|
||||
assert(is_num(a))
|
||||
affine3d_rot_from_to(from,to) * affine3d_zrot(a)
|
||||
) :
|
||||
!is_undef(v)? affine3d_rot_by_axis(v,a) :
|
||||
!is_undef(v)? assert(is_num(a)) affine3d_rot_by_axis(v,a) :
|
||||
is_num(a)? affine3d_zrot(a) :
|
||||
affine3d_zrot(a.z) * affine3d_yrot(a.y) * affine3d_xrot(a.x),
|
||||
m2 = is_undef(cp)? m1 : (move(cp) * m1 * move(-cp)),
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
BOSL_VERSION = [2,0,405];
|
||||
BOSL_VERSION = [2,0,410];
|
||||
|
||||
|
||||
// Section: BOSL Library Version Functions
|
||||
|
|
Loading…
Reference in a new issue