mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
Merge pull request #314 from revarbat/revarbat_dev
Changes all references to polyline to path.
This commit is contained in:
commit
79bcd977ff
12 changed files with 67 additions and 111 deletions
42
beziers.scad
42
beziers.scad
|
@ -9,10 +9,8 @@
|
|||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
include <skin.scad>
|
||||
|
||||
// Section: Terminology
|
||||
// **Polyline**: A series of points joined by straight line segements.
|
||||
// **Path**: A series of points joined by straight line segements.
|
||||
// .
|
||||
// **Bezier Curve**: A mathematical curve that joins two endpoints, following a curve determined by one or more control points.
|
||||
// .
|
||||
|
@ -27,7 +25,7 @@ include <skin.scad>
|
|||
// .
|
||||
// **Bezier Path**: A list of bezier segments flattened out into a list of points, where each segment shares the endpoint of the previous segment as a start point. A cubic Bezier Path looks something like:
|
||||
// `[endpt1, cp1, cp2, endpt2, cp3, cp4, endpt3]`
|
||||
// **NOTE**: A bezier path is *NOT* a polyline. It is only the points and controls used to define the curve.
|
||||
// **NOTE**: A "bezier path" is *NOT* a standard path. It is only the points and controls used to define the curve.
|
||||
// .
|
||||
// **Bezier Patch**: A surface defining grid of (N+1) by (N+1) bezier points. If a Bezier Segment defines a curved line, a Bezier Patch defines a curved surface.
|
||||
// .
|
||||
|
@ -374,7 +372,7 @@ function bezier_segment_length(curve, start_u=0, end_u=1, max_deflect=0.01) =
|
|||
// p0 = [40, 0];
|
||||
// p1 = [0, 0];
|
||||
// p2 = [30, 30];
|
||||
// trace_polyline([p0,p1,p2], showpts=true, size=0.5, color="green");
|
||||
// trace_path([p0,p1,p2], showpts=true, size=0.5, color="green");
|
||||
// fbez = fillet3pts(p0,p1,p2, 10);
|
||||
// trace_bezier(slice(fbez, 1, -2), size=1);
|
||||
function fillet3pts(p0, p1, p2, r, d, maxerr=0.1, w=0.5, dw=0.25) = let(
|
||||
|
@ -482,11 +480,11 @@ function bezier_path_length(path, N=3, max_deflect=0.001) =
|
|||
|
||||
|
||||
|
||||
// Function: bezier_polyline()
|
||||
// Function: bezier_path()
|
||||
// Usage:
|
||||
// bezier_polyline(bezier, [splinesteps], [N])
|
||||
// bezier_path(bezier, [splinesteps], [N])
|
||||
// Description:
|
||||
// Takes a bezier path and converts it into a polyline.
|
||||
// Takes a bezier path and converts it into a path of points.
|
||||
// Arguments:
|
||||
// bezier = A bezier path to approximate.
|
||||
// splinesteps = Number of straight lines to split each bezier segment into. default=16
|
||||
|
@ -498,9 +496,9 @@ function bezier_path_length(path, N=3, max_deflect=0.001) =
|
|||
// [60,25], [70,0], [80,-25],
|
||||
// [80,-50], [50,-50]
|
||||
// ];
|
||||
// trace_polyline(bez, size=1, N=3, showpts=true);
|
||||
// trace_polyline(bezier_polyline(bez, N=3), size=3);
|
||||
function bezier_polyline(bezier, splinesteps=16, N=3) =
|
||||
// trace_path(bez, size=1, N=3, showpts=true);
|
||||
// trace_path(bezier_path(bez, N=3), size=3);
|
||||
function bezier_path(bezier, splinesteps=16, N=3) =
|
||||
assert(is_path(bezier))
|
||||
assert(is_int(N))
|
||||
assert(is_int(splinesteps))
|
||||
|
@ -598,15 +596,15 @@ function path_to_bezier(path, tangents, size, relsize, uniform=false, closed=fal
|
|||
// Usage:
|
||||
// fillet_path(pts, fillet, [maxerr]);
|
||||
// Description:
|
||||
// Takes a 3D polyline path and fillets the corners, returning a 3d cubic (degree 3) bezier path.
|
||||
// Takes a 3D path and fillets the corners, returning a 3d cubic (degree 3) bezier path.
|
||||
// Arguments:
|
||||
// pts = 3D Polyline path to fillet.
|
||||
// fillet = The radius to fillet/round the polyline corners by.
|
||||
// pts = 3D path to fillet.
|
||||
// fillet = The radius to fillet/round the path corners by.
|
||||
// maxerr = Max amount bezier curve should diverge from actual radius curve. Default: 0.1
|
||||
// Example(2D):
|
||||
// pline = [[40,0], [0,0], [35,35], [0,70], [-10,60], [-5,55], [0,60]];
|
||||
// bez = fillet_path(pline, 10);
|
||||
// trace_polyline(pline, showpts=true, size=0.5, color="green");
|
||||
// trace_path(pline, showpts=true, size=0.5, color="green");
|
||||
// trace_bezier(bez, size=1);
|
||||
function fillet_path(pts, fillet, maxerr=0.1) = concat(
|
||||
[pts[0], pts[0]],
|
||||
|
@ -722,7 +720,7 @@ module bezier_polygon(bezier, splinesteps=16, N=3) {
|
|||
assert(is_int(N));
|
||||
assert(is_int(splinesteps));
|
||||
assert(len(bezier)%N == 1, str("A degree ",N," bezier path shound have a multiple of ",N," points in it, plus 1."));
|
||||
polypoints=bezier_polyline(bezier, splinesteps, N);
|
||||
polypoints=bezier_path(bezier, splinesteps, N);
|
||||
polygon(points=slice(polypoints, 0, -1));
|
||||
}
|
||||
|
||||
|
@ -803,7 +801,7 @@ module rotate_sweep_bezier(bezier, splinesteps=16, N=3, convexity=undef, angle=3
|
|||
assert(is_int(N));
|
||||
assert(is_num(angle));
|
||||
assert(len(bezier)%N == 1, str("A degree ",N," bezier path shound have a multiple of ",N," points in it, plus 1."));
|
||||
oline = bezier_polyline(bezier, splinesteps=splinesteps, N=N);
|
||||
oline = bezier_path(bezier, splinesteps=splinesteps, N=N);
|
||||
maxx = max([for (pt = oline) abs(pt[0])]);
|
||||
miny = min(subindex(oline,1));
|
||||
maxy = max(subindex(oline,1));
|
||||
|
@ -839,7 +837,7 @@ module bezier_path_extrude(bezier, splinesteps=16, N=3, convexity=undef, clipsiz
|
|||
assert(is_int(N));
|
||||
assert(is_num(clipsize));
|
||||
assert(len(bezier)%N == 1, str("A degree ",N," bezier path shound have a multiple of ",N," points in it, plus 1."));
|
||||
path = slice(bezier_polyline(bezier, splinesteps, N), 0, -1);
|
||||
path = slice(bezier_path(bezier, splinesteps, N), 0, -1);
|
||||
path_extrude(path, convexity=convexity, clipsize=clipsize) children();
|
||||
}
|
||||
|
||||
|
@ -876,8 +874,8 @@ module bezier_sweep_bezier(bezier, path, pathsteps=16, bezsteps=16, bezN=3, path
|
|||
assert(is_int(pathN));
|
||||
assert(len(bezier)%bezN == 1, str("For argument bezier, a degree ",bezN," bezier path shound have a multiple of ",bezN," points in it, plus 1."));
|
||||
assert(len(path)%pathN == 1, str("For argument bezier, a degree ",pathN," bezier path shound have a multiple of ",pathN," points in it, plus 1."));
|
||||
bez_points = simplify_path(bezier_polyline(bezier, bezsteps, bezN));
|
||||
path_points = simplify_path(path3d(bezier_polyline(path, pathsteps, pathN)));
|
||||
bez_points = simplify_path(bezier_path(bezier, bezsteps, bezN));
|
||||
path_points = simplify_path(path3d(bezier_path(path, pathsteps, pathN)));
|
||||
path_sweep(bez_points, path_points);
|
||||
}
|
||||
|
||||
|
@ -902,8 +900,8 @@ module trace_bezier(bez, N=3, size=1) {
|
|||
assert(is_path(bez));
|
||||
assert(is_int(N));
|
||||
assert(len(bez)%N == 1, str("A degree ",N," bezier path shound have a multiple of ",N," points in it, plus 1."));
|
||||
trace_polyline(bez, N=N, showpts=true, size=size, color="green");
|
||||
trace_polyline(bezier_polyline(bez, N=N), size=size, color="cyan");
|
||||
trace_path(bez, N=N, showpts=true, size=size, color="green");
|
||||
trace_path(bezier_path(bez, N=N), size=size, color="cyan");
|
||||
}
|
||||
|
||||
|
||||
|
|
28
debug.scad
28
debug.scad
|
@ -8,32 +8,30 @@
|
|||
// ```
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
include <skin.scad>
|
||||
|
||||
|
||||
// Section: Debugging Paths and Polygons
|
||||
|
||||
// Module: trace_polyline()
|
||||
// Module: trace_path()
|
||||
// Description:
|
||||
// Renders lines between each point of a polyline path.
|
||||
// Renders lines between each point of a path.
|
||||
// Can also optionally show the individual vertex points.
|
||||
// Arguments:
|
||||
// pline = The array of points in the polyline.
|
||||
// path = The list of points in the path.
|
||||
// closed = If true, draw the segment from the last vertex to the first. Default: false
|
||||
// showpts = If true, draw vertices and control points.
|
||||
// N = Mark the first and every Nth vertex after in a different color and shape.
|
||||
// size = Diameter of the lines drawn.
|
||||
// color = Color to draw the lines (but not vertices) in.
|
||||
// Example(FlatSpin):
|
||||
// polyline = [for (a=[0:30:210]) 10*[cos(a), sin(a), sin(a)]];
|
||||
// trace_polyline(polyline, showpts=true, size=0.5, color="lightgreen");
|
||||
module trace_polyline(pline, closed=false, showpts=false, N=1, size=1, color="yellow") {
|
||||
assert(is_path(pline),"Input pline is not a path");
|
||||
// path = [for (a=[0:30:210]) 10*[cos(a), sin(a), sin(a)]];
|
||||
// trace_path(path, showpts=true, size=0.5, color="lightgreen");
|
||||
module trace_path(path, closed=false, showpts=false, N=1, size=1, color="yellow") {
|
||||
assert(is_path(path),"Invalid path argument");
|
||||
sides = segs(size/2);
|
||||
pline = closed? close_path(pline) : pline;
|
||||
path = closed? close_path(path) : path;
|
||||
if (showpts) {
|
||||
for (i = [0:1:len(pline)-1]) {
|
||||
translate(pline[i]) {
|
||||
for (i = [0:1:len(path)-1]) {
|
||||
translate(path[i]) {
|
||||
if (i%N == 0) {
|
||||
color("blue") sphere(d=size*2.5, $fn=8);
|
||||
} else {
|
||||
|
@ -47,11 +45,11 @@ module trace_polyline(pline, closed=false, showpts=false, N=1, size=1, color="ye
|
|||
}
|
||||
}
|
||||
if (N!=3) {
|
||||
color(color) stroke(path3d(pline), width=size, $fn=8);
|
||||
color(color) stroke(path3d(path), width=size, $fn=8);
|
||||
} else {
|
||||
for (i = [0:1:len(pline)-2]) {
|
||||
for (i = [0:1:len(path)-2]) {
|
||||
if (N!=3 || (i%N) != 1) {
|
||||
color(color) extrude_from_to(pline[i], pline[i+1]) circle(d=size, $fn=sides);
|
||||
color(color) extrude_from_to(path[i], path[i+1]) circle(d=size, $fn=sides);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -10,7 +10,6 @@
|
|||
|
||||
|
||||
include <rounding.scad>
|
||||
include <skin.scad>
|
||||
|
||||
|
||||
// Section: Half Joiners
|
||||
|
@ -989,7 +988,7 @@ module rabbit_clip(type, length, width, snap, thickness, depth, compression=0.1
|
|||
: let(side_smooth=select(pin_smooth, 0, 2))
|
||||
concat(side_smooth, [socket_smooth], reverse(side_smooth));
|
||||
bez = path_to_bezier(path,relsize=smoothing,tangents=tangent);
|
||||
rounded = bezier_polyline(bez,splinesteps=splinesteps);
|
||||
rounded = bezier_path(bez,splinesteps=splinesteps);
|
||||
bounds = pointlist_bounds(rounded);
|
||||
//kk = search([bounds[1].y], subindex(rounded,1));
|
||||
//echo(rounded[kk[0]]);
|
||||
|
|
76
paths.scad
76
paths.scad
|
@ -1,6 +1,6 @@
|
|||
//////////////////////////////////////////////////////////////////////
|
||||
// LibFile: paths.scad
|
||||
// Polylines, polygons and paths.
|
||||
// Support for polygons and paths.
|
||||
// To use, add the following lines to the beginning of your file:
|
||||
// ```
|
||||
// include <BOSL2/std.scad>
|
||||
|
@ -421,7 +421,7 @@ function path_torsion(path, closed=false) =
|
|||
// cp = Centerpoint of spiral. Default: `[0,0]`
|
||||
// scale = [X,Y] scaling factors for each axis. Default: `[1,1]`
|
||||
// Example(3D):
|
||||
// trace_polyline(path3d_spiral(turns=2.5, h=100, n=24, r=50), N=1, showpts=true);
|
||||
// trace_path(path3d_spiral(turns=2.5, h=100, n=24, r=50), N=1, showpts=true);
|
||||
function path3d_spiral(turns=3, h=100, n=12, r, d, cp=[0,0], scale=[1,1]) = let(
|
||||
rr=get_radius(r=r, d=d, dflt=100),
|
||||
cnt=floor(turns*n),
|
||||
|
@ -435,44 +435,6 @@ function path3d_spiral(turns=3, h=100, n=12, r, d, cp=[0,0], scale=[1,1]) = let(
|
|||
];
|
||||
|
||||
|
||||
// Function: points_along_path3d()
|
||||
// Usage:
|
||||
// points_along_path3d(polyline, path);
|
||||
// Description:
|
||||
// Calculates the vertices needed to create a `polyhedron()` of the
|
||||
// extrusion of `polyline` along `path`. The closed 2D path shold be
|
||||
// centered on the XY plane. The 2D path is extruded perpendicularly
|
||||
// along the 3D path. Produces a list of 3D vertices. Vertex count
|
||||
// is `len(polyline)*len(path)`. Gives all the reoriented vertices
|
||||
// for `polyline` at the first point in `path`, then for the second,
|
||||
// and so on.
|
||||
// Arguments:
|
||||
// polyline = A closed list of 2D path points.
|
||||
// path = A list of 3D path points.
|
||||
function points_along_path3d(
|
||||
polyline, // The 2D polyline to drag along the 3D path.
|
||||
path, // The 3D polyline path to follow.
|
||||
q=Q_Ident(), // Used in recursion
|
||||
n=0 // Used in recursion
|
||||
) = let(
|
||||
end = len(path)-1,
|
||||
v1 = (n == 0)? [0, 0, 1] : unit(path[n]-path[n-1]),
|
||||
v2 = (n == end)? unit(path[n]-path[n-1]) : unit(path[n+1]-path[n]),
|
||||
crs = cross(v1, v2),
|
||||
axis = norm(crs) <= 0.001? [0, 0, 1] : crs,
|
||||
ang = vector_angle(v1, v2),
|
||||
hang = ang * (n==0? 1.0 : 0.5),
|
||||
hrot = Quat(axis, hang),
|
||||
arot = Quat(axis, ang),
|
||||
roth = Q_Mul(hrot, q),
|
||||
rotm = Q_Mul(arot, q)
|
||||
) concat(
|
||||
[for (i = [0:1:len(polyline)-1]) Qrot(roth,p=point3d(polyline[i])) + path[n]],
|
||||
(n == end)? [] : points_along_path3d(polyline, path, rotm, n+1)
|
||||
);
|
||||
|
||||
|
||||
|
||||
// Function: path_self_intersections()
|
||||
// Usage:
|
||||
// isects = path_self_intersections(path, [eps]);
|
||||
|
@ -529,9 +491,9 @@ function path_self_intersections(path, closed=true, eps=EPSILON) =
|
|||
|
||||
// Function: split_path_at_self_crossings()
|
||||
// Usage:
|
||||
// polylines = split_path_at_self_crossings(path, [closed], [eps]);
|
||||
// paths = split_path_at_self_crossings(path, [closed], [eps]);
|
||||
// Description:
|
||||
// Splits a path into polyline sections wherever the path crosses itself.
|
||||
// Splits a path into sub-paths wherever the original path crosses itself.
|
||||
// Splits may occur mid-segment, so new vertices will be created at the intersection points.
|
||||
// Arguments:
|
||||
// path = The path to split up.
|
||||
|
@ -539,8 +501,8 @@ function path_self_intersections(path, closed=true, eps=EPSILON) =
|
|||
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
|
||||
// Example(2D):
|
||||
// path = [ [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100] ];
|
||||
// polylines = split_path_at_self_crossings(path);
|
||||
// rainbow(polylines) stroke($item, closed=false, width=2);
|
||||
// paths = split_path_at_self_crossings(path);
|
||||
// rainbow(paths) stroke($item, closed=false, width=2);
|
||||
function split_path_at_self_crossings(path, closed=true, eps=EPSILON) =
|
||||
let(
|
||||
path = cleanup_path(path, eps=eps),
|
||||
|
@ -681,11 +643,11 @@ function _extreme_angle_fragment(seg, fragments, rightmost=true, eps=EPSILON) =
|
|||
// Usage:
|
||||
// assemble_a_path_from_fragments(subpaths);
|
||||
// Description:
|
||||
// Given a list of incomplete paths, assembles them together into one complete closed path, and
|
||||
// Given a list of paths, assembles them together into one complete closed polygon path, and
|
||||
// remainder fragments. Returns [PATH, FRAGMENTS] where FRAGMENTS is the list of remaining
|
||||
// polyline path fragments.
|
||||
// unused path fragments.
|
||||
// Arguments:
|
||||
// fragments = List of polylines to be assembled into complete polygons.
|
||||
// fragments = List of paths to be assembled into complete polygons.
|
||||
// rightmost = If true, assemble paths using rightmost turns. Leftmost if false.
|
||||
// startfrag = The fragment to start with. Default: 0
|
||||
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
|
||||
|
@ -738,9 +700,9 @@ function assemble_a_path_from_fragments(fragments, rightmost=true, startfrag=0,
|
|||
// Usage:
|
||||
// assemble_path_fragments(subpaths);
|
||||
// Description:
|
||||
// Given a list of incomplete paths, assembles them together into complete closed paths if it can.
|
||||
// Given a list of paths, assembles them together into complete closed polygon paths if it can.
|
||||
// Arguments:
|
||||
// fragments = List of polylines to be assembled into complete polygons.
|
||||
// fragments = List of paths to be assembled into complete polygons.
|
||||
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
|
||||
function assemble_path_fragments(fragments, eps=EPSILON, _finished=[]) =
|
||||
len(fragments)==0? _finished :
|
||||
|
@ -832,10 +794,10 @@ module extrude_from_to(pt1, pt2, convexity=undef, twist=undef, scale=undef, slic
|
|||
|
||||
// Module: spiral_sweep()
|
||||
// Description:
|
||||
// Takes a closed 2D polyline path, centered on the XY plane, and
|
||||
// extrudes it along a 3D spiral path of a given radius, height and twist.
|
||||
// Takes a closed 2D polygon path, centered on the XY plane, and sweeps/extrudes it along a 3D spiral path
|
||||
// of a given radius, height and twist.
|
||||
// Arguments:
|
||||
// polyline = Array of points of a polyline path, to be extruded.
|
||||
// path = Array of points of a polygon path, to be extruded.
|
||||
// h = height of the spiral to extrude along.
|
||||
// r = Radius of the spiral to extrude along. Default: 50
|
||||
// d = Diameter of the spiral to extrude along.
|
||||
|
@ -847,10 +809,10 @@ module extrude_from_to(pt1, pt2, convexity=undef, twist=undef, scale=undef, slic
|
|||
// Example:
|
||||
// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]];
|
||||
// spiral_sweep(poly, h=200, r=50, twist=1080, $fn=36);
|
||||
module spiral_sweep(polyline, h, r, twist=360, center, d, anchor, spin=0, orient=UP) {
|
||||
module spiral_sweep(poly, h, r, twist=360, center, d, anchor, spin=0, orient=UP) {
|
||||
r = get_radius(r=r, d=d, dflt=50);
|
||||
polyline = path3d(polyline);
|
||||
pline_count = len(polyline);
|
||||
poly = path3d(poly);
|
||||
pline_count = len(poly);
|
||||
steps = ceil(segs(r)*(twist/360));
|
||||
anchor = get_anchor(anchor,center,BOT,BOT);
|
||||
|
||||
|
@ -863,7 +825,7 @@ module spiral_sweep(polyline, h, r, twist=360, center, d, anchor, spin=0, orient
|
|||
dy = r*sin(a),
|
||||
dz = h * (p/steps),
|
||||
pts = apply_list(
|
||||
polyline, [
|
||||
poly, [
|
||||
affine3d_xrot(90),
|
||||
affine3d_zrot(a),
|
||||
affine3d_translate([dx, dy, dz-h/2])
|
||||
|
@ -902,7 +864,7 @@ module spiral_sweep(polyline, h, r, twist=360, center, d, anchor, spin=0, orient
|
|||
|
||||
// Module: path_extrude()
|
||||
// Description:
|
||||
// Extrudes 2D children along a 3D polyline path. This may be slow.
|
||||
// Extrudes 2D children along a 3D path. This may be slow.
|
||||
// Arguments:
|
||||
// path = array of points for the bezier path to extrude along.
|
||||
// convexity = maximum number of walls a ran can pass through.
|
||||
|
|
|
@ -154,9 +154,9 @@ function region_path_crossings(path, region, closed=true, eps=EPSILON) = sort([
|
|||
|
||||
// Function: split_path_at_region_crossings()
|
||||
// Usage:
|
||||
// polylines = split_path_at_region_crossings(path, region, [eps]);
|
||||
// paths = split_path_at_region_crossings(path, region, [eps]);
|
||||
// Description:
|
||||
// Splits a path into polyline sections wherever the path crosses the perimeter of a region.
|
||||
// Splits a path into sub-paths wherever the path crosses the perimeter of a region.
|
||||
// Splits may occur mid-segment, so new vertices will be created at the intersection points.
|
||||
// Arguments:
|
||||
// path = The path to split up.
|
||||
|
@ -166,9 +166,9 @@ function region_path_crossings(path, region, closed=true, eps=EPSILON) = sort([
|
|||
// Example(2D):
|
||||
// path = square(50,center=false);
|
||||
// region = [circle(d=80), circle(d=40)];
|
||||
// polylines = split_path_at_region_crossings(path, region);
|
||||
// paths = split_path_at_region_crossings(path, region);
|
||||
// color("#aaa") region(region);
|
||||
// rainbow(polylines) stroke($item, closed=false, width=2);
|
||||
// rainbow(paths) stroke($item, closed=false, width=2);
|
||||
function split_path_at_region_crossings(path, region, closed=true, eps=EPSILON) =
|
||||
let(
|
||||
path = deduplicate(path, eps=eps),
|
||||
|
|
|
@ -181,7 +181,6 @@ include <structs.scad>
|
|||
// path_sweep(regular_ngon(n=36,or=.1),round_corners(list2,closed=false, method="circle", cut = 0.75));
|
||||
// Example(FlatSpin): Rounding a spiral with increased rounding along the length
|
||||
// // Construct a square spiral path in 3D
|
||||
// include <BOSL2/skin.scad>
|
||||
// $fn=36;
|
||||
// square = [[0,0],[1,0],[1,1],[0,1]];
|
||||
// spiral = flatten(repeat(concat(square,reverse(square)),5)); // Squares repeat 10 times, forward and backward
|
||||
|
@ -454,7 +453,7 @@ function smooth_path(path, tangents, size, relsize, splinesteps=10, uniform=fals
|
|||
let (
|
||||
bez = path_to_bezier(path, tangents=tangents, size=size, relsize=relsize, uniform=uniform, closed=closed)
|
||||
)
|
||||
bezier_polyline(bez,splinesteps=splinesteps);
|
||||
bezier_path(bez,splinesteps=splinesteps);
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -377,7 +377,7 @@ module stroke(
|
|||
// stroke(closed=true, path);
|
||||
// Example(FlatSpin):
|
||||
// path = arc(points=[[0,30,0],[0,0,30],[30,0,0]]);
|
||||
// trace_polyline(path, showpts=true, color="cyan");
|
||||
// trace_path(path, showpts=true, color="cyan");
|
||||
function arc(N, r, angle, d, cp, points, width, thickness, start, wedge=false, long=false, cw=false, ccw=false) =
|
||||
// First try for 2D arc specified by width and thickness
|
||||
is_def(width) && is_def(thickness)? (
|
||||
|
|
|
@ -10,7 +10,6 @@
|
|||
// - https://github.com/openscad/list-comprehension-demos/blob/master/skin.scad
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
include <vnf.scad>
|
||||
|
||||
// Section: Skinning
|
||||
|
||||
|
@ -824,7 +823,7 @@ function associate_vertices(polygons, split, curpoly=0) =
|
|||
|
||||
// Function&Module: sweep()
|
||||
// Usage: As Module
|
||||
// sweep(shape, transformations, <closed<, <caps>)
|
||||
// sweep(shape, transformations, <closed>, <caps>)
|
||||
// Usage: As Function
|
||||
// vnf = sweep(shape, transformations, <closed>, <caps>);
|
||||
// Description:
|
||||
|
|
1
std.scad
1
std.scad
|
@ -31,6 +31,7 @@ include <coords.scad>
|
|||
include <geometry.scad>
|
||||
include <regions.scad>
|
||||
include <strings.scad>
|
||||
include <skin.scad>
|
||||
include <vnf.scad>
|
||||
include <common.scad>
|
||||
include <debug.scad>
|
||||
|
|
|
@ -671,8 +671,8 @@ function yscale(y=1, p=undef, planar=false) = (planar || (!is_undef(p) && len(p)
|
|||
//
|
||||
// Example: Scaling Points
|
||||
// path = xrot(90,p=path3d(circle(d=50,$fn=12)));
|
||||
// #trace_polyline(path);
|
||||
// trace_polyline(zscale(2,p=path));
|
||||
// #trace_path(path);
|
||||
// trace_path(zscale(2,p=path));
|
||||
module zscale(z=1) scale([1,1,z]) children();
|
||||
|
||||
function zscale(z=1, p=undef) = scale([1,1,z],p=p);
|
||||
|
@ -917,7 +917,7 @@ function zflip(z=0,p) =
|
|||
// color("blue") move_copies(pts) circle(d=3, $fn=8);
|
||||
// Example(FlatSpin): Calling as a 3D Function
|
||||
// pts = skew(p=path3d(square(40,center=true)), szx=0.5, szy=0.3);
|
||||
// trace_polyline(close_path(pts), showpts=true);
|
||||
// trace_path(close_path(pts), showpts=true);
|
||||
module skew(sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0)
|
||||
{
|
||||
multmatrix(
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
BOSL_VERSION = [2,0,465];
|
||||
BOSL_VERSION = [2,0,466];
|
||||
|
||||
|
||||
// Section: BOSL Library Version Functions
|
||||
|
|
|
@ -72,7 +72,7 @@ function hex_offsets(n, d, lev=0, arr=[]) =
|
|||
// Usage:
|
||||
// wiring(path, wires, [wirediam], [rounding], [wirenum], [bezsteps]);
|
||||
// Arguments:
|
||||
// path = The 3D polyline path that the wire bundle should follow.
|
||||
// path = The 3D path that the wire bundle should follow.
|
||||
// wires = The number of wires in the wiring bundle.
|
||||
// wirediam = The diameter of each wire in the bundle.
|
||||
// rounding = The radius that the path corners will be rounded to.
|
||||
|
@ -90,7 +90,7 @@ module wiring(path, wires, wirediam=2, rounding=10, wirenum=0, bezsteps=12) {
|
|||
];
|
||||
offsets = hex_offsets(wires, wirediam);
|
||||
bezpath = fillet_path(path, rounding);
|
||||
poly = simplify_path(path3d(bezier_polyline(bezpath, bezsteps)));
|
||||
poly = simplify_path(path3d(bezier_path(bezpath, bezsteps)));
|
||||
n = max(segs(wirediam), 8);
|
||||
r = wirediam/2;
|
||||
for (i = [0:1:wires-1]) {
|
||||
|
|
Loading…
Reference in a new issue