This commit is contained in:
Alex Matulich 2025-01-18 05:19:47 +00:00 committed by GitHub
commit 7bd508e554
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 75 additions and 75 deletions

View file

@ -23,7 +23,7 @@
// Arguments: // Arguments:
// a = First value. // a = First value.
// b = Second value. // b = Second value.
// eps = The maximum allowed difference between `a` and `b` that will return true. Defaults to 1e-9. // eps = The maximum allowed difference between `a` and `b` to consider as "no difference". Default: 1e-9.
// Example: // Example:
// test1 = approx(-0.3333333333,-1/3); // Returns: true // test1 = approx(-0.3333333333,-1/3); // Returns: true
// test2 = approx(0.3333333333,1/3); // Returns: true // test2 = approx(0.3333333333,1/3); // Returns: true
@ -47,7 +47,7 @@ function approx(a,b,eps=EPSILON) =
// Function: all_zero() // Function: all_zero()
// Synopsis: Returns true if the value(s) given are aproximately zero. // Synopsis: Returns true if the value(s) given are approximately zero.
// Topics: Comparisons, List Handling // Topics: Comparisons, List Handling
// See Also: approx(), all_zero(), all_nonzero() // See Also: approx(), all_zero(), all_nonzero()
// Usage: // Usage:
@ -70,7 +70,7 @@ function all_zero(x, eps=EPSILON) =
// Function: all_nonzero() // Function: all_nonzero()
// Synopsis: Returns true if the value(s) given are not aproximately zero. // Synopsis: Returns true if the value(s) given are not approximately zero.
// Topics: Comparisons, List Handling // Topics: Comparisons, List Handling
// See Also: approx(), all_zero(), all_nonzero() // See Also: approx(), all_zero(), all_nonzero()
// Usage: // Usage:
@ -242,7 +242,7 @@ function are_ends_equal(list, eps=EPSILON) =
// bool = is_increasing(list, [strict]); // bool = is_increasing(list, [strict]);
// Description: // Description:
// Returns true if the list is (non-strictly) increasing, or strictly increasing if `strict=true`. // Returns true if the list is (non-strictly) increasing, or strictly increasing if `strict=true`.
// The list can be a list of any items that OpenSCAD can compare, or it can be a string which will be // The list can be a list of any items that OpenSCAD can compare, or it can be a string, which gets
// evaluated character by character. // evaluated character by character.
// Arguments: // Arguments:
// list = list (or string) to check // list = list (or string) to check
@ -267,7 +267,7 @@ function is_increasing(list,strict=false) =
// bool = is_decreasing(list, [strict]); // bool = is_decreasing(list, [strict]);
// Description: // Description:
// Returns true if the list is (non-strictly) decreasing, or strictly decreasing if `strict=true`. // Returns true if the list is (non-strictly) decreasing, or strictly decreasing if `strict=true`.
// The list can be a list of any items that OpenSCAD can compare, or it can be a string which will be // The list can be a list of any items that OpenSCAD can compare, or it can be a string, which gets
// evaluated character by character. // evaluated character by character.
// Arguments: // Arguments:
// list = list (or string) to check // list = list (or string) to check
@ -345,7 +345,7 @@ function compare_lists(a, b) =
// Function: min_index() // Function: min_index()
// Synopsis: Returns the index of the minimal value in the given list. // Synopsis: Returns the index of the minimum value in the given list.
// Topics: List Handling // Topics: List Handling
// See Also: max_index(), is_increasing(), is_decreasing() // See Also: max_index(), is_increasing(), is_decreasing()
// Usage: // Usage:
@ -356,7 +356,7 @@ function compare_lists(a, b) =
// If `all` is true then returns a list of all indices where the minimum value occurs. // If `all` is true then returns a list of all indices where the minimum value occurs.
// Arguments: // Arguments:
// vals = vector of values // vals = vector of values
// all = set to true to return indices of all occurences of the minimum. Default: false // all = set to true to return indices of all occurrences of the minimum. Default: false
// Example: // Example:
// a = min_index([5,3,9,6,2,7,8,2,1]); // Returns: 8 // a = min_index([5,3,9,6,2,7,8,2,1]); // Returns: 8
// b = min_index([5,3,9,6,2,7,8,2,7],all=true); // Returns: [4,7] // b = min_index([5,3,9,6,2,7,8,2,7],all=true); // Returns: [4,7]
@ -366,7 +366,7 @@ function min_index(vals, all=false) =
// Function: max_index() // Function: max_index()
// Synopsis: Returns the index of the minimal value in the given list. // Synopsis: Returns the index of the maximum value in the given list.
// Topics: List Handling // Topics: List Handling
// See Also: min_index(), is_increasing(), is_decreasing() // See Also: min_index(), is_increasing(), is_decreasing()
// Usage: // Usage:
@ -377,7 +377,7 @@ function min_index(vals, all=false) =
// If `all` is true then returns a list of all indices where the maximum value occurs. // If `all` is true then returns a list of all indices where the maximum value occurs.
// Arguments: // Arguments:
// vals = vector of values // vals = vector of values
// all = set to true to return indices of all occurences of the maximum. Default: false // all = set to true to return indices of all occurrences of the maximum. Default: false
// Example: // Example:
// max_index([5,3,9,6,2,7,8,9,1]); // Returns: 2 // max_index([5,3,9,6,2,7,8,9,1]); // Returns: 2
// max_index([5,3,9,6,2,7,8,9,1],all=true); // Returns: [2,7] // max_index([5,3,9,6,2,7,8,9,1],all=true); // Returns: [2,7]
@ -390,7 +390,7 @@ function max_index(vals, all=false) =
// Function: find_approx() // Function: find_approx()
// Synopsis: Finds the indexes of the item(s) in the given list that are aproximately the given value. // Synopsis: Finds the indexes of the item(s) in the given list that are approximately the given value.
// Topics: List Handling // Topics: List Handling
// See Also: in_list() // See Also: in_list()
// Usage: // Usage:
@ -763,7 +763,7 @@ function _indexed_sort(arrind) =
// Usage: // Usage:
// slist = sort(list, [idx]); // slist = sort(list, [idx]);
// Description: // Description:
// Sorts the given list in lexicographic order. The sort is stable, meaning equivalent items will not change order. // Sorts the given list in lexicographic order. The sort is stable, meaning equivalent items do not change order.
// If the input is a homogeneous simple list or a homogeneous // If the input is a homogeneous simple list or a homogeneous
// list of vectors (see function is_homogeneous), the sorting method uses the native comparison operator and is faster. // list of vectors (see function is_homogeneous), the sorting method uses the native comparison operator and is faster.
// When sorting non homogeneous list the elements are compared with `compare_vals`, with types ordered according to // When sorting non homogeneous list the elements are compared with `compare_vals`, with types ordered according to
@ -808,9 +808,9 @@ function sort(list, idx=undef) =
// Description: // Description:
// Given a list, sort it as function `sort()`, and returns // Given a list, sort it as function `sort()`, and returns
// a list of indexes into the original list in that sorted order. // a list of indexes into the original list in that sorted order.
// The sort is stable, so equivalent items will not change order. // The sort is stable, so equivalent items so not change order.
// If you iterate the returned list in order, and use the list items // If you iterate the returned list in order, and use the list items
// to index into the original list, you will be iterating the original // to index into the original list, then you are accessing the original
// values in sorted order. // values in sorted order.
// Arguments: // Arguments:
// list = The list to sort. // list = The list to sort.
@ -862,8 +862,8 @@ function sortidx(list, idx=undef) =
// ulist = group_sort(list,[idx]); // ulist = group_sort(list,[idx]);
// Description: // Description:
// Given a list of numbers, sorts the list into a sequence of lists, where each list contains any repeated values. // Given a list of numbers, sorts the list into a sequence of lists, where each list contains any repeated values.
// If there are no repeated values the output will be a list of singleton lists. // If there are no repeated values, the output is a list of singleton lists.
// If you apply {{flatten()}} to the output, the result will be a simple sorted list. // If you apply {{flatten()}} to the output, the result is a simple sorted list.
// . // .
// When the input is a list of lists, the sorting is done based on index `idx` of the entries in `list`. // When the input is a list of lists, the sorting is done based on index `idx` of the entries in `list`.
// In this case, `list[i][idx]` must be a number for every `i`, and the entries in `list` are grouped // In this case, `list[i][idx]` must be a number for every `i`, and the entries in `list` are grouped
@ -897,9 +897,9 @@ function group_sort(list, idx) =
// Description: // Description:
// Given a list of integer group numbers, and an equal-length list of values, // Given a list of integer group numbers, and an equal-length list of values,
// returns a list of groups with the values sorted into the corresponding groups. // returns a list of groups with the values sorted into the corresponding groups.
// Ie: if you have a groups index list of `[2,3,2]` and values of `["A","B","C"]`, then // For example: if you have a groups index list of `[2,3,2]` and values of `["A","B","C"]`, then
// the values `"A"` and `"C"` will be put in group 2, and `"B"` will be in group 3. // the values `"A"` and `"C"` are put in group 2, and `"B"` is in group 3.
// Groups that have no values grouped into them will be an empty list. So the // Groups that have no values grouped into them are empty lists. Therefore, the
// above would return `[[], [], ["A","C"], ["B"]]` // above would return `[[], [], ["A","C"], ["B"]]`
// Arguments: // Arguments:
// groups = A list of integer group index numbers. // groups = A list of integer group index numbers.
@ -936,8 +936,8 @@ function group_data(groups, values) =
// small = list_smallest(list, k) // small = list_smallest(list, k)
// Description: // Description:
// Returns a set of the k smallest items in list in arbitrary order. The items must be // Returns a set of the k smallest items in list in arbitrary order. The items must be
// mutually comparable with native OpenSCAD comparison operations. You will get "undefined operation" // mutually comparable with native OpenSCAD comparison operations.
// errors if you provide invalid input. // You get "undefined operation" errors if you provide invalid input.
// Arguments: // Arguments:
// list = list to process // list = list to process
// k = number of items to return // k = number of items to return

104
vnf.scad
View file

@ -40,13 +40,13 @@ EMPTY_VNF = [[],[]]; // The standard empty VNF with no vertices or faces.
// back to the first column, or wrap the last row to the first. Endcaps can be added to either // back to the first column, or wrap the last row to the first. Endcaps can be added to either
// the first and/or last rows. The style parameter determines how the quadrilaterals are divided into // the first and/or last rows. The style parameter determines how the quadrilaterals are divided into
// triangles. The default style is an arbitrary, systematic subdivision in the same direction. The "alt" style // triangles. The default style is an arbitrary, systematic subdivision in the same direction. The "alt" style
// is the uniform subdivision in the other (alternate) direction. The "flip1" style is an arbitrary division which alternates the // is the uniform subdivision in the other (alternate) direction. The "flip1" style is an arbitrary division that alternates the
// direction for any adjacent pair of quadrilaterals. The "flip2" style is the alternating division that is the opposite of "flip1". // direction for any adjacent pair of quadrilaterals. The "flip2" style is the alternating division that is the opposite of "flip1".
// The "min_edge" style picks the shorter edge to // The "min_edge" style picks the shorter edge to
// subdivide for each quadrilateral, so the division may not be uniform across the shape. The "quincunx" style // subdivide for each quadrilateral, so the division may not be uniform across the shape. The "quincunx" style
// adds a vertex in the center of each quadrilateral and creates four triangles, and the "convex" and "concave" styles // adds a vertex in the center of each quadrilateral and creates four triangles, and the "convex" and "concave" styles
// choose the locally convex/concave subdivision. The "min_area" option creates the triangulation with the minimal area. Degenerate faces // choose the locally convex/concave subdivision. The "min_area" option creates the triangulation with the minimal area. Degenerate faces
// are not included in the output, but if this results in unused vertices they will still appear in the output. // are not included in the output, but if this results in unused vertices they still appear in the output.
// Arguments: // Arguments:
// points = A list of vertices to divide into columns and rows. // points = A list of vertices to divide into columns and rows.
// --- // ---
@ -445,14 +445,14 @@ function _lofttri(p1, p2, i1offset, i2offset, n1, n2, reverse=false, trilist=[],
// Description: // Description:
// Given a list of VNF structures, merges them all into a single VNF structure. // Given a list of VNF structures, merges them all into a single VNF structure.
// Combines all the points of the input VNFs and labels the faces appropriately. // Combines all the points of the input VNFs and labels the faces appropriately.
// All the points in the input VNFs will appear in the output, even if they are // All the points in the input VNFs appear in the output, even if they are
// duplicates of each other. It is valid to repeat points in a VNF, but if you // duplicated. It is valid to repeat points in a VNF, but if you
// with to remove the duplicates that will occur along joined edges, use {{vnf_merge_points()}}. // with to remove the duplicates that occur along joined edges, use {{vnf_merge_points()}}.
// . // .
// Note that this is a tool for manipulating polyhedron data. It is for // Note that this is a tool for manipulating polyhedron data. It is for
// building up a full polyhedron from partial polyhedra. // building up a full polyhedron from partial polyhedra.
// It is *not* a union operator for VNFs. The VNFs to be joined must not intersect each other, // It is *not* a union operator for VNFs. The VNFs to be joined must not intersect each other,
// except at edges, or the result will be an invalid polyhedron. Similarly the // except at edges, otherwise the result is an invalid polyhedron. Also, the
// result must not have any other illegal polyhedron characteristics, such as creating // result must not have any other illegal polyhedron characteristics, such as creating
// more than two faces sharing the same edge. // more than two faces sharing the same edge.
// If you want a valid result it is your responsibility to ensure that the polyhedron // If you want a valid result it is your responsibility to ensure that the polyhedron
@ -492,7 +492,7 @@ function _lofttri(p1, p2, i1offset, i2offset, n1, n2, reverse=false, trilist=[],
// for(theta=[0:90:359]) zrot(theta,top) // for(theta=[0:90:359]) zrot(theta,top)
// ]); // ]);
// vnf_polyhedron(full); // vnf_polyhedron(full);
// Example(3D): The vnf_join function is not a union operator for polyhedra. If any faces intersect, like they do in this example where we combine the faces of two cubes, the result is invalid and will give rise to CGAL errors when you add more objects into the model. // Example(3D): The vnf_join function is not a union operator for polyhedra. If any faces intersect, like they do in this example where we combine the faces of two cubes, the result is invalid and results in CGAL errors when you add more objects into the model.
// cube1 = cube(5); // cube1 = cube(5);
// cube2 = move([2,2,2],cube1); // cube2 = move([2,2,2],cube1);
// badvnf = vnf_join([cube1,cube2]); // badvnf = vnf_join([cube1,cube2]);
@ -532,7 +532,7 @@ function vnf_join(vnfs) =
// Description: // Description:
// Given a list of 3D polygons, produces a VNF containing those polygons. // Given a list of 3D polygons, produces a VNF containing those polygons.
// It is up to the caller to make sure that the points are in the correct order to make the face // It is up to the caller to make sure that the points are in the correct order to make the face
// normals point outwards. No checking for duplicate vertices is done. If you want to // normals point outward. No checking for duplicate vertices is done. If you want to
// remove duplicate vertices use {{vnf_merge_points()}}. Polygons with zero area are discarded from the face list by default. // remove duplicate vertices use {{vnf_merge_points()}}. Polygons with zero area are discarded from the face list by default.
// If you give non-coplanar faces an error is displayed. These checks increase run time by about 2x for triangular polygons, but // If you give non-coplanar faces an error is displayed. These checks increase run time by about 2x for triangular polygons, but
// about 10x for pentagons; the checks can be disabled by setting fast=true. // about 10x for pentagons; the checks can be disabled by setting fast=true.
@ -725,9 +725,9 @@ function _bridge(pt, outer,eps) =
// Given a (two-dimensional) region, applies the given transformation matrix to it and makes a (three-dimensional) triangulated VNF of // Given a (two-dimensional) region, applies the given transformation matrix to it and makes a (three-dimensional) triangulated VNF of
// faces for that region, reversed if desired. // faces for that region, reversed if desired.
// Arguments: // Arguments:
// region = The region to convert to a vnf. // region = The region to convert to a VNF.
// transform = If given, a transformation matrix to apply to the faces generated from the region. Default: No transformation applied. // transform = If given, a transformation matrix to apply to the faces generated from the region. Default: No transformation applied.
// reverse = If true, reverse the normals of the faces generated from the region. An untransformed region will have face normals pointing `UP`. Default: false // reverse = If true, reverse the normals of the faces generated from the region. An untransformed region has face normals pointing `UP`. Default: false
// Example(3D): // Example(3D):
// region = [square([20,10],center=true), // region = [square([20,10],center=true),
// right(5,square(4,center=true)), // right(5,square(4,center=true)),
@ -948,8 +948,8 @@ function vnf_triangulate(vnf) =
// want to be able to identify the true faces. This function merges together the triangles that // want to be able to identify the true faces. This function merges together the triangles that
// form those true faces, turning a VNF where each true face is represented by a single entry // form those true faces, turning a VNF where each true face is represented by a single entry
// in the faces list of the VNF. This function requires that the true faces have no internal vertices. // in the faces list of the VNF. This function requires that the true faces have no internal vertices.
// This will always be true for a triangulated VNF, but might fail for a VNF with some other // This is always true for a triangulated VNF, but might fail for a VNF with some other
// face partition. If internal vertices are present, the output will include backtracking paths from // face partition. If internal vertices are present, the output includes backtracking paths from
// the boundary to all of those vertices. // the boundary to all of those vertices.
// Arguments: // Arguments:
// vnf = vnf whose faces you want to unify // vnf = vnf whose faces you want to unify
@ -1176,7 +1176,7 @@ function _slice_3dpolygons(polys, dir, cuts) =
// cp = Centerpoint for determining intersection anchors or centering the shape. Determines the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid" // cp = Centerpoint for determining intersection anchors or centering the shape. Determines the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid"
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `"origin"` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `"origin"`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top toward, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// atype = Select "hull" or "intersect" anchor type. Default: "hull" // atype = Select "hull" or "intersect" anchor type. Default: "hull"
// Anchor Types: // Anchor Types:
// "hull" = Anchors to the virtual convex hull of the shape. // "hull" = Anchors to the virtual convex hull of the shape.
@ -1205,19 +1205,19 @@ module vnf_polyhedron(vnf, convexity=2, cp="centroid", anchor="origin", spin=0,
// each edge and a sphere at each vertex. The width parameter specifies the width of the sticks // each edge and a sphere at each vertex. The width parameter specifies the width of the sticks
// that form the wire frame and the diameter of the balls. // that form the wire frame and the diameter of the balls.
// Arguments: // Arguments:
// vnf = A vnf structure // vnf = A VNF structure
// width = width of the cylinders forming the wire frame. Default: 1 // width = width of the cylinders forming the wire frame. Default: 1
// Example: // Example(3D):
// $fn=32; // $fn=32;
// ball = sphere(r=20, $fn=6); // ball = sphere(r=20, $fn=6);
// vnf_wireframe(ball,width=1); // vnf_wireframe(ball,width=1);
// Example: // Example(3D):
// include <BOSL2/polyhedra.scad> // include <BOSL2/polyhedra.scad>
// $fn=32; // $fn=32;
// cube_oct = regular_polyhedron_info("vnf", // cube_oct = regular_polyhedron_info("vnf",
// name="cuboctahedron", or=20); // name="cuboctahedron", or=20);
// vnf_wireframe(cube_oct); // vnf_wireframe(cube_oct);
// Example: The spheres at the vertex are imperfect at aligning with the cylinders, so especially at low $fn things look prety ugly. This is normal. // Example(3D): The spheres at the vertex are imperfect at aligning with the cylinders, so especially at low $fn things look prety ugly. This is normal.
// include <BOSL2/polyhedra.scad> // include <BOSL2/polyhedra.scad>
// $fn=8; // $fn=8;
// octahedron = regular_polyhedron_info("vnf", // octahedron = regular_polyhedron_info("vnf",
@ -1386,8 +1386,8 @@ function projection(vnf,cut=false,eps=EPSILON) =
// then closed=true is may produce invalid results when it tries to construct closing faces // then closed=true is may produce invalid results when it tries to construct closing faces
// on the cut plane. Set closed=false for such inputs. // on the cut plane. Set closed=false for such inputs.
// . // .
// If you set boundary to true then the return will be the pair [vnf,boundary] where vnf is the // If you set `boundary=true` then the return is the pair `[vnf,boundary]`, where `vnf` is the
// vnf as usual (with closed=false) and boundary is a list giving each connected component of the cut // VNF as usual (with `closed=false`) and boundary is a list giving each connected component of the cut
// boundary surface. Each entry in boundary is a list of index values that index into the vnf vertex list (vnf[0]). // boundary surface. Each entry in boundary is a list of index values that index into the vnf vertex list (vnf[0]).
// This makes it possible to construct mating shapes, e.g. with {{skin()}} or {{vnf_vertex_array()}} that // This makes it possible to construct mating shapes, e.g. with {{skin()}} or {{vnf_vertex_array()}} that
// can be combined using {{vnf_join()}} to make a valid polyhedron. // can be combined using {{vnf_join()}} to make a valid polyhedron.
@ -1426,22 +1426,22 @@ function projection(vnf,cut=false,eps=EPSILON) =
// knot=path_sweep(ushape, knot_path, closed=true, method="incremental"); // knot=path_sweep(ushape, knot_path, closed=true, method="incremental");
// cut_knot = vnf_halfspace([1,0,0,0], knot); // cut_knot = vnf_halfspace([1,0,0,0], knot);
// vnf_polyhedron(cut_knot); // vnf_polyhedron(cut_knot);
// Example(VPR=[80,0,15]): Cut a sphere with an arbitrary plane // Example(3D,VPR=[80,0,15]): Cut a sphere with an arbitrary plane
// vnf1=sphere(r=50, style="icosa", $fn=16); // vnf1=spheroid(r=50, style="icosa", $fn=16);
// vnf2=vnf_halfspace([.8,1,-1.5,0], vnf1); // vnf2=vnf_halfspace([.8,1,-1.5,0], vnf1);
// vnf_polyhedron(vnf2); // vnf_polyhedron(vnf2);
// Example(VPR=[80,0,15]): Cut it again, but with closed=false to leave an open boundary. // Example(3D,VPR=[80,0,15]): Cut it again, but with closed=false to leave an open boundary.
// vnf1=sphere(r=50, style="icosa", $fn=16); // vnf1=spheroid(r=50, style="icosa", $fn=16);
// vnf2=vnf_halfspace([.8,1,-1.5,0], vnf1); // vnf2=vnf_halfspace([.8,1,-1.5,0], vnf1);
// vnf3=vnf_halfspace([0,0,-1,0], vnf2, closed=false); // vnf3=vnf_halfspace([0,0,-1,0], vnf2, closed=false);
// vnf_polyhedron(vnf3); // vnf_polyhedron(vnf3);
// Example(VPR=[80,0,15]): Use {vnf_join()} to combine with a mating vnf, in this case a reflection of the part we made. // Example(3D,VPR=[80,0,15]): Use {vnf_join()} to combine with a mating vnf, in this case a reflection of the part we made.
// vnf1=sphere(r=50, style="icosa", $fn=16); // vnf1=spheroid(r=50, style="icosa", $fn=16);
// vnf2=vnf_halfspace([.8,1,-1.5,0], vnf1); // vnf2=vnf_halfspace([.8,1,-1.5,0], vnf1);
// vnf3=vnf_halfspace([0,0,-1,0], vnf2, closed=false); // vnf3=vnf_halfspace([0,0,-1,0], vnf2, closed=false);
// vnf4=vnf_join([vnf3, zflip(vnf3,1)]); // vnf4=vnf_join([vnf3, zflip(vnf3,1)]);
// vnf_polyhedron(vnf4); // vnf_polyhedron(vnf4);
// Example: When the input VNF is a surface with a boundary, if you use the default setting closed=true, then vnf_halfspace() tries to construct closing faces from the edges created by the cut. These faces may be invalid, for example if the cut points are collinear. In this example the constructed face is a valid face. // Example(3D): When the input VNF is a surface with a boundary, if you use the default setting closed=true, then vnf_halfspace() tries to construct closing faces from the edges created by the cut. These faces may be invalid, for example if the cut points are collinear. In this example the constructed face is a valid face.
// patch=[ // patch=[
// [[10,-10,0],[1,-1,0],[-1,-1,0],[-10,-10,0]], // [[10,-10,0],[1,-1,0],[-1,-1,0],[-10,-10,0]],
// [[10,-10,20],[1,-1,20],[-1,-1,20],[-10,-10,20]] // [[10,-10,20],[1,-1,20],[-1,-1,20],[-10,-10,20]]
@ -1449,7 +1449,7 @@ function projection(vnf,cut=false,eps=EPSILON) =
// vnf=bezier_vnf(patch); // vnf=bezier_vnf(patch);
// vnfcut = vnf_halfspace([-.8,0,-1,-14],vnf); // vnfcut = vnf_halfspace([-.8,0,-1,-14],vnf);
// vnf_polyhedron(vnfcut); // vnf_polyhedron(vnfcut);
// Example: Setting closed to false eliminates this (possibly invalid) face: // Example(3D): Setting closed to false eliminates this (possibly invalid) face:
// patch=[ // patch=[
// [[10,-10,0],[1,-1,0],[-1,-1,0],[-10,-10,0]], // [[10,-10,0],[1,-1,0],[-1,-1,0],[-10,-10,0]],
// [[10,-10,20],[1,-1,20],[-1,-1,20],[-10,-10,20]] // [[10,-10,20],[1,-1,20],[-1,-1,20],[-10,-10,20]]
@ -1457,21 +1457,21 @@ function projection(vnf,cut=false,eps=EPSILON) =
// vnf=bezier_vnf(patch); // vnf=bezier_vnf(patch);
// vnfcut = vnf_halfspace([-.8,0,-1,-14],vnf,closed=false); // vnfcut = vnf_halfspace([-.8,0,-1,-14],vnf,closed=false);
// vnf_polyhedron(vnfcut); // vnf_polyhedron(vnfcut);
// Example: Here is a VNF that has holes, so it is not a valid manifold. // Example(3D): Here is a VNF that has holes, so it is not a valid manifold.
// outside = linear_sweep(circle(r=30), h=100, caps=false); // outside = linear_sweep(circle(r=30), h=100, caps=false);
// inside = yrot(7,linear_sweep(circle(r=10), h=120, caps=false)); // inside = yrot(7,linear_sweep(circle(r=10), h=120, caps=false));
// open_vnf=vnf_join([outside, vnf_reverse_faces(inside)]); // open_vnf=vnf_join([outside, vnf_reverse_faces(inside)]);
// vnf_polyhedron(open_vnf); // vnf_polyhedron(open_vnf);
// Example: By cutting it at each end we can create closing faces, resulting in a valid manifold without holes. // Example(3D): By cutting it at each end we can create closing faces, resulting in a valid manifold without holes.
// outside = linear_sweep(circle(r=30), h=100, caps=false); // outside = linear_sweep(circle(r=30), h=100, caps=false);
// inside = yrot(11,linear_sweep(circle(r=10), h=120, caps=false)); // inside = yrot(11,linear_sweep(circle(r=10), h=120, caps=false));
// open_vnf=vnf_join([outside, vnf_reverse_faces(inside)]); // open_vnf=vnf_join([outside, vnf_reverse_faces(inside)]);
// vnf = vnf_halfspace([0,0,1,5], vnf_halfspace([0,.7,-1,-75], open_vnf)); // vnf = vnf_halfspace([0,0,1,5], vnf_halfspace([0,.7,-1,-75], open_vnf));
// vnf_polyhedron(vnf); // vnf_polyhedron(vnf);
// Example: If boundary=true then the return is a list with the VNF and boundary data. // Example(3D): If boundary=true then the return is a list with the VNF and boundary data.
// vnf = path_sweep(circle(r=4, $fn=16), // vnf = path_sweep(circle(r=4, $fn=16),
// circle(r=20, $fn=64),closed=true); // circle(r=20, $fn=64),closed=true);
// cut_bnd = vnf_halfspace([-1,1,-4,0], vnf, boundary=true);*/ // cut_bnd = vnf_halfspace([-1,1,-4,0], vnf, boundary=true);
// cutvnf = cut_bnd[0]; // cutvnf = cut_bnd[0];
// boundary = [for(b=cut_bnd[1]) select(cutvnf[0],b)]; // boundary = [for(b=cut_bnd[1]) select(cutvnf[0],b)];
// vnf_polyhedron(cutvnf); // vnf_polyhedron(cutvnf);
@ -1586,8 +1586,8 @@ function _triangulate_planar_convex_polygons(polys) =
// it may intersect itself, which produces an invalid polyhedron. It is your responsibility to // it may intersect itself, which produces an invalid polyhedron. It is your responsibility to
// avoid this situation. The 1:1 // avoid this situation. The 1:1
// radius is where the curved length of the bent VNF matches the length of the original VNF. If the // radius is where the curved length of the bent VNF matches the length of the original VNF. If the
// `r` or `d` arguments are given, then they will specify the 1:1 radius or diameter. If they are // `r` or `d` arguments are given, then they specify the 1:1 radius or diameter. If they are
// not given, then the 1:1 radius will be defined by the distance of the furthest vertex in the // not given, then the 1:1 radius is defined by the distance of the furthest vertex in the
// original VNF from the Z=0 plane. You can adjust the granularity of the bend using the standard // original VNF from the Z=0 plane. You can adjust the granularity of the bend using the standard
// `$fa`, `$fs`, and `$fn` variables. // `$fa`, `$fs`, and `$fn` variables.
// Arguments: // Arguments:
@ -1695,9 +1695,9 @@ function vnf_bend(vnf,r,d,axis="Z") =
// hull_vnf(vnf,[fast]); // hull_vnf(vnf,[fast]);
// Description: // Description:
// Given a VNF or a list of 3d points, compute the convex hull // Given a VNF or a list of 3d points, compute the convex hull
// and return it as a VNF. This differs from {{hull()}} and {{hull3d_faces()}} which // and return it as a VNF. This differs from {{hull()}} and {{hull3d_faces()}}, which
// return just the face list referenced to the input point list. Note that the point // return just the face list referenced to the input point list. Note that the returned
// list that is returned will contain all the points that are actually used in the input // point list contains all the points that are actually used in the input
// VNF, which may be many more points than are needed to represent the convex hull. // VNF, which may be many more points than are needed to represent the convex hull.
// This is not usually a problem, but you can run the somewhat slow {{vnf_drop_unused_points()}} // This is not usually a problem, but you can run the somewhat slow {{vnf_drop_unused_points()}}
// function to fix this if necessary. // function to fix this if necessary.
@ -1747,7 +1747,7 @@ function _sort_pairs0(arr) =
// Function: vnf_boundary() // Function: vnf_boundary()
// Synopsis: Returns the boundary of a VNF as an list of paths // Synopsis: Returns the boundary of a VNF as a list of paths
// SynTags: VNF // SynTags: VNF
// Topics: VNF Manipulation // Topics: VNF Manipulation
// See Also: vnf_halfspace(), vnf_merge_points() // See Also: vnf_halfspace(), vnf_merge_points()
@ -1759,13 +1759,13 @@ function _sort_pairs0(arr) =
// set `merge=false` to disable the automatic point merge and save time. The result of running on a VNF with duplicate points is likely to // set `merge=false` to disable the automatic point merge and save time. The result of running on a VNF with duplicate points is likely to
// be incorrect or invalid; it may produce obscure errors. // be incorrect or invalid; it may produce obscure errors.
// . // .
// The output will be a list of closed 3D paths. If the VNF has no boundary then the output is `[]`. The boundary path(s) are // The output is a list of closed 3D paths. If the VNF has no boundary then the output is `[]`. The boundary path(s) are
// traversed in the same direction as the edges in the original VNF. // traversed in the same direction as the edges in the original VNF.
// . // .
// It is sometimes desirable to have the boundary available as an index list into the VNF vertex list. However, merging the points in the VNF changes the // It is sometimes desirable to have the boundary available as an index list into the VNF vertex list. However, merging the points in the VNF changes the
// VNF vertex point list. If you set `merge=false` you can also set `idx=true` to get an index list. As noted above, you must be certain // VNF vertex point list. If you set `merge=false` you can also set `idx=true` to get an index list. As noted above, you must be certain
// that your in put VNF has no duplicate vertices, perhaps by running {{vnf_merge_points()}} yourself on it. With `idx=true` // that your in put VNF has no duplicate vertices, perhaps by running {{vnf_merge_points()}} yourself on it. With `idx=true`
// the output will be indices into the VNF vertex list, which enables you to associate the vertices on the boundary path with the original VNF. // the output consists of indices into the VNF vertex list, which enables you to associate the vertices on the boundary path with the original VNF.
// Arguments: // Arguments:
// vnf = input vnf // vnf = input vnf
// --- // ---
@ -1822,10 +1822,10 @@ function vnf_boundary(vnf,merge=true,idx=false) =
// Computes a simple offset of a VNF by estimating the normal at every point based on the weighted average of surrounding polygons // Computes a simple offset of a VNF by estimating the normal at every point based on the weighted average of surrounding polygons
// in the mesh. The offset distance, `delta`, must be small enough so that no self-intersection occurs, which is no issue when the // in the mesh. The offset distance, `delta`, must be small enough so that no self-intersection occurs, which is no issue when the
// curvature is positive (like the outside of a sphere) but for negative curvature it means the offset distance must be smaller // curvature is positive (like the outside of a sphere) but for negative curvature it means the offset distance must be smaller
// than the smallest radius of curvature of the VNF. If self-intersection // than the smallest radius of curvature of the VNF. Any self-intersection that occurs
// occurs, the resulting geometry will be invalid and you will get an error when you introduce a second object into the model. // invalidates the resulting geometry, giving you an error when you introduce a second object into the model.
// **It is your responsibility to avoid invalid geometry!** It cannot be detected automatically. // **It is your responsibility to avoid invalid geometry!** It cannot be detected automatically.
// The positive offset direction is towards the outside of the VNF, the faces that are colored yellow in the "thrown together" view. // The positive offset direction is toward the outside of the VNF, the faces that are colored yellow in the "thrown together" view.
// . // .
// **The input VNF must not contain duplicate points.** By default, vnf_small_offset() calls {{vnf_merge_points()}} // **The input VNF must not contain duplicate points.** By default, vnf_small_offset() calls {{vnf_merge_points()}}
// to remove duplicate points. Note, however, that this operation can be slow. If you are **certain** there are no duplicate points you can // to remove duplicate points. Note, however, that this operation can be slow. If you are **certain** there are no duplicate points you can
@ -1887,14 +1887,14 @@ function vnf_small_offset(vnf, delta, merge=true) =
// Constructs a thin sheet from a vnf by offsetting the vnf along the normal vectors estimated at // Constructs a thin sheet from a vnf by offsetting the vnf along the normal vectors estimated at
// each vertex by averaging the normals of the adjacent faces. This is done using {{vnf_small_offset()}. // each vertex by averaging the normals of the adjacent faces. This is done using {{vnf_small_offset()}.
// The thickness value must be small enough so that no points cross each other // The thickness value must be small enough so that no points cross each other
// when the offset is computed, because that results in invalid geometry and will give rendering errors. // when the offset is computed, because that results in invalid geometry and rendering errors.
// Rendering errors may not manifest until you add other objects to your model. // Rendering errors may not manifest until you add other objects to your model.
// **It is your responsibility to avoid invalid geometry!** // **It is your responsibility to avoid invalid geometry!**
// . // .
// Once the offset to the original VNF is computed the original and offset VNF are connected by filling // Once the offset to the original VNF is computed the original and offset VNF are connected by filling
// in the boundary strip(s) between them // in the boundary strip(s) between them
// . // .
// When thickness is positive, the given bezier patch is extended towards its "inside", which is the // When thickness is positive, the given bezier patch is extended toward its "inside", which is the
// side that appears purple in the "thrown together" view. Note that this is the opposite direction // side that appears purple in the "thrown together" view. Note that this is the opposite direction
// of {{vnf_small_offset()}}. Extending toward the inside means that your original VNF remains unchanged // of {{vnf_small_offset()}}. Extending toward the inside means that your original VNF remains unchanged
// in the output. You can extend the patch in the other direction // in the output. You can extend the patch in the other direction
@ -1984,8 +1984,8 @@ module _show_vertices(vertices, size=1, filter) {
/// _show_faces(vertices, faces, [size=], [filter=]); /// _show_faces(vertices, faces, [size=], [filter=]);
/// Description: /// Description:
/// Draws all the vertices at their 3D position, numbered in blue by their /// Draws all the vertices at their 3D position, numbered in blue by their
/// position in the vertex array. Each face will have their face number drawn /// position in the vertex array. Each face has its face number drawn
/// in red, aligned with the center of face. All children of this module are drawn /// in red, aligned with the center of the face. All children of this module are drawn
/// with transparency. /// with transparency.
/// Arguments: /// Arguments:
/// vertices = Array of point vertices. /// vertices = Array of point vertices.
@ -2039,8 +2039,8 @@ module _show_faces(vertices, faces, size=1, filter) {
// Description: // Description:
// A drop-in module to replace `vnf_polyhedron()` to help debug vertices and faces. // A drop-in module to replace `vnf_polyhedron()` to help debug vertices and faces.
// Draws all the vertices at their 3D position, numbered in blue by their // Draws all the vertices at their 3D position, numbered in blue by their
// position in the vertex array. Each face will have its face number drawn // position in the vertex array. Each face has its face number drawn
// in red, aligned with the center of face. All given faces are drawn with // in red, aligned with the center of the face. All given faces are drawn with
// transparency. All children of this module are drawn with transparency. // transparency. All children of this module are drawn with transparency.
// Works best with Thrown-Together preview mode, to see reversed faces. // Works best with Thrown-Together preview mode, to see reversed faces.
// You can set opacity to 0 if you want to supress the display of the polyhedron faces. // You can set opacity to 0 if you want to supress the display of the polyhedron faces.
@ -2056,7 +2056,7 @@ module _show_faces(vertices, faces, size=1, filter) {
// opacity = Opacity of the polyhedron faces. Default: 0.5 // opacity = Opacity of the polyhedron faces. Default: 0.5
// convexity = The max number of walls a ray can pass through the given polygon paths. // convexity = The max number of walls a ray can pass through the given polygon paths.
// size = The size of the text used to label the faces and vertices. Default: 1 // size = The size of the text used to label the faces and vertices. Default: 1
// filter = If given a function literal of signature `function(i)`, will only show labels for vertices and faces that have a vertex index that gets a true result from that function. Default: no filter. // filter = If given a function literal of signature `function(i)`, shows only labels for vertices and faces that have a vertex index that gets a true result from that function. Default: no filter.
// Example(EdgesMed): // Example(EdgesMed):
// verts = [for (z=[-10,10], a=[0:120:359.9]) [10*cos(a),10*sin(a),z]]; // verts = [for (z=[-10,10], a=[0:120:359.9]) [10*cos(a),10*sin(a),z]];
// faces = [[0,1,2], [5,4,3], [0,3,4], [0,4,1], [1,4,5], [1,5,2], [2,5,3], [2,3,0]]; // faces = [[0,1,2], [5,4,3], [0,3,4], [0,4,1], [1,4,5], [1,5,2], [2,5,3], [2,3,0]];
@ -2111,8 +2111,8 @@ module debug_vnf(vnf, faces=true, vertices=true, opacity=0.5, size=1, convexity=
// label_verts = If true, shows labels at each vertex that show the vertex number. Default: false // label_verts = If true, shows labels at each vertex that show the vertex number. Default: false
// label_faces = If true, shows labels at the center of each face that show the face number. Default: false // label_faces = If true, shows labels at the center of each face that show the face number. Default: false
// wireframe = If true, shows edges more clearly so you can see them in Thrown Together mode. Default: false // wireframe = If true, shows edges more clearly so you can see them in Thrown Together mode. Default: false
// adjacent = If true, only display faces adjacent to a vertex listed in the errors. Default: false // adjacent = If true, display only faces that are adjacent to a vertex listed in the errors. Default: false
// Example(3D,Edges): BIG_FACE Warnings; Faces with More Than 3 Vertices. CGAL often will fail to accept that a face is planar after a rotation, if it has more than 3 vertices. // Example(3D,Edges): BIG_FACE Warnings; Faces with More Than 3 Vertices. CGAL often fails to accept that a face is planar after a rotation, if it has more than 3 vertices.
// vnf = skin([ // vnf = skin([
// path3d(regular_ngon(n=3, d=100),0), // path3d(regular_ngon(n=3, d=100),0),
// path3d(regular_ngon(n=5, d=100),100) // path3d(regular_ngon(n=5, d=100),100)
@ -2251,7 +2251,7 @@ function _vnf_validate(vnf, show_warns=true, check_isects=false) =
for(i = idx(dfaces), j = idx(dfaces)) if(i != j) for(i = idx(dfaces), j = idx(dfaces)) if(i != j)
for(edge1 = pair(faces[i],true)) for(edge1 = pair(faces[i],true))
for(edge2 = pair(faces[j],true)) for(edge2 = pair(faces[j],true))
if(edge1 == edge2) // Valid adjacent faces will never have the same vertex ordering. if(edge1 == edge2) // Valid adjacent faces must never have the same vertex ordering.
if(_edge_not_reported(edge1, varr, multconn_edges)) if(_edge_not_reported(edge1, varr, multconn_edges))
_vnf_validate_err("REVERSAL", edge1) _vnf_validate_err("REVERSAL", edge1)
]), ]),