mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-15 17:09:40 +00:00
Merge c2f5fa7352
into d8214cc0e1
This commit is contained in:
commit
7be40ba489
2 changed files with 244 additions and 87 deletions
291
attachments.scad
291
attachments.scad
|
@ -16,6 +16,7 @@
|
|||
// Default values for attachment code.
|
||||
$tags=undef; // for backward compatibility
|
||||
$tag = "";
|
||||
$save_tag = undef;
|
||||
$tag_prefix = "";
|
||||
$overlap = 0;
|
||||
$color = "default";
|
||||
|
@ -100,18 +101,18 @@ _ANCHOR_TYPES = ["intersect","hull"];
|
|||
// stepper motor shape. The names, positions, directions, and spins of these anchors are
|
||||
// specific to the object, and are documented when they exist.
|
||||
// Subsection: Spin
|
||||
// Spin is specified with the `spin` argument in most shape modules. Specifying a scalar `spin`
|
||||
// when creating an object will rotate the object counter-clockwise around the Z axis by the given
|
||||
// number of degrees. If given as a 3D vector, the object will be rotated around each of the X, Y, Z
|
||||
// axes by the number of degrees in each component of the vector. Spin is always applied after
|
||||
// anchoring, and before orientation. Since spin is applied after anchoring it is not what
|
||||
// you might think of intuitively as spinning the shape. To do that, apply `zrot()` to the shape before anchoring.
|
||||
// Spin is specified with the `spin` argument in most shape modules. Specifying a spin`
|
||||
// angle when creating an object will rotate the object counter-clockwise around the Z axis by the given
|
||||
// number of degrees. Spin is always applied after anchoring, and before orientation.
|
||||
// Since spin is applied after anchoring it is not always what you might think of intuitively
|
||||
// as spinning the shape. To do that, apply `zrot()` to the shape before anchoring.
|
||||
// Subsection: Orient
|
||||
// Orientation is specified with the `orient` argument in most shape modules. Specifying `orient`
|
||||
// when creating an object will rotate the object such that the top of the object will be pointed
|
||||
// at the vector direction given in the `orient` argument. Orientation is always applied after
|
||||
// anchoring and spin. The constants `UP`, `DOWN`, `FRONT`, `BACK`, `LEFT`, and `RIGHT` can be
|
||||
// added together to form the directional vector for this. ie: `LEFT+BACK`
|
||||
// added together to form the directional vector for this (e.g. `LEFT+BACK`). The orient parameter
|
||||
// is ignored when you use {{attach()}} because {{attach()}} provides its own orientation.
|
||||
// Subsection: Specifying Directions
|
||||
// You can use direction vectors to specify anchors for objects or to specify edges, faces, and
|
||||
// corners of cubes. You can simply specify these direction vectors numerically, but another
|
||||
|
@ -772,7 +773,9 @@ function _make_anchor_legal(anchor,geom) =
|
|||
// up on the top while aligning it with the right edge of the top face, and `attach(RIGHT,BOT,align=TOP)` which
|
||||
// stand the object on the right face while aligning with the top edge. If you apply spin using the
|
||||
// argument to `attach()` then it will be taken into account for the alignment. If you apply spin with
|
||||
// a parameter to the child it will NOT be taken into account. Note that spin is not permitted for
|
||||
// a parameter to the child it will NOT be taken into account. The special spin value "align" will
|
||||
// spin the child so that the child's BACK direction is pointed towards the aligned edge on the parent.
|
||||
// Note that spin is not permitted for
|
||||
// 2D objects because it would change the child orientation so that the anchors are no longer parallel.
|
||||
// When you use `align=` you can also adjust the position using `inset=`, which shifts the child
|
||||
// away from the edge or corner it is aligned to.
|
||||
|
@ -820,7 +823,7 @@ function _make_anchor_legal(anchor,geom) =
|
|||
// overlap = Amount to sink child into the parent. Equivalent to `down(X)` after the attach. This defaults to the value in `$overlap`, which is `0` by default.
|
||||
// inside = If `child` is given you can set `inside=true` to attach the child to the inside of the parent for diff() operations. Default: false
|
||||
// shiftout = Shift an inside object outward so that it overlaps all the aligned faces. Default: 0
|
||||
// spin = Amount to rotate the parent around the axis of the parent anchor. (Only permitted in 3D.)
|
||||
// spin = Amount to rotate the parent around the axis of the parent anchor. Can set to "align" to align the child's BACK with the parent aligned edge. (Only permitted in 3D.)
|
||||
// Side Effects:
|
||||
// `$anchor` set to the parent anchor value used for the child.
|
||||
// `$align` set to the align value used for the child.
|
||||
|
@ -883,7 +886,11 @@ module attach(parent, child, overlap, align, spin=0, norot, inset=0, shiftout=0,
|
|||
{
|
||||
dummy3=
|
||||
assert(num_defined([to,child])<2, "Cannot combine deprecated 'to' argument with 'child' parameter")
|
||||
assert(num_defined([from,parent])<2, "Cannot combine deprecated 'from' argument with 'parent' parameter");
|
||||
assert(num_defined([from,parent])<2, "Cannot combine deprecated 'from' argument with 'parent' parameter")
|
||||
assert(spin!="align" || is_def(align), "Can only set spin to \"align\" when the 'align' parameter is given")
|
||||
assert(is_finite(spin) || spin=="align", "Spin must be a number (unless align is given)")
|
||||
assert((is_undef(overlap) || is_finite(overlap)) && (is_def(overlap) || is_undef($overlap) || is_finite($overlap)),
|
||||
str("Provided ",is_def(overlap)?"":"$","overlap is not valid."));
|
||||
if (is_def(to))
|
||||
echo("The 'to' option to attach() is deprecated and will be removed in the future. Use 'child' instead.");
|
||||
if (is_def(from))
|
||||
|
@ -893,10 +900,15 @@ module attach(parent, child, overlap, align, spin=0, norot, inset=0, shiftout=0,
|
|||
req_children($children);
|
||||
|
||||
dummy=assert($parent_geom != undef, "No object to attach to!")
|
||||
assert(is_undef(child) || is_string(child) || (is_vector(child) && (len(child)==2 || len(child)==3)), "child must be a named anchor (a string) or a 2-vector or 3-vector")
|
||||
assert(is_undef(child) || is_string(child) || (is_vector(child) && (len(child)==2 || len(child)==3)),
|
||||
"child must be a named anchor (a string) or a 2-vector or 3-vector")
|
||||
assert(is_undef(align) || !is_string(child), "child is a named anchor. Named anchors are not supported with align=");
|
||||
|
||||
two_d = _attach_geom_2d($parent_geom);
|
||||
basegeom = $parent_geom[0]=="conoid" ? attach_geom(r=2,h=2)
|
||||
: $parent_geom[0]=="spheroid" ? echo("here")attach_geom(r=2)
|
||||
: attach_geom(size=[2,2,2]);
|
||||
child_abstract_anchor = is_vector(child) && !two_d ? _find_anchor(child, basegeom) : undef;
|
||||
overlap = (overlap!=undef)? overlap : $overlap;
|
||||
parent = first_defined([parent,from]);
|
||||
anchors = is_vector(parent) || is_string(parent) ? [parent] : parent;
|
||||
|
@ -928,6 +940,7 @@ module attach(parent, child, overlap, align, spin=0, norot, inset=0, shiftout=0,
|
|||
anchor_spin = two_d || !inside || anchor==TOP || anchor==BOT ? anchor_data[3]
|
||||
: let(spin_dir = rot(anchor_data[3],from=UP, to=-anchor_dir, p=BACK))
|
||||
_compute_spin(anchor_dir,spin_dir);
|
||||
parent_abstract_anchor = is_vector(anchor) && !two_d ? _find_anchor(anchor,basegeom) : undef;
|
||||
for(align_ind = idx(align_list)){
|
||||
align = is_undef(align_list[align_ind]) ? undef
|
||||
: assert(is_vector(align_list[align_ind],2) || is_vector(align_list[align_ind],3), "align direction must be a 2-vector or 3-vector")
|
||||
|
@ -940,17 +953,17 @@ module attach(parent, child, overlap, align, spin=0, norot, inset=0, shiftout=0,
|
|||
// Now compute position on the parent (including alignment but not inset) where the child will be anchored
|
||||
pos = is_undef(align) ? anchor_data[1] : _find_anchor(anchor+align, $parent_geom)[1];
|
||||
$attach_anchor = list_set(anchor_data, 1, pos); // Never used; For user informational use? Should this be set at all?
|
||||
startdir = two_d || is_undef(align)? undef
|
||||
: anchor==UP || anchor==DOWN ? BACK
|
||||
: UP - (anchor*UP)*anchor/(anchor*anchor); // Component of UP perpendicular to anchor
|
||||
enddir = is_undef(child) || child.z==0 ? UP : BACK;
|
||||
// Compute adjustment to the child anchor for position purposes. This adjustment
|
||||
// accounts for the change in the anchor needed to to alignment.
|
||||
child_adjustment = is_undef(align)? CTR
|
||||
: two_d ? rot(to=child,from=-factor*anchor,p=align)
|
||||
: apply( frame_map(x=child, z=enddir)
|
||||
*frame_map(x=-factor*anchor, z=startdir, reverse=true)
|
||||
*rot(v=anchor,-spin), align);
|
||||
: apply( rot(to=child_abstract_anchor[2],from=UP)
|
||||
* affine3d_zrot(child_abstract_anchor[3])
|
||||
* affine3d_yrot(inside?0:180)
|
||||
* affine3d_zrot(-parent_abstract_anchor[3])
|
||||
* rot(from=parent_abstract_anchor[2],to=UP)
|
||||
* rot(v=anchor,-spin),
|
||||
align);
|
||||
// The $anchor_override anchor value forces an override of the *position* only for the anchor
|
||||
// used when attachable() places the child
|
||||
$anchor_override = all_zero(child_adjustment)? inside?child:undef
|
||||
|
@ -959,7 +972,10 @@ module attach(parent, child, overlap, align, spin=0, norot, inset=0, shiftout=0,
|
|||
// inset_dir is the direction for insetting when alignment is in effect
|
||||
inset_dir = is_undef(align) ? CTR
|
||||
: two_d ? rot(to=reference, from=anchor,p=align)
|
||||
: apply(zrot(-factor*spin)*frame_map(x=reference, z=BACK)*frame_map(x=factor*anchor, z=startdir, reverse=true),
|
||||
: apply(affine3d_yrot(inside?180:0)
|
||||
* affine3d_zrot(-parent_abstract_anchor[3])
|
||||
* rot(from=parent_abstract_anchor[2],to=UP)
|
||||
* rot(v=anchor,-spin),
|
||||
align);
|
||||
spinaxis = two_d? UP : anchor_dir;
|
||||
olap = - overlap * reference - inset*inset_dir + shiftout * (inset_dir + factor*reference);
|
||||
|
@ -981,7 +997,7 @@ module attach(parent, child, overlap, align, spin=0, norot, inset=0, shiftout=0,
|
|||
// Module: tag()
|
||||
// Synopsis: Assigns a tag to an object
|
||||
// Topics: Attachments
|
||||
// See Also: force_tag(), recolor(), hide(), show_only(), diff(), intersect()
|
||||
// See Also: tag_this(), force_tag(), recolor(), hide(), show_only(), diff(), intersect()
|
||||
// Usage:
|
||||
// PARENT() tag(tag) CHILDREN;
|
||||
// Description:
|
||||
|
@ -1016,6 +1032,40 @@ module tag(tag)
|
|||
}
|
||||
|
||||
|
||||
|
||||
// Module: tag_this()
|
||||
// Synopsis: Assigns a tag to an object at the current level only.
|
||||
// Topics: Attachments
|
||||
// See Also: tag(), force_tag(), recolor(), hide(), show_only(), diff(), intersect()
|
||||
// Usage:
|
||||
// PARENT() tag(tag) CHILDREN;
|
||||
// Description:
|
||||
// Assigns the specified tag to the children at the current level only, with tags reverting to
|
||||
// the previous tag in force for deeper descendents. This works using `$tag` and `$save_tag`.
|
||||
// .
|
||||
// For a step-by-step explanation of attachments, see the [Attachments Tutorial](Tutorial-Attachments).
|
||||
// Arguments:
|
||||
// tag = tag string, which must not contain any spaces.
|
||||
// Side Effects:
|
||||
// Sets `$tag` to the tag you specify, possibly with a scope prefix, and saves current tag in `$save_tag`.
|
||||
// Example(3D): Here we subtract a cube while keeping its child. With {{tag()}} the child would inherit the "remove" tag and we would need to explicitly retag the child to prevent it from also being subtracted.
|
||||
// diff()
|
||||
// cuboid([10,10,4])
|
||||
// tag_this("remove")position(TOP) cuboid(3) // This cube is subtracted
|
||||
// attach(TOP,BOT) cuboid(1); // Tag is reset so this cube displays
|
||||
|
||||
module tag_this(tag)
|
||||
{
|
||||
req_children($children);
|
||||
check=
|
||||
assert(is_string(tag),"tag must be a string")
|
||||
assert(undef==str_find(tag," "),str("Tag string \"",tag,"\" contains a space, which is not allowed"));
|
||||
$save_tag=default($tag,"");
|
||||
$tag = str($tag_prefix,tag);
|
||||
children();
|
||||
}
|
||||
|
||||
|
||||
// Module: force_tag()
|
||||
// Synopsis: Assigns a tag to a non-attachable object.
|
||||
// Topics: Attachments
|
||||
|
@ -1683,6 +1733,40 @@ module hide(tags)
|
|||
}
|
||||
|
||||
|
||||
// Module: hide_this()
|
||||
// Synopsis: Hides attachable children at the current level
|
||||
// Topics: Attachments
|
||||
// See Also: hide(), tag_this(), tag(), recolor(), show_only(), show_all(), show_int(), diff(), intersect()
|
||||
// Usage:
|
||||
// hide_this() CHILDREN;
|
||||
// Description:
|
||||
// Hides all attachable children at the current level, while still displaying descendants.
|
||||
// For a step-by-step explanation of attachments, see the [Attachments Tutorial](Tutorial-Attachments).
|
||||
// Side Effects:
|
||||
// Sets `$tag` and `$save_tag`
|
||||
// Example: Use an invisible parent to position children. Unlike with {{hide()}} we do not need to explicitly use any tags.
|
||||
// $fn=16;
|
||||
// hide_this() cuboid(10)
|
||||
// {
|
||||
// attach(RIGHT,BOT) cyl(r=1,h=5);
|
||||
// attach(LEFT,BOT) cyl(r=1,h=5);
|
||||
// }
|
||||
// Example: Nexting applications of hide_this()
|
||||
// $fn=32;
|
||||
// hide_this() cuboid(10)
|
||||
// attach(TOP,BOT) cyl(r=2,h=5)
|
||||
// hide_this() attach(TOP,BOT) cuboid(4)
|
||||
// attach(RIGHT,BOT) cyl(r=1,h=2);
|
||||
|
||||
module hide_this()
|
||||
{
|
||||
tag_scope()
|
||||
hide("child")
|
||||
tag_this("child")
|
||||
children();
|
||||
}
|
||||
|
||||
|
||||
// Module: show_only()
|
||||
// Synopsis: Show only the children with the listed tags.
|
||||
// See Also: tag(), recolor(), show_all(), show_int(), diff(), intersect()
|
||||
|
@ -1690,7 +1774,7 @@ module hide(tags)
|
|||
// Usage:
|
||||
// show_only(tags) CHILDREN;
|
||||
// Description:
|
||||
// Show only the children with the listed tags, which you sply as a space separated string. Only unhidden objects will be shown, so if an object is hidden either before or after the `show_only()` call then it will remain hidden. This overrides any previous `show_only()` calls. Unlike `hide()`, calls to `show_only()` are not cumulative.
|
||||
// Show only the children with the listed tags, which you supply as a space separated string. Only unhidden objects will be shown, so if an object is hidden either before or after the `show_only()` call then it will remain hidden. This overrides any previous `show_only()` calls. Unlike `hide()`, calls to `show_only()` are not cumulative.
|
||||
// For a step-by-step explanation of attachments, see the [Attachments Tutorial](Tutorial-Attachments).
|
||||
// Side Effects:
|
||||
// Sets `$tags_shown` to the tag you specify.
|
||||
|
@ -1981,18 +2065,18 @@ module face_profile(faces=[], r, d, excess=0.01, convexity=10) {
|
|||
// cube([50,60,70],center=true)
|
||||
// edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT])
|
||||
// mask2d_roundover(r=10, inset=2);
|
||||
// Example: Using $edge_angle on a Conoid
|
||||
// Example: Using $edge_angle on a conoid
|
||||
// diff()
|
||||
// cyl(d1=50, d2=30, l=40, anchor=BOT) {
|
||||
// edge_profile([TOP,BOT], excess=10, convexity=6) {
|
||||
// mask2d_roundover(r=8, inset=1, excess=1, mask_angle=$edge_angle);
|
||||
// }
|
||||
// }
|
||||
// Example: Using $edge_angle on a Prismoid
|
||||
// Example: Using $edge_angle on a prismoid
|
||||
// diff()
|
||||
// prismoid([60,50],[30,20],h=40,shift=[-25,15]) {
|
||||
// edge_profile(excess=10, convexity=20) {
|
||||
// mask2d_roundover(r=5,inset=1,mask_angle=$edge_angle);
|
||||
// mask2d_roundover(r=5,inset=1,mask_angle=$edge_angle,$fn=32);
|
||||
// }
|
||||
// }
|
||||
|
||||
|
@ -2864,11 +2948,23 @@ module attachable(
|
|||
children(0);
|
||||
}
|
||||
}
|
||||
if (is_def($save_color)) {
|
||||
if (is_def($save_tag) && is_def($save_color)){
|
||||
$tag=$save_tag;
|
||||
$save_tag=undef;
|
||||
$color=$save_color; // Revert to the color before color_this() call
|
||||
$save_color=undef;
|
||||
children(1);
|
||||
}
|
||||
else if (is_def($save_color)) {
|
||||
$color=$save_color; // Revert to the color before color_this() call
|
||||
$save_color=undef;
|
||||
children(1);
|
||||
}
|
||||
else if (is_def($save_tag)) {
|
||||
$tag=$save_tag;
|
||||
$save_tag=undef;
|
||||
children(1);
|
||||
}
|
||||
else children(1);
|
||||
}
|
||||
}
|
||||
|
@ -3482,13 +3578,8 @@ function _attach_transform(anchor, spin, orient, geom, p) =
|
|||
* rot(to=FWD, from=point3d(anch[2]))
|
||||
* affine3d_translate(point3d(-pos))
|
||||
:
|
||||
let(
|
||||
spinT = is_num(spin) ? affine3d_zrot(-anch[3]-spin)
|
||||
: affine3d_zrot(-spin.z) * affine3d_yrot(-spin.y) * affine3d_xrot(-spin.x)
|
||||
* affine3d_zrot(-anch[3])
|
||||
)
|
||||
affine3d_yrot(180)
|
||||
* spinT
|
||||
* affine3d_zrot(-anch[3]-spin)
|
||||
* rot(from=anch[2],to=UP)
|
||||
* affine3d_translate(point3d(-pos))
|
||||
)
|
||||
|
@ -3619,7 +3710,7 @@ function _find_anchor(anchor, geom) =
|
|||
if (anch.y!=0) unit(rot(from=UP, to=[0,edge.y,max(0.01,h)], p=[0,axy.y,0]), UP),
|
||||
if (anch.z!=0) unit([0,0,anch.z],UP)
|
||||
],
|
||||
dir = anchor==CENTER? UP
|
||||
dir = anch==CENTER? UP
|
||||
: len(facevecs)==1? unit(facevecs[0],UP)
|
||||
: len(facevecs)==2? vector_bisect(facevecs[0],facevecs[1])
|
||||
: let(
|
||||
|
@ -3631,39 +3722,63 @@ function _find_anchor(anchor, geom) =
|
|||
v3 = unit(line[1]-line[0],UP) * anch.z
|
||||
)
|
||||
unit(v3,UP),
|
||||
final_dir = default(override[1],rot(from=UP, to=axis, p=dir)),
|
||||
final_dir = default(override[1],anch==CENTER?UP:rot(from=UP, to=axis, p=dir)),
|
||||
final_pos = default(override[0],rot(from=UP, to=axis, p=pos)),
|
||||
|
||||
// If the anchor is on a face or horizontal edge we take the oang value for spin
|
||||
// If the anchor is on a vertical or sloped edge or corner we want to align the spin to point upward along the edge
|
||||
// The "native" spin direction is the rotation of UP to the anchor direction
|
||||
// The desired spin direction is the edge vector
|
||||
// The axis of rotation is the direction vector, so we need component of edge perpendicular to dir
|
||||
spin = anchor.x!=0 && anchor.y!=0 ? _compute_spin(dir, edge) //sign(anchor.x)*vector_angle(edge - (edge*dir)*dir/(dir*dir), rot(from=UP,to=dir,p=BACK))
|
||||
: oang
|
||||
|
||||
spin = anch.x!=0 && anch.y!=0 ? _compute_spin(final_dir, rot(from=UP, to=axis, p=edge)) // Set "vertical" edge and corner anchors point along the edge
|
||||
: anch.z!=0 && sum(v_abs(anch))==2 ? _compute_spin(final_dir, rot(from=UP, to=axis, p=anch.z*[anch.y,-anch.x,0])) // Horizontal anchors point clockwise
|
||||
: norm(anch)==3 ? _compute_spin(final_dir, final_dir==DOWN || final_dir==UP ? BACK : UP)
|
||||
: oang // face anchors point UP/BACK
|
||||
//spin = anchor.x!=0 && anchor.y!=0 ? _compute_spin(dir, edge)
|
||||
// : anchor.z!=0 && (anchor.x!=0 || anchor.y!=0) ? _compute_spin(dir, _canonical_edge([anchor.y,anchor.x,0]))
|
||||
// : oang
|
||||
) [anchor, final_pos, final_dir, default(override[2],spin)]
|
||||
) : type == "conoid"? ( //r1, r2, l, shift
|
||||
assert(anchor.z == sign(anchor.z), "The Z component of an anchor for a cylinder/cone must be -1, 0, or 1")
|
||||
let(
|
||||
rr1=geom[1], rr2=geom[2], l=geom[3],
|
||||
shift=point2d(geom[4]), axis=point3d(geom[5]),
|
||||
rr1=geom[1],
|
||||
rr2=geom[2],
|
||||
length=geom[3],
|
||||
shift=point2d(geom[4]),
|
||||
axis=point3d(geom[5]),
|
||||
r1 = is_num(rr1)? [rr1,rr1] : point2d(rr1),
|
||||
r2 = is_num(rr2)? [rr2,rr2] : point2d(rr2),
|
||||
anch = rot(from=axis, to=UP, p=anchor),
|
||||
offset = rot(from=axis, to=UP, p=offset),
|
||||
u = (anch.z+1)/2,
|
||||
// Returns [point,tangent_dir]
|
||||
solve_ellipse = function (r,dir) approx(dir,[0,0]) ? [[0,0],[0,0]]
|
||||
: let(
|
||||
x = r.x*dir.x*r.y / sqrt(dir.x^2*r.y^2+dir.y^2*r.x^2),
|
||||
y = r.x*dir.y*r.y / sqrt(dir.x^2*r.y^2+dir.y^2*r.x^2)
|
||||
)
|
||||
[[x,y], unit([y*r.x^2,-x*r.y^2],CTR)],
|
||||
on_center = approx(point2d(anch), [0,0]),
|
||||
botdata = solve_ellipse(r1,point2d(anch)),
|
||||
topdata = solve_ellipse(r2,point2d(anch)),
|
||||
bot = point3d(botdata[0], -length/2),
|
||||
top = point3d(topdata[0], length/2),
|
||||
tangent = lerp(botdata[1],topdata[1],u),
|
||||
normal = [-tangent.y,tangent.x],
|
||||
axy = unit(point2d(anch),[0,0]),
|
||||
bot = point3d(v_mul(r1,axy), -l/2),
|
||||
top = point3d(v_mul(r2,axy)+shift, l/2),
|
||||
obot = point3d(v_mul(r1,axy), -length/2),
|
||||
otop = point3d(v_mul(r2,axy)+shift, length/2),
|
||||
pos = point3d(cp) + lerp(bot,top,u) + offset,
|
||||
sidevec = rot(from=UP, to=top==bot?UP:top-bot, p=point3d(axy)),
|
||||
sidevec = rot(from=UP, to=top==bot?UP:top-bot, p=point3d(normal)),
|
||||
vvec = anch==CENTER? UP : unit([0,0,anch.z],UP),
|
||||
vec = anch==CENTER? CENTER :
|
||||
approx(axy,[0,0])? unit(anch,UP) :
|
||||
approx(anch.z,0)? sidevec :
|
||||
unit((sidevec+vvec)/2,UP),
|
||||
vec = on_center? unit(anch,UP)
|
||||
: approx(anch.z,0)? sidevec
|
||||
: unit((sidevec+vvec)/2,UP),
|
||||
pos2 = rot(from=UP, to=axis, p=pos),
|
||||
vec2 = anch==CENTER? UP : rot(from=UP, to=axis, p=vec)
|
||||
) [anchor, pos2, vec2, oang]
|
||||
vec2 = anch==CENTER? UP : rot(from=UP, to=axis, p=vec),
|
||||
// Set spin for top/bottom to be clockwise
|
||||
spin = anch.z!=0 && (anch.x!=0 || anch.y!=0) ? _compute_spin(vec2,rot(from=UP,to=axis,p=point3d(tangent)*anch.z))
|
||||
: anch.z==0 && norm(anch)>0 ? _compute_spin(vec2, (vec2==DOWN || vec2==UP)?BACK:UP)
|
||||
: oang
|
||||
) [anchor, pos2, vec2, spin]
|
||||
) : type == "point"? (
|
||||
let(
|
||||
anchor = unit(point3d(anchor),CENTER),
|
||||
|
@ -3742,24 +3857,60 @@ function _find_anchor(anchor, geom) =
|
|||
rpts = apply(rot(from=anchor, to=RIGHT) * move(point3d(-cp)), vnf[0]),
|
||||
maxx = max(column(rpts,0)),
|
||||
idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i],
|
||||
dir = len(idxs)>2 ? [anchor,oang]
|
||||
: len(idxs)==2 ?
|
||||
// We want to catch the case where the points lie on an edge. The complication is that the edge
|
||||
// may appear twice WITH DIFFERENT VERTEX INDICES if repeated points appear in the vnf.
|
||||
edges_faces = len(idxs)==2 ? // Simple case, no repeated points, [idxs] gives the edge
|
||||
approx(vnf[0][idxs[0]],vnf[0][idxs[1]]) ? [] // Are edge points identical?
|
||||
: let( facelist = _vnf_find_edge_faces(vnf,idxs))
|
||||
len(facelist)==2 ? [[idxs], facelist] : []
|
||||
: len(idxs)!=4 ? [] // If we don't have four points it's not an edge pair
|
||||
: let(
|
||||
pts = select(vnf[0],idxs),
|
||||
matchind = [for(i=[1:3]) if (approx(pts[i],pts[0])) i] // indices where actual vertex point is the same as point zero
|
||||
)
|
||||
len(matchind)!=1 ? []
|
||||
: let( // After this runs we have two edges as index pairs, and their associated faces as index values
|
||||
match1 = select(idxs,[0,matchind[0]]),
|
||||
match2 = list_remove_values(idxs,match1),
|
||||
face1 = _vnf_find_edge_faces(vnf,[match1[0],match2[0]]),
|
||||
face2 = _vnf_find_edge_faces(vnf,[match1[0],match2[1]]),
|
||||
edge1 = [match1[0], face1==[] ? match2[1] : match2[0]],
|
||||
edge2 = list_remove_values(idxs,edge1),
|
||||
face3 = _vnf_find_edge_faces(vnf,edge2),
|
||||
allfaces = concat(face1,face2,face3)
|
||||
)
|
||||
assert(len(allfaces)==2, "Invalid polyhedron encountered while computing VNF anchor")
|
||||
[[edge1,edge2], allfaces],
|
||||
dir = len(idxs)>2 && edges_faces==[] ? [anchor,oang]
|
||||
: edges_faces!=[] ?
|
||||
let(
|
||||
edgefaces = _vnf_find_edge_faces(vnf,idxs),
|
||||
edge = select(vnf[0],idxs)
|
||||
faces = edges_faces[1],
|
||||
edge = select(vnf[0],edges_faces[0][0]),
|
||||
facenormals = [for(face=faces) polygon_normal(select(vnf[0],vnf[1][face]))],
|
||||
direction= unit(mean(facenormals)),
|
||||
projnormals = project_plane(point4d(cross(facenormals[0],facenormals[1])), facenormals),
|
||||
ang = 180- posmod(v_theta(projnormals[1])-v_theta(projnormals[0]),360),
|
||||
horiz_face = [for(i=[0:1]) if (approx(v_abs(facenormals[i]),UP)) i],
|
||||
spin = horiz_face==[] ?
|
||||
let(
|
||||
edgedir = edge[1]-edge[0],
|
||||
nz = [for(i=[0:2]) if (!approx(edgedir[i],0)) i],
|
||||
flip = edgedir[last(nz)] < 0 ? -1 : 1
|
||||
)
|
||||
_compute_spin(direction, flip*edgedir)
|
||||
:
|
||||
let(
|
||||
hedge = len(edges_faces[0])==1 ? edges_faces[0][0]
|
||||
: edges_faces[0][horiz_face[0]],
|
||||
face = select(vnf[1],faces[horiz_face[0]]),
|
||||
edgeind = search([hedge[0]], face)[0],
|
||||
flip = select(face,edgeind+1)== hedge[1] ? 1 : -1,
|
||||
edgedir = edge[1]-edge[0]
|
||||
)
|
||||
_compute_spin(direction, flip*edgedir)
|
||||
)
|
||||
len(edgefaces)==0 ? [anchor,oang]
|
||||
: assert(len(edgefaces)==2, "Invalid polyhedron encountered while computing VNF anchor")
|
||||
edge[0]==edge[1] ? [anchor,oang] // two "edge" points are the same, so give up
|
||||
: let(
|
||||
direction= unit(mean([for(face=edgefaces) polygon_normal(select(vnf[0],vnf[1][face]))])),
|
||||
edgedir = edge[1]-edge[0],
|
||||
nz = [for(i=[0:2]) if (!approx(edgedir[i],0)) i],
|
||||
flip = edgedir[last(nz)] < 0 ? -1 : 1,
|
||||
spin = _compute_spin(direction, flip*edgedir)
|
||||
)
|
||||
[direction,spin]
|
||||
: let(
|
||||
[direction,spin]
|
||||
: let( // This section handles corner anchors, currently spins just point up
|
||||
vertices = vnf[0],
|
||||
faces = vnf[1],
|
||||
cornerfaces = _vnf_find_corner_faces(vnf,idxs[0]), // faces = [3,9,12] indicating which faces
|
||||
|
@ -4636,10 +4787,20 @@ function _compute_spin(anchor_dir, spin_dir) =
|
|||
let(
|
||||
native_dir = rot(from=UP, to=anchor_dir, p=BACK),
|
||||
spin_dir = spin_dir - (spin_dir*anchor_dir)*anchor_dir, // component of spin_dir perpendicular to anchor_dir
|
||||
dummy = assert(!approx(spin_dir,[0,0,0]),"spin direction is parallel to anchor"),
|
||||
angle = vector_angle(native_dir,spin_dir),
|
||||
sign = cross(native_dir,spin_dir)*anchor_dir<0 ? -1 : 1
|
||||
)
|
||||
sign*angle;
|
||||
|
||||
|
||||
// Compute canonical edge direction so that edge is either Z+, Y+ or X+ in that order
|
||||
function _canonical_edge(edge) =
|
||||
let(
|
||||
nz = [for(i=[0:2]) if (!approx(edge[i],0)) i],
|
||||
flip = edge[last(nz)] < 0 ? -1 : 1
|
||||
)
|
||||
flip * edge;
|
||||
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
|
|
@ -223,15 +223,6 @@ include <BOSL2/std.scad>
|
|||
cube([20,20,40], center=true, spin=45);
|
||||
```
|
||||
|
||||
You can also spin around other axes, or multiple axes at once, by giving 3 angles (in degrees) to
|
||||
`spin=` as a vector, like [Xang,Yang,Zang]. Similarly to `rotate()`,
|
||||
the rotations apply in the order given, X-axis spin, then Y-axis, then Z-axis:
|
||||
|
||||
```openscad-3D
|
||||
include <BOSL2/std.scad>
|
||||
cube([20,20,40], center=true, spin=[10,20,30]);
|
||||
```
|
||||
|
||||
This example shows a cylinder which has been anchored at its FRONT,
|
||||
with a rotated copy in gray. The rotation is performed around the
|
||||
origin, but the cylinder is off the origin, so the rotation **does**
|
||||
|
@ -666,13 +657,13 @@ To show all the standard cardinal anchor points, you can use the [show_anchors()
|
|||
|
||||
```openscad-3D;Big
|
||||
include <BOSL2/std.scad>
|
||||
cube(40, center=true)
|
||||
cube(20, center=true)
|
||||
show_anchors();
|
||||
```
|
||||
|
||||
```openscad-3D;Big
|
||||
include <BOSL2/std.scad>
|
||||
cylinder(h=40, d=40, center=true)
|
||||
cylinder(h=25, d=25, center=true)
|
||||
show_anchors();
|
||||
```
|
||||
|
||||
|
@ -687,7 +678,7 @@ For large objects, you can again change the size of the arrows with the `s=` arg
|
|||
```openscad-3D;Big
|
||||
include <BOSL2/std.scad>
|
||||
prismoid(150,60,100)
|
||||
show_anchors(s=35);
|
||||
show_anchors(s=45);
|
||||
```
|
||||
|
||||
## Parent-Child Anchor Attachment (Double Argument Attachment)
|
||||
|
@ -2019,7 +2010,8 @@ override the position. If you omit the other list items then the
|
|||
value drived from the standard anchor will be used. Below we override
|
||||
position of the FWD anchor:
|
||||
|
||||
```
|
||||
```openscad-3D
|
||||
include<BOSL2/std.scad>
|
||||
module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) {
|
||||
override = [
|
||||
[FWD, [[0,-s/8,0]]]
|
||||
|
@ -2039,7 +2031,8 @@ Note how the FWD anchor is now rooted on the cylindrical portion. If
|
|||
you wanted to also change its direction and spin you could do it like
|
||||
this:
|
||||
|
||||
```
|
||||
```openscad-3D
|
||||
include<BOSL2/std.scad>
|
||||
module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) {
|
||||
override = [
|
||||
[FWD, [[0,-s/8,0], FWD+LEFT, 225]]
|
||||
|
@ -2062,7 +2055,9 @@ The third entry gives a spin override, whose effect is shown by the
|
|||
position of the red flag on the arrow. If you want to override all of
|
||||
the x=0 anchors to be on the cylinder, with their standard directions,
|
||||
you can do that by supplying a list:
|
||||
```
|
||||
|
||||
```openscad-3D
|
||||
include<BOSL2/std.scad>
|
||||
module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) {
|
||||
override = [
|
||||
for(j=[-1:1:1], k=[-1:1:1])
|
||||
|
@ -2086,7 +2081,8 @@ the default, or a `[position, direction, spin]` triple to override the
|
|||
default. As before, you can omit values to keep their default.
|
||||
Here is the same example using a function literal for the override:
|
||||
|
||||
```
|
||||
```openscad-3D
|
||||
include<BOSL2/std.scad>
|
||||
module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) {
|
||||
override = function (anchor)
|
||||
anchor.x!=0 || anchor==CTR ? undef // Keep these
|
||||
|
|
Loading…
Reference in a new issue