diff --git a/shapes2d.scad b/shapes2d.scad index add1ff0..b159405 100644 --- a/shapes2d.scad +++ b/shapes2d.scad @@ -213,11 +213,10 @@ function rect(size=1, rounding=0, chamfer=0, atype="box", anchor=CENTER, spin=0, assert(is_undef(cornerpt) || len(cornerpt)==1,"Cannot find corner point to anchor") [move(cp, p=qrpts), is_undef(cornerpt)? undef : move(cp,p=cornerpt[0])] ], - path = flatten(column(corners,0)), + path = deduplicate(flatten(column(corners,0)),closed=true), override = [for(i=[0:3]) let(quad=quadorder[i]) if (is_def(corners[i][1])) [quadpos[quad], [corners[i][1], min(chamfer[quad],rounding[quad])<0 ? [quadpos[quad].x,0] : undef]]] - ) _return_override ? [reorient(anchor,spin, two_d=true, size=size, p=path, override=override), override] : reorient(anchor,spin, two_d=true, size=size, p=path, override=override); @@ -549,7 +548,7 @@ function ellipse(r, d, realign=false, circum=false, uniform=false, anchor=CENTER // align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` -// Extra Anchors: +// Named Anchors: // "tip0", "tip1", etc. = Each tip has an anchor, pointing outwards. // "side0", "side1", etc. = The center of each side has an anchor, pointing outwards. // Example(2D): by Outer Size @@ -691,7 +690,7 @@ module regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false, // align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` -// Extra Anchors: +// Named Anchors: // "tip0" ... "tip4" = Each tip has an anchor, pointing outwards. // "side0" ... "side4" = The center of each side has an anchor, pointing outwards. // Example(2D): by Outer Size @@ -752,7 +751,7 @@ module pentagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip // align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` -// Extra Anchors: +// Named Anchors: // "tip0" ... "tip5" = Each tip has an anchor, pointing outwards. // "side0" ... "side5" = The center of each side has an anchor, pointing outwards. // Example(2D): by Outer Size @@ -812,7 +811,7 @@ module hexagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, // align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` -// Extra Anchors: +// Named Anchors: // "tip0" ... "tip7" = Each tip has an anchor, pointing outwards. // "side0" ... "side7" = The center of each side has an anchor, pointing outwards. // Example(2D): by Outer Size @@ -863,8 +862,8 @@ module octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` -// Extra Anchors: -// hypot = Center of angled side, perpendicular to that side. +// Named Anchors: +// "hypot" = Center of angled side, perpendicular to that side. // Example(2D): // right_triangle([40,30]); // Example(2D): With `center=true` @@ -1144,7 +1143,7 @@ module trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, ancho // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // atype = Choose "hull" or "intersect" anchor methods. Default: "hull" -// Extra Anchors: +// Named Anchors: // "tip0" ... "tip4" = Each tip has an anchor, pointing outwards. // "pit0" ... "pit4" = The inside corner between each tip has an anchor, pointing outwards. // "midpt0" ... "midpt4" = The center-point between each pair of tips has an anchor, pointing outwards. @@ -1318,7 +1317,7 @@ module jittered_poly(path, dist=1/512) { // Synopsis: Creates a 2D teardrop shape. // SynTags: Geom, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable -// See Also: teardrop(), onion() +// See Also: teardrop(), onion(), keyhole() // Description: // When called as a module, makes a 2D teardrop shape. Useful for extruding into 3D printable holes as it limits overhang to 45 degrees. Uses "intersect" style anchoring. // The cap_h parameter truncates the top of the teardrop. If cap_h is taller than the untruncated form then @@ -1418,7 +1417,7 @@ function teardrop2d(r, ang=45, cap_h, d, circum=false, realign=false, anchor=CEN // Synopsis: Creates an egg-shaped 2d object. // SynTags: Geom, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable -// See Also: circle(), ellipse(), glued_circles() +// See Also: circle(), ellipse(), glued_circles(), keyhole() // Usage: As Module // egg(length, r1|d1=, r2|d2=, R|D=) [ATTACHMENTS]; // Usage: As Function @@ -1439,7 +1438,7 @@ function teardrop2d(r, ang=45, cap_h, d, circum=false, realign=false, anchor=CEN // d1 = diameter of the left-hand circle // d2 = diameter of the right-hand circle // D = diameter of the joining arcs -// Extra Anchors: +// Named Anchors: // "left" = center of the left circle // "right" = center of the right circle // Example(2D,NoAxes): This first example shows how the egg is constructed from two circles and two joining arcs. @@ -1503,12 +1502,185 @@ module egg(length,r1,r2,R,d1,d2,D,anchor=CENTER, spin=0) } +// Function&Module: ring() +// Synopsis: Draws a 2D ring or partial ring or returns a region or path +// SynTags: Geom, Region, Path +// Topics: Shapes (2D), Paths (2D), Path Generators, Regions, Attachable +// See Also: arc(), circle() +// +// Usage: ring or partial ring from radii/diameters +// region=ring(n, r1=|d1=, r2=|d2=, [full=], [angle=], [start=]); +// Usage: ring or partial ring from radius and ring width +// region=ring(n, ring_width, r=|d=, [full=], [angle=], [start=]); +// Usage: ring or partial ring passing through three points +// region=ring(n, [ring_width], [r=,d=], points=[P0,P1,P2], [full=]); +// Usage: ring or partial ring from tangent point on segment `[P0,P1]` to the tangent point on segment `[P1,P2]`. +// region=ring(n, [ring_width], corner=[P0,P1,P2], [r=,d=], [r1|d1=], [r2=|d2=], [full=]); +// Usage: ring or partial ring based on setting a width at the X axis and height above the X axis +// region=ring(n, [ring_width], [r=|d=], width=, thickness=, [full=]); +// Usage: as a module +// ring(...) [ATTACHMENTS]; +// Description: +// If called as a function returns a region or path for a ring or part of a ring. If called as a module, creates the corresponding 2D ring or partial ring shape. +// The geometry of the ring can be specified using any of the methods supported by {{arc()}}. If `full` is true (the default) the ring will be complete and the +// returned value a region. If `full` is false then the return is a path describing a partial ring. The returned path is always clockwise with the larger radius arc first. +// A ring has two radii, the inner and outer. When specifying geometry you must somehow specify one radius, which can be directly with `r=` or `r1=` or by giving a point list with +// or without a center point. You specify the second radius by giving `r=` directly, or `r2=` if you used `r1=` for the first radius, or by giving `ring_width`. If `ring_width` +// the second radius will be larger than the first; if `ring_width` is negative the second radius will be smaller. +// Arguments: +// n = Number of vertices to use for the inner and outer portions of the ring +// ring_width = width of the ring. Can be positive or negative +// --- +// r1/d1 = inner radius or diameter of the ring +// r2/d2 = outer radius or diameter of the ring +// r/d = second radius or diameter of ring when r1 or d1 are not given +// full = if true create a full ring, if false create a partial ring. Default: true unless `angle` is given +// cp = Centerpoint of ring. +// points = Points on the ring boundary. +// corner = A path of two segments to fit the ring tangent to. +// long = if given with cp and points takes the long arc instead of the default short arc. Default: false +// cw = if given with cp and 2 points takes the arc in the clockwise direction. Default: false +// ccw = if given with cp and 2 points takes the arc in the counter-clockwise direction. Default: false +// width = If given with `thickness`, ring is defined based on an arc with ends on X axis. +// thickness = If given with `width`, ring is defined based on an arc with ends on X axis, and this height above the X axis. +// start = Start angle of ring. Default: 0 +// angle = If scalar, the end angle in degrees relative to start parameter. If a vector specifies start and end angles of ring. +// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). (Module only) Default: `CENTER` +// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). (Module only) Default: `0` +// Examples(2D): +// ring(r1=5,r2=7, n=32); +// ring(r=5,ring_width=-1, n=32); +// ring(r=7, n=5, ring_width=-4); +// ring(points=[[0,0],[3,3],[5,2]], ring_width=2, n=32); +// ring(points=[[0,0],[3,3],[5,2]], r=1, n=32); +// ring(cp=[3,3], points=[[4,4],[1,3]], ring_width=1); +// ring(corner=[[0,0],[4,4],[7,3]], r2=2, r1=1.5,n=22,full=false); +// ring(r1=5,r2=7, angle=[33,110], n=32); +// ring(r1=5,r2=7, angle=[0,360], n=32); // full circle +// ring(r=5, points=[[0,0],[3,3],[5,2]], full=false, n=32); +// ring(32,-2, cp=[1,1], points=[[4,4],[-3,6]], full=false); +// ring(r=5,ring_width=-1, n=32); +// ring(points=[[0,0],[3,3],[5,2]], ring_width=2, n=32); +// ring(points=[[0,0],[3,3],[5,2]], r=1, n=32); +// ring(cp=[3,3], points=[[4,4],[1,3]], ring_width=1); +// Example(2D): Using corner, the outer radius is the one tangent to the corner +// corner = [[0,0],[4,4],[7,3]]; +// ring(corner=corner, r2=3, r1=2,n=22); +// stroke(corner, width=.1,color="red"); +// Example(2D): For inner radius tangent to a corner, specify `r=` and `ring_width`. +// corner = [[0,0],[4,4],[7,3]]; +// ring(corner=corner, r=3, ring_width=1,n=22,full=false); +// stroke(corner, width=.1,color="red"); +// Example(2D): +// $fn=128; +// region = ring(width=5,thickness=1.5,ring_width=2); +// path = ring(width=5,thickness=1.5,ring_width=2,full=false); +// stroke(region,width=.25); +// color("red") dashed_stroke(path,dashpat=[1.5,1.5],closed=true,width=.25); + +module ring(n,ring_width,r,r1,r2,angle,d,d1,d2,cp,points,corner, width,thickness,start, long=false, full=true, cw=false,ccw=false, anchor=CENTER, spin=0) +{ + R = ring(n=n,r=r,ring_width=ring_width,r1=r1,r2=r2,angle=angle,d=d,d1=d1,d2=d2,cp=cp,points=points,corner=corner, width=width,thickness=thickness,start=start, + long=long, full=full, cw=cw, ccw=ccw); + attachable(anchor,spin,two_d=true,region=is_region(R)?R:undef,path=is_region(R)?undef:R,extent=false) { + region(R); + children(); + } +} + +function ring(n,ring_width,r,r1,r2,angle,d,d1,d2,cp,points,corner, width,thickness,start, long=false, full=true, cw=false,ccw=false) = + let( + r1 = is_def(r1) ? assert(is_undef(d),"Cannot define r1 and d1")r1 + : is_def(d1) ? d1/2 + : undef, + r2 = is_def(r2) ? assert(is_undef(d),"Cannot define r2 and d2")r2 + : is_def(d2) ? d2/2 + : undef, + r = is_def(r) ? assert(is_undef(d),"Cannot define r and d")r + : is_def(d) ? d/2 + : undef, + full = is_def(angle) ? false : full + ) + assert(is_undef(start) || is_def(angle), "start requires angle") + assert(is_undef(angle) || !any_defined([thickness,width,points,corner]), "Cannot give angle with points, corner, width or thickness") + assert(!is_vector(angle,2) || abs(angle[1]-angle[0]) <= 360, "angle gives more than 360 degrees") + assert(is_undef(points) || is_path(points,2), str("Points must be a 2d vector",points)) + assert(!any_defined([points,thickness,width]) || num_defined([r1,r2])==0, "Cannot give r1, r2, d1, or d2 with points, width or thickness") + is_def(width) && is_def(thickness)? + assert(!any_defined([r,cp,points,angle,start]), "Conflicting or invalid parameters to ring") + assert(all_positive([width,thickness]), "Width and thickness must be positive") + ring(n=n,r=r,ring_width=ring_width,points=[[width/2,0], [0,thickness], [-width/2,0]],full=full) + : full && is_undef(cp) && is_def(points) ? + assert(is_def(points) && len(points)==3, "Without cp given, must provide exactly three points") + assert(num_defined([r,ring_width]), "Must give r or ring_width with point list") + let( + ctr_rad = circle_3points(points), + dummy=assert(is_def(ctr_rad[0]), "Collinear points given to ring()"), + part1 = move(ctr_rad[0],circle(r=ctr_rad[1], $fn=is_def(n) ? n : $fn)), + first_r = norm(part1[0]-ctr_rad[0]), + r = is_def(r) ? r : first_r+ring_width, + part2 = move(ctr_rad[0],circle(r=r, $fn=is_def(n) ? n : $fn)) + ) + assert(first_r!=r, "Ring has zero width") + (first_r>r ? [part1, reverse(part2)] : [part2, reverse(part1)]) + : full && is_def(corner) ? + assert(is_path(corner,2) && len(corner)==3, "corner must be a list of 3 points") + assert(!any_defined([thickness,width,points,cp,angle.start]), "Conflicting or invalid parameters to ring") + let(parmok = (all_positive([r1,r2]) && num_defined([r,ring_width])==0) + || (num_defined([r1,r2])==0 && all_positive([r]) && is_finite(ring_width))) + assert(parmok, "With corner must give (r1 and r2) or (r and ring_width), but you gave some other combination") + let( + newr1 = is_def(r1) ? min(r1,r2) : min(r,r+ring_width), + newr2 = is_def(r2) ? max(r2,r1) : max(r,r+ring_width), + data = circle_2tangents(newr2,corner[0],corner[1],corner[2]), + cp=data[0] + ) + [move(cp,circle($fn=is_def(n) ? n : $fn, r=newr2)),move(cp, circle( $fn=is_def(n) ? n : $fn, r=newr1))] + : full && is_def(cp) && is_def(points) ? + assert(in_list(len(points),[1,2]), "With cp must give a list of one or two points.") + assert(num_defined([r,ring_width]), "Must give r or ring_width with point list") + let( + first_r=norm(points[0]-cp), + part1 = move(cp,circle(r=first_r, $fn=is_def(n) ? n : $fn)), + r = is_def(r) ? r : first_r+ring_width, + part2 = move(cp,circle(r=r, $fn=is_def(n) ? n : $fn)) + ) + assert(first_r!=r, "Ring has zero width") + first_r>r ? [part1, reverse(part2)] : [part2, reverse(part1)] + : full || angle==360 || (is_vector(angle,2) && abs(angle[1]-angle[0])==360) ? + let(parmok = (all_positive([r1,r2]) && num_defined([r,ring_width])==0) + || (num_defined([r1,r2])==0 && all_positive([r]) && is_finite(ring_width))) + assert(parmok, "Must give (r1 and r2) or (r and ring_width), but you gave some other combination") + let( + newr1 = is_def(r1) ? min(r1,r2) : min(r,r+ring_width), + newr2 = is_def(r2) ? max(r2,r1) : max(r,r+ring_width), + cp = default(cp,[0,0]) + ) + [move(cp,circle($fn=is_def(n) ? n : $fn, r=newr2)),move(cp, circle( $fn=is_def(n) ? n : $fn, r=newr1))] + : let( + parmRok = (all_positive([r1,r2]) && num_defined([r,ring_width])==0) + || (num_defined([r1,r2])==0 && all_positive([r]) && is_finite(ring_width)), + pass_r = any_defined([points,thickness]) ? assert(!any_defined([r1,r2]),"Cannot give r1, d1, r2, or d2 with a point list or width & thickness") + assert(num_defined([ring_width,r])==1, "Must defined exactly one of r and ring_width when using a pointlist or width & thickness") + undef + : assert(num_defined([r,r2])==1,"Cannot give r or d and r1 or d1") first_defined([r,r2]), + base_arc = clockwise_polygon(arc(r=pass_r,n=n,angle=angle,cp=cp,points=points, corner=corner, width=width, thickness=thickness,start=start, long=long, cw=cw,ccw=ccw,wedge=true)), + center = base_arc[0], + arc1 = list_tail(base_arc,1), + r_actual = norm(center-arc1[0]), + new_r = is_def(ring_width) ? r_actual+ring_width + : first_defined([r,r1]), + pts = [center+new_r*unit(arc1[0]-center), center+new_r*unit(arc1[floor(len(arc1)/2)]-center), center+new_r*unit(last(arc1)-center)], + second=arc(n=n,points=pts), + arc2 = is_polygon_clockwise(second) ? second : reverse(second) + ) new_r>r_actual ? concat(arc2, reverse(arc1)) : concat(arc1,reverse(arc2)); + // Function&Module: glued_circles() // Synopsis: Creates a shape of two circles joined by a curved waist. // SynTags: Geom, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable -// See Also: circle(), ellipse(), egg() +// See Also: circle(), ellipse(), egg(), keyhole() // Usage: As Module // glued_circles(r/d=, [spread], [tangent], ...) [ATTACHMENTS]; // Usage: As Function @@ -1570,9 +1742,87 @@ module glued_circles(r, spread=10, tangent=30, d, anchor=CENTER, spin=0) { } +// Function&Module: keyhole() +// Synopsis: Creates a 2D keyhole shape. +// SynTags: Geom, Path +// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable +// See Also: circle(), ellipse(), egg(), glued_circles() +// Usage: As Module +// keyhole(l/length=, r1/d1=, r2/d2=, [shoulder_r=], ...) [ATTACHMENTS]; +// Usage: As Function +// path = keyhole(l/length=, r1/d1=, r2/d2=, [shoulder_r=], ...); +// Description: +// When called as a function, returns a 2D path forming a shape of two differently sized circles joined by a straight slot, making what looks like a keyhole. +// When called as a module, creates a 2D shape of two differently sized circles joined by a straight slot, making what looks like a keyhole. Uses "hull" style anchoring. +// Arguments: +// l = The distance between the centers of the two circles. Default: `15` +// r1= The radius of the back circle, centered on `[0,0]`. Default: `2.5` +// r2= The radius of the forward circle, centered on `[0,-length]`. Default: `5` +// --- +// shoulder_r = The radius of the rounding of the shoulder between the larger circle, and the slot that leads to the smaller circle. Default: `0` +// d1= The diameter of the back circle, centered on `[0,0]`. +// d2= The diameter of the forward circle, centered on `[0,-l]`. +// length = An alternate name for the `l=` argument. +// anchor = Translate so anchor point is at origin (0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` +// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` +// Examples(2D): +// keyhole(40, 10, 30); +// keyhole(l=60, r1=20, r2=40); +// Example(2D): Making the forward circle larger than the back circle +// keyhole(l=60, r1=40, r2=20); +// Example(2D): Centering on the larger hole: +// keyhole(l=60, r1=40, r2=20, spin=180); +// Example(2D): Rounding the shoulders +// keyhole(l=60, r1=20, r2=40, shoulder_r=20); +// Example(2D): Called as Function +// stroke(closed=true, keyhole(l=60, r1=20, r2=40)); + +function keyhole(l, r1, r2, shoulder_r=0, d1, d2, length, anchor=CTR, spin=0) = + let( + l = first_defined([l,length,15]), + r1 = get_radius(r=r1, d=d1, dflt=5), + r2 = get_radius(r=r2, d=d2, dflt=10) + ) + assert(is_num(l) && l>0) + assert(l>=max(r1,r2)) + assert(is_undef(shoulder_r) || (is_num(shoulder_r) && shoulder_r>=0)) + let( + cp1 = [0,0], + cp2 = cp1 + [0,-l], + shoulder_r = is_num(shoulder_r)? shoulder_r : min(r1,r2) / 2, + minr = min(r1, r2) + shoulder_r, + maxr = max(r1, r2) + shoulder_r, + dy = opp_hyp_to_adj(minr, maxr), + spt1 = r1>r2? cp1+[minr,-dy] : cp2+[minr,dy], + spt2 = [-spt1.x, spt1.y], + ds = spt1 - (r1>r2? cp1 : cp2), + ang = atan2(abs(ds.y), abs(ds.x)), + path = r1>r2? [ + if (shoulder_r<=0) spt1 + else each arc(r=shoulder_r, cp=spt1, start=180-ang, angle=ang, endpoint=false), + each arc(r=r2, cp=cp2, start=0, angle=-180, endpoint=false), + if (shoulder_r<=0) spt2 + else each arc(r=shoulder_r, cp=spt2, start=0, angle=ang, endpoint=false), + each arc(r=r1, cp=cp1, start=180+ang, angle=-180-2*ang, endpoint=false), + ] : [ + if (shoulder_r<=0) spt1 + else each arc(r=shoulder_r, cp=spt1, start=180, angle=ang, endpoint=false), + each arc(r=r2, cp=cp2, start=ang, angle=-180-2*ang, endpoint=false), + if (shoulder_r<=0) spt2 + else each arc(r=shoulder_r, cp=spt2, start=360-ang, angle=ang, endpoint=false), + each arc(r=r1, cp=cp1, start=180, angle=-180, endpoint=false), + ] + ) reorient(anchor,spin, two_d=true, path=path, extent=true, p=path); + + +module keyhole(l, r1, r2, shoulder_r=0, d1, d2, length, anchor=CTR, spin=0) { + path = keyhole(l=l, r1=r1, r2=r2, shoulder_r=shoulder_r, d1=d1, d2=d2, length=length); + attachable(anchor,spin, two_d=true, path=path, extent=true) { + polygon(path); + children(); + } +} -function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) = - pow(pow(abs(cos(m1*theta/4)/a),n2)+pow(abs(sin(m2*theta/4)/b),n3),-1/n1); // Function&Module: supershape() // Synopsis: Creates a 2D [Superformula](https://en.wikipedia.org/wiki/Superformula) shape. @@ -1656,6 +1906,9 @@ module supershape(step=0.5,n,m1=4,m2=undef,n1,n2=undef,n3=undef,a=1,b=undef, r=u } } +function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) = + pow(pow(abs(cos(m1*theta/4)/a),n2)+pow(abs(sin(m2*theta/4)/b),n3),-1/n1); + // Function&Module: reuleaux_polygon() // Synopsis: Creates a constant-width shape that is not circular. @@ -1676,7 +1929,7 @@ module supershape(step=0.5,n,m1=4,m2=undef,n1,n2=undef,n3=undef,a=1,b=undef, r=u // d = Diameter of the shape. Scale shape to fit in a circle of diameter d. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` -// Extra Anchors: +// Named Anchors: // "tip0", "tip1", etc. = Each tip has an anchor, pointing outwards. // Examples(2D): // reuleaux_polygon(n=3, r=50); @@ -1771,7 +2024,7 @@ function reuleaux_polygon(n=3, r, d, anchor=CENTER, spin=0) = // script = The script the text is in. Default: `"latin"` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `"baseline"` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0` -// Extra Anchors: +// Named Anchors: // "baseline" = Anchors at the baseline of the text, at the start of the string. // str("baseline",VECTOR) = Anchors at the baseline of the text, modified by the X and Z components of the appended vector. // Examples(2D):