Revert "Minor is_matrix definition and format"

This reverts commit 2da259c2cc.
This commit is contained in:
RonaldoCMP 2020-08-02 01:08:24 +01:00
parent 2da259c2cc
commit 84fa648dc5

View file

@ -240,7 +240,7 @@ function atanh(x) =
// quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12] // quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12]
// quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]] // quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]]
function quant(x,y) = function quant(x,y) =
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero integer.") assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.")
is_list(x) is_list(x)
? [for (v=x) quant(v,y)] ? [for (v=x) quant(v,y)]
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.") : assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
@ -272,7 +272,7 @@ function quant(x,y) =
// quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12] // quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12]
// quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]] // quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]]
function quantdn(x,y) = function quantdn(x,y) =
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero integer.") assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.")
is_list(x) is_list(x)
? [for (v=x) quantdn(v,y)] ? [for (v=x) quantdn(v,y)]
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.") : assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
@ -304,7 +304,7 @@ function quantdn(x,y) =
// quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12] // quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12]
// quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]] // quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]]
function quantup(x,y) = function quantup(x,y) =
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero integer.") assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.")
is_list(x) is_list(x)
? [for (v=x) quantup(v,y)] ? [for (v=x) quantup(v,y)]
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.") : assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
@ -778,10 +778,12 @@ function back_substitute(R, b, x=[],transpose = false) =
let(n=len(R)) let(n=len(R))
assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b))) assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b)))
!is_vector(b) ? transpose([for(i=[0:len(b[0])-1]) back_substitute(R,subindex(b,i),transpose=transpose)]) : !is_vector(b) ? transpose([for(i=[0:len(b[0])-1]) back_substitute(R,subindex(b,i),transpose=transpose)]) :
transpose transpose?
    ? let( R = [for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]] ) reverse(back_substitute(
reverse( back_substitute( R, reverse(b), x ) )  [for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
: len(x) == n ? x : reverse(b), x, false
)) :
len(x) == n ? x :
let( let(
ind = n - len(x) - 1 ind = n - len(x) - 1
) )
@ -792,6 +794,7 @@ function back_substitute(R, b, x=[],transpose = false) =
(b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind] (b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
) back_substitute(R, b, concat([newvalue],x)); ) back_substitute(R, b, concat([newvalue],x));
// Function: det2() // Function: det2()
// Description: // Description:
// Optimized function that returns the determinant for the given 2x2 square matrix. // Optimized function that returns the determinant for the given 2x2 square matrix.
@ -862,16 +865,13 @@ function determinant(M) =
// n = optional width of matrix // n = optional width of matrix
// square = set to true to require a square matrix. Default: false // square = set to true to require a square matrix. Default: false
function is_matrix(A,m,n,square=false) = function is_matrix(A,m,n,square=false) =
is_list(A) is_list(A[0])
&& len(A)>0     && ( let(v = A*A[0]) is_num(0*(v*v)) ) // a matrix of finite numbers
&& is_vector(A[0])
    && is_vector(A*A[0]) // a matrix of finite numbers
    && (is_undef(n) || len(A[0])==n )     && (is_undef(n) || len(A[0])==n )
    && (is_undef(m) || len(A)==m )     && (is_undef(m) || len(A)==m )
    && ( !square || len(A)==len(A[0]));     && ( !square || len(A)==len(A[0]));
// Section: Comparisons and Logic // Section: Comparisons and Logic
// Function: approx() // Function: approx()
@ -1037,7 +1037,7 @@ function count_true(l, nmax) =
// data[len(data)-1]. This function uses a symetric derivative approximation // data[len(data)-1]. This function uses a symetric derivative approximation
// for internal points, f'(t) = (f(t+h)-f(t-h))/2h. For the endpoints (when closed=false) the algorithm // for internal points, f'(t) = (f(t+h)-f(t-h))/2h. For the endpoints (when closed=false) the algorithm
// uses a two point method if sufficient points are available: f'(t) = (3*(f(t+h)-f(t)) - (f(t+2*h)-f(t+h)))/2h. // uses a two point method if sufficient points are available: f'(t) = (3*(f(t+h)-f(t)) - (f(t+2*h)-f(t+h)))/2h.
// // .
// If `h` is a vector then it is assumed to be nonuniform, with h[i] giving the sampling distance // If `h` is a vector then it is assumed to be nonuniform, with h[i] giving the sampling distance
// between data[i+1] and data[i], and the data values will be linearly resampled at each corner // between data[i+1] and data[i], and the data values will be linearly resampled at each corner
// to produce a uniform spacing for the derivative estimate. At the endpoints a single point method // to produce a uniform spacing for the derivative estimate. At the endpoints a single point method