mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
Revert "Minor is_matrix definition and format"
This reverts commit 2da259c2cc
.
This commit is contained in:
parent
2da259c2cc
commit
84fa648dc5
1 changed files with 22 additions and 22 deletions
26
math.scad
26
math.scad
|
@ -240,7 +240,7 @@ function atanh(x) =
|
||||||
// quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12]
|
// quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12]
|
||||||
// quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]]
|
// quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]]
|
||||||
function quant(x,y) =
|
function quant(x,y) =
|
||||||
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero integer.")
|
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.")
|
||||||
is_list(x)
|
is_list(x)
|
||||||
? [for (v=x) quant(v,y)]
|
? [for (v=x) quant(v,y)]
|
||||||
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
|
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
|
||||||
|
@ -272,7 +272,7 @@ function quant(x,y) =
|
||||||
// quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12]
|
// quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12]
|
||||||
// quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]]
|
// quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]]
|
||||||
function quantdn(x,y) =
|
function quantdn(x,y) =
|
||||||
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero integer.")
|
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.")
|
||||||
is_list(x)
|
is_list(x)
|
||||||
? [for (v=x) quantdn(v,y)]
|
? [for (v=x) quantdn(v,y)]
|
||||||
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
|
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
|
||||||
|
@ -304,7 +304,7 @@ function quantdn(x,y) =
|
||||||
// quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12]
|
// quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12]
|
||||||
// quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]]
|
// quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]]
|
||||||
function quantup(x,y) =
|
function quantup(x,y) =
|
||||||
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero integer.")
|
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.")
|
||||||
is_list(x)
|
is_list(x)
|
||||||
? [for (v=x) quantup(v,y)]
|
? [for (v=x) quantup(v,y)]
|
||||||
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
|
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
|
||||||
|
@ -778,10 +778,12 @@ function back_substitute(R, b, x=[],transpose = false) =
|
||||||
let(n=len(R))
|
let(n=len(R))
|
||||||
assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b)))
|
assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b)))
|
||||||
!is_vector(b) ? transpose([for(i=[0:len(b[0])-1]) back_substitute(R,subindex(b,i),transpose=transpose)]) :
|
!is_vector(b) ? transpose([for(i=[0:len(b[0])-1]) back_substitute(R,subindex(b,i),transpose=transpose)]) :
|
||||||
transpose
|
transpose?
|
||||||
? let( R = [for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]] )
|
reverse(back_substitute(
|
||||||
reverse( back_substitute( R, reverse(b), x ) )
|
[for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
|
||||||
: len(x) == n ? x :
|
reverse(b), x, false
|
||||||
|
)) :
|
||||||
|
len(x) == n ? x :
|
||||||
let(
|
let(
|
||||||
ind = n - len(x) - 1
|
ind = n - len(x) - 1
|
||||||
)
|
)
|
||||||
|
@ -792,6 +794,7 @@ function back_substitute(R, b, x=[],transpose = false) =
|
||||||
(b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
|
(b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
|
||||||
) back_substitute(R, b, concat([newvalue],x));
|
) back_substitute(R, b, concat([newvalue],x));
|
||||||
|
|
||||||
|
|
||||||
// Function: det2()
|
// Function: det2()
|
||||||
// Description:
|
// Description:
|
||||||
// Optimized function that returns the determinant for the given 2x2 square matrix.
|
// Optimized function that returns the determinant for the given 2x2 square matrix.
|
||||||
|
@ -862,16 +865,13 @@ function determinant(M) =
|
||||||
// n = optional width of matrix
|
// n = optional width of matrix
|
||||||
// square = set to true to require a square matrix. Default: false
|
// square = set to true to require a square matrix. Default: false
|
||||||
function is_matrix(A,m,n,square=false) =
|
function is_matrix(A,m,n,square=false) =
|
||||||
is_list(A)
|
is_list(A[0])
|
||||||
&& len(A)>0
|
&& ( let(v = A*A[0]) is_num(0*(v*v)) ) // a matrix of finite numbers
|
||||||
&& is_vector(A[0])
|
|
||||||
&& is_vector(A*A[0]) // a matrix of finite numbers
|
|
||||||
&& (is_undef(n) || len(A[0])==n )
|
&& (is_undef(n) || len(A[0])==n )
|
||||||
&& (is_undef(m) || len(A)==m )
|
&& (is_undef(m) || len(A)==m )
|
||||||
&& ( !square || len(A)==len(A[0]));
|
&& ( !square || len(A)==len(A[0]));
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Section: Comparisons and Logic
|
// Section: Comparisons and Logic
|
||||||
|
|
||||||
// Function: approx()
|
// Function: approx()
|
||||||
|
@ -1037,7 +1037,7 @@ function count_true(l, nmax) =
|
||||||
// data[len(data)-1]. This function uses a symetric derivative approximation
|
// data[len(data)-1]. This function uses a symetric derivative approximation
|
||||||
// for internal points, f'(t) = (f(t+h)-f(t-h))/2h. For the endpoints (when closed=false) the algorithm
|
// for internal points, f'(t) = (f(t+h)-f(t-h))/2h. For the endpoints (when closed=false) the algorithm
|
||||||
// uses a two point method if sufficient points are available: f'(t) = (3*(f(t+h)-f(t)) - (f(t+2*h)-f(t+h)))/2h.
|
// uses a two point method if sufficient points are available: f'(t) = (3*(f(t+h)-f(t)) - (f(t+2*h)-f(t+h)))/2h.
|
||||||
//
|
// .
|
||||||
// If `h` is a vector then it is assumed to be nonuniform, with h[i] giving the sampling distance
|
// If `h` is a vector then it is assumed to be nonuniform, with h[i] giving the sampling distance
|
||||||
// between data[i+1] and data[i], and the data values will be linearly resampled at each corner
|
// between data[i+1] and data[i], and the data values will be linearly resampled at each corner
|
||||||
// to produce a uniform spacing for the derivative estimate. At the endpoints a single point method
|
// to produce a uniform spacing for the derivative estimate. At the endpoints a single point method
|
||||||
|
|
Loading…
Reference in a new issue