Changed skin params. matching= -> method= and "evenly" -> "uniform"

This commit is contained in:
Revar Desmera 2019-11-13 21:58:48 -08:00
parent df75614537
commit 871540c57c
3 changed files with 34 additions and 34 deletions

View file

@ -19,9 +19,9 @@ include <vnf.scad>
// Function&Module: skin() // Function&Module: skin()
// Usage: As Module // Usage: As Module
// skin(profiles, [closed], [matching]); // skin(profiles, [closed], [method]);
// Usage: As Function // Usage: As Function
// vnf = skin(profiles, [closed], [caps], [matching]); // vnf = skin(profiles, [closed], [caps], [method]);
// Description // Description
// Given a list of two or more 2D path `profiles` that have been moved and/or rotated into 3D-space, // Given a list of two or more 2D path `profiles` that have been moved and/or rotated into 3D-space,
// produces faces to skin a surface between consecutive profiles. Optionally, the first and last // produces faces to skin a surface between consecutive profiles. Optionally, the first and last
@ -29,15 +29,15 @@ include <vnf.scad>
// The user is responsible for making sure the orientation of the first vertex of each profile are relatively aligned. // The user is responsible for making sure the orientation of the first vertex of each profile are relatively aligned.
// If called as a function, returns a VNF structure like `[VERTICES, FACES]`. See [VNF](vnf.scad). // If called as a function, returns a VNF structure like `[VERTICES, FACES]`. See [VNF](vnf.scad).
// If called as a module, creates a polyhedron of the skinned profiles. // If called as a module, creates a polyhedron of the skinned profiles.
// The vertex matching algorithms are as follows: // The vertex matching methods are as follows:
// - `"distance"`: Vertices between profiles are matched based on closest next position, relative to the center of each profile. // - `"distance"`: Vertices between profiles are matched based on closest next position, relative to the center of each profile.
// - `"angle"`: Vertices between profiles are matched based on closest next polar angle, relative to the center of each profile. // - `"angle"`: Vertices between profiles are matched based on closest next polar angle, relative to the center of each profile.
// - `"evenly"`: Vertices are evenly matched between profiles, such that a point 30% of the way through one profile, will be matched to a vertex 30% of the way through the other profile, based on vertex count. // - `"uniform"`: Vertices are uniformly matched between profiles, such that a point 30% of the way through one profile, will be matched to a vertex 30% of the way through the other profile, based on vertex count.
// Arguments: // Arguments:
// profiles = A list of 2D paths that have been moved and/or rotated into 3D-space. // profiles = A list of 2D paths that have been moved and/or rotated into 3D-space.
// closed = If true, the last profile is skinned to the first profile, to allow for making a closed loop. Assumes `caps=false`. Default: false // closed = If true, the last profile is skinned to the first profile, to allow for making a closed loop. Assumes `caps=false`. Default: false
// caps = If true, endcap faces are created. Assumes `closed=false`. Default: true // caps = If true, endcap faces are created. Assumes `closed=false`. Default: true
// matching = Specifies the algorithm used to match up vertices between profiles, to create faces. Given as a string, one of `"distance"`, `"angle"`, or `"evenly"`. If given as a list of strings, equal in number to the number of profile transitions, lets you specify the algorithm used for each transition. Default: "distance" // method = Specifies the method used to match up vertices between profiles, to create faces. Given as a string, one of `"distance"`, `"angle"`, or `"uniform"`. If given as a list of strings, equal in number to the number of profile transitions, lets you specify the method used for each transition. Default: "uniform"
// Example(FlatSpin): // Example(FlatSpin):
// skin([ // skin([
// scale([2,1,1], p=path3d(circle(d=100,$fn=48))), // scale([2,1,1], p=path3d(circle(d=100,$fn=48))),
@ -63,32 +63,33 @@ include <vnf.scad>
// skin([ // skin([
// move([0,0, 0], p=scale([1,2,1],p=path3d(circle(d=50,$fn=36)))), // move([0,0, 0], p=scale([1,2,1],p=path3d(circle(d=50,$fn=36)))),
// move([0,0,100], p=scale([2,1,1],p=path3d(circle(d=50,$fn=36)))) // move([0,0,100], p=scale([2,1,1],p=path3d(circle(d=50,$fn=36))))
// ], matching="distance"); // ], method="distance");
// Example: Angle Matching // Example: Angle Matching
// skin([ // skin([
// move([0,0, 0], p=scale([1,2,1],p=path3d(circle(d=50,$fn=36)))), // move([0,0, 0], p=scale([1,2,1],p=path3d(circle(d=50,$fn=36)))),
// move([0,0,100], p=scale([2,1,1],p=path3d(circle(d=50,$fn=36)))) // move([0,0,100], p=scale([2,1,1],p=path3d(circle(d=50,$fn=36))))
// ], matching="angle"); // ], method="angle");
// Example: Evenly Matching // Example: Evenly Matching
// skin([ // skin([
// move([0,0, 0], p=scale([1,2,1],p=path3d(circle(d=50,$fn=36)))), // move([0,0, 0], p=scale([1,2,1],p=path3d(circle(d=50,$fn=36)))),
// move([0,0,100], p=scale([2,1,1],p=path3d(circle(d=50,$fn=36)))) // move([0,0,100], p=scale([2,1,1],p=path3d(circle(d=50,$fn=36))))
// ], matching="evenly"); // ], method="uniform");
// Example: // Example:
// include <BOSL2/rounding.scad>
// fn=32; // fn=32;
// base = round_corners(square([2,4],center=true), measure="radius", size=0.5, $fn=fn); // base = round_corners(square([2,4],center=true), measure="radius", size=0.5, $fn=fn);
// skin([ // skin([
// path3d(base,0), // path3d(base,0),
// path3d(base,2), // path3d(base,2),
// path3d(circle($fn=fn,r=0.5),3), // path3d(circle($fn=fn,r=0.5),3),
// path3d(circle($fn=fn,r=0.5),4), // path3d(circle($fn=fn,r=0.5),4),
// path3d(circle($fn=fn,r=0.6),4), // path3d(circle($fn=fn,r=0.6),4),
// path3d(circle($fn=fn,r=0.5),5), // path3d(circle($fn=fn,r=0.5),5),
// path3d(circle($fn=fn,r=0.6),5), // path3d(circle($fn=fn,r=0.6),5),
// path3d(circle($fn=fn,r=0.5),6), // path3d(circle($fn=fn,r=0.5),6),
// path3d(circle($fn=fn,r=0.6),6), // path3d(circle($fn=fn,r=0.6),6),
// path3d(circle($fn=fn,r=0.5),7), // path3d(circle($fn=fn,r=0.5),7),
// ],matching="evenly"); // ],method="uniform");
// Example: Forma Candle Holder // Example: Forma Candle Holder
// r = 50; // r = 50;
// height = 140; // height = 140;
@ -96,9 +97,8 @@ include <vnf.scad>
// wallthickness = 5; // wallthickness = 5;
// holeradius = r - wallthickness; // holeradius = r - wallthickness;
// difference() { // difference() {
// skin([for (i=[0:layers-1]) // skin([for (i=[0:layers-1]) zrot(-30*i,p=path3d(hexagon(ir=r),i*height/layers))]);
// zrot(-30*i,p=path3d(hexagon(ir=r),i*height/layers))]); // up(height/layers) cylinder(r=holeradius, h=height);
// up(height/layers) cylinder(r=holeradius, h=height);
// } // }
// Example: Beware Self-intersecting Creases! // Example: Beware Self-intersecting Creases!
// skin([ // skin([
@ -129,19 +129,19 @@ include <vnf.scad>
// move([0,0, 0], p=path3d(circle(d=100,$fn=36))), // move([0,0, 0], p=path3d(circle(d=100,$fn=36))),
// move([0,0,50], p=path3d(circle(d=100,$fn=6))) // move([0,0,50], p=path3d(circle(d=100,$fn=6)))
// ], caps=false); // ], caps=false);
module skin(profiles, closed=false, caps=true, matching="distance") { module skin(profiles, closed=false, caps=true, method="uniform") {
vnf_polyhedron(skin(profiles, caps=caps, closed=closed, matching=matching)); vnf_polyhedron(skin(profiles, caps=caps, closed=closed, method=method));
} }
function skin(profiles, closed=false, caps=true, matching="distance") = function skin(profiles, closed=false, caps=true, method="uniform") =
assert(is_list(profiles)) assert(is_list(profiles))
assert(is_bool(closed)) assert(is_bool(closed))
assert(is_bool(caps)) assert(is_bool(caps))
assert(!closed||!caps) assert(!closed||!caps)
assert(is_string(matching)||is_list(matching)) assert(is_string(method)||is_list(method))
let( matching = is_list(matching)? matching : [for (pidx=idx(profiles,end=closed?-1:-2)) matching] ) let( method = is_list(method)? method : [for (pidx=idx(profiles,end=closed?-1:-2)) method] )
assert(len(matching) == len(profiles)-closed?0:1) assert(len(method) == len(profiles)-closed?0:1)
vnf_triangulate( vnf_triangulate(
concat([ concat([
for(pidx=idx(profiles,end=closed? -1 : -2)) for(pidx=idx(profiles,end=closed? -1 : -2))
@ -161,7 +161,7 @@ function skin(profiles, closed=false, caps=true, matching="distance") =
perp2 = vector_axis(n2,perp), perp2 = vector_axis(n2,perp),
poly1 = ccw_polygon(project_plane(prof1, cp1, cp1+perp, cp1+perp1)), poly1 = ccw_polygon(project_plane(prof1, cp1, cp1+perp, cp1+perp1)),
poly2 = ccw_polygon(project_plane(prof2, cp2, cp2+perp, cp2+perp2)), poly2 = ccw_polygon(project_plane(prof2, cp2, cp2+perp, cp2+perp2)),
match = matching[pidx], match = method[pidx],
faces = [ faces = [
for( for(
first = true, first = true,
@ -181,8 +181,8 @@ function skin(profiles, closed=false, caps=true, matching="distance") =
j>=plen2? 1 : j>=plen2? 1 :
match=="angle"? (dang1>dang2? 1 : 0) : match=="angle"? (dang1>dang2? 1 : 0) :
match=="distance"? (dist1>dist2? 1 : 0) : match=="distance"? (dist1>dist2? 1 : 0) :
match=="evenly"? (i/plen1 > j/plen2? 0 : 1) : match=="uniform"? (i/plen1 > j/plen2? 0 : 1) :
assert(in_list(matching[i],["angle","distance","evenly"]),str("Got `",matching,"'")), assert(in_list(method[i],["angle","distance","uniform"]),str("Got `",method,"'")),
p1 = lift_plane(poly1[i%plen1], cp1, cp1+perp, cp1+perp1), p1 = lift_plane(poly1[i%plen1], cp1, cp1+perp, cp1+perp1),
p2 = lift_plane(poly2[j%plen2], cp2, cp2+perp, cp2+perp2), p2 = lift_plane(poly2[j%plen2], cp2, cp2+perp, cp2+perp2),
p3 = side? p3 = side?

View file

@ -7,9 +7,9 @@ module test_skin() {
[[-100,-100,0], [0,100,0], [100,-100,0]], [[-100,-100,0], [0,100,0], [100,-100,0]],
[[-100,-100,100], [-100,100,100], [100,100,100], [100,-100,100]], [[-100,-100,100], [-100,100,100], [100,100,100], [100,-100,100]],
]; ];
vnf1 = skin(profiles, caps=false, matching="distance"); vnf1 = skin(profiles, caps=false, method="distance");
assert(vnf1 == [[[-100,-100,0],[-100,100,100],[-100,-100,100],[0,100,0],[100,100,100],[100,-100,0],[100,-100,100]],[[0,1,2],[0,3,1],[3,4,1],[3,5,4],[5,6,4],[5,2,6],[5,0,2]]]); assert(vnf1 == [[[-100,-100,0],[-100,100,100],[-100,-100,100],[0,100,0],[100,100,100],[100,-100,0],[100,-100,100]],[[0,1,2],[0,3,1],[3,4,1],[3,5,4],[5,6,4],[5,2,6],[5,0,2]]]);
vnf2 = skin(profiles, caps=true, matching="distance"); vnf2 = skin(profiles, caps=true, method="distance");
assert(vnf2 == [[[-100,-100,0],[-100,100,100],[-100,-100,100],[0,100,0],[100,100,100],[100,-100,0],[100,-100,100],[100,-100,0],[0,100,0],[-100,-100,0],[-100,-100,100],[-100,100,100],[100,100,100],[100,-100,100]],[[0,1,2],[0,3,1],[3,4,1],[3,5,4],[5,6,4],[5,2,6],[5,0,2],[7,8,9],[10,11,12],[12,13,10]]]); assert(vnf2 == [[[-100,-100,0],[-100,100,100],[-100,-100,100],[0,100,0],[100,100,100],[100,-100,0],[100,-100,100],[100,-100,0],[0,100,0],[-100,-100,0],[-100,-100,100],[-100,100,100],[100,100,100],[100,-100,100]],[[0,1,2],[0,3,1],[3,4,1],[3,5,4],[5,6,4],[5,2,6],[5,0,2],[7,8,9],[10,11,12],[12,13,10]]]);
vnf_polyhedron(vnf2); vnf_polyhedron(vnf2);
} }

View file

@ -8,7 +8,7 @@
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
BOSL_VERSION = [2,0,37]; BOSL_VERSION = [2,0,38];
// Section: BOSL Library Version Functions // Section: BOSL Library Version Functions