Merge pull request #825 from revarbat/revarbat_dev

wiring.scad docs cleanup.
This commit is contained in:
Revar Desmera 2022-03-31 22:25:23 -07:00 committed by GitHub
commit 8a3c148d76
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 201 additions and 285 deletions

View file

@ -12,45 +12,130 @@
// Section: Walls // Section: Walls
// Module: narrowing_strut() // Module: sparse_wall()
//
// Description:
// Makes a rectangular strut with the top side narrowing in a triangle.
// The shape created may be likened to an extruded home plate from baseball.
// This is useful for constructing parts that minimize the need to support
// overhangs.
// //
// Usage: // Usage:
// narrowing_strut(w, l, wall, [ang]); // sparse_wall(h, l, thick, [maxang=], [strut=], [max_bridge=]) [ATTACHMENTS];
//
// Topics: FDM Optimized, Walls
//
// Description:
// Makes an open rectangular strut with X-shaped cross-bracing, designed to reduce
// the need for support material in 3D printing.
// //
// Arguments: // Arguments:
// w = Width (thickness) of the strut. // h = height of strut wall.
// l = Length of the strut. // l = length of strut wall.
// wall = height of rectangular portion of the strut. // thick = thickness of strut wall.
// ang = angle that the trianglar side will converge at. // ---
// maxang = maximum overhang angle of cross-braces.
// strut = the width of the cross-braces.
// max_bridge = maximum bridging distance between cross-braces.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// //
// Example: // See Also: corrugated_wall(), thinning_wall()
// narrowing_strut(w=10, l=100, wall=5, ang=30); //
module narrowing_strut(w=10, l=100, wall=5, ang=30, anchor=BOTTOM, spin=0, orient=UP) // Example: Typical Shape
// sparse_wall(h=40, l=100, thick=3);
// Example: Thinner Strut
// sparse_wall(h=40, l=100, thick=3, strut=2);
// Example: Larger maxang
// sparse_wall(h=40, l=100, thick=3, strut=2, maxang=45);
// Example: Longer max_bridge
// sparse_wall(h=40, l=100, thick=3, strut=2, maxang=45, max_bridge=30);
module sparse_wall(h=50, l=100, thick=4, maxang=30, strut=5, max_bridge=20, anchor=CENTER, spin=0, orient=UP)
{ {
h = wall + w/2/tan(ang); zoff = h/2 - strut/2;
size = [w, l, h]; yoff = l/2 - strut/2;
maxhyp = 1.5 * (max_bridge+strut)/2 / sin(maxang);
maxz = 2 * maxhyp * cos(maxang);
zreps = ceil(2*zoff/maxz);
zstep = 2*zoff / zreps;
hyp = zstep/2 / cos(maxang);
maxy = min(2 * hyp * sin(maxang), max_bridge+strut);
yreps = ceil(2*yoff/maxy);
ystep = 2*yoff / yreps;
ang = atan(ystep/zstep);
len = zstep / cos(ang);
size = [thick, l, h];
attachable(anchor,spin,orient, size=size) { attachable(anchor,spin,orient, size=size) {
xrot(90) yrot(90)
fwd(h/2) { linear_extrude(height=thick, convexity=4*yreps, center=true) {
linear_extrude(height=l, center=true, slices=2) {
back(wall/2) square([w, wall], center=true);
back(wall-0.001) {
yscale(1/tan(ang)) {
difference() { difference() {
zrot(45) square(w/sqrt(2), center=true); square([h, l], center=true);
fwd(w/2) square(w, center=true); square([h-2*strut, l-2*strut], center=true);
}
ycopies(ystep, n=yreps) {
xcopies(zstep, n=zreps) {
skew(syx=tan(-ang)) square([(h-strut)/zreps, strut], center=true);
skew(syx=tan( ang)) square([(h-strut)/zreps, strut], center=true);
} }
} }
} }
children();
}
}
// Module: corrugated_wall()
//
// Usage:
// corrugated_wall(h, l, thick, [strut=], [wall=]) [ATTACHMENTS];
//
// Topics: FDM Optimized, Walls
//
// Description:
// Makes a corrugated wall which relieves contraction stress while still
// providing support strength. Designed with 3D printing in mind.
//
// Arguments:
// h = height of strut wall.
// l = length of strut wall.
// thick = thickness of strut wall.
// ---
// strut = the width of the cross-braces.
// wall = thickness of corrugations.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
//
// See Also: sparse_wall(), thinning_wall()
//
// Example: Typical Shape
// corrugated_wall(h=50, l=100);
// Example: Wider Strut
// corrugated_wall(h=50, l=100, strut=8);
// Example: Thicker Wall
// corrugated_wall(h=50, l=100, strut=8, wall=3);
module corrugated_wall(h=50, l=100, thick=5, strut=5, wall=2, anchor=CENTER, spin=0, orient=UP)
{
amplitude = (thick - wall) / 2;
period = min(15, thick * 2);
steps = quantup(segs(thick/2),4);
step = period/steps;
il = l - 2*strut + 2*step;
size = [thick, l, h];
attachable(anchor,spin,orient, size=size) {
union() {
linear_extrude(height=h-2*strut+0.1, slices=2, convexity=ceil(2*il/period), center=true) {
polygon(
points=concat(
[for (y=[-il/2:step:il/2]) [amplitude*sin(y/period*360)-wall/2, y] ],
[for (y=[il/2:-step:-il/2]) [amplitude*sin(y/period*360)+wall/2, y] ]
)
);
}
difference() {
cube([thick, l, h], center=true);
cube([thick+0.5, l-2*strut, h-2*strut], center=true);
} }
} }
children(); children();
@ -60,25 +145,30 @@ module narrowing_strut(w=10, l=100, wall=5, ang=30, anchor=BOTTOM, spin=0, orien
// Module: thinning_wall() // Module: thinning_wall()
// //
// Usage:
// thinning_wall(h, l, thick, [ang=], [braces=], [strut=], [wall=]) [ATTACHMENTS];
//
// Topics: FDM Optimized, Walls
//
// Description: // Description:
// Makes a rectangular wall which thins to a smaller width in the center, // Makes a rectangular wall which thins to a smaller width in the center,
// with angled supports to prevent critical overhangs. // with angled supports to prevent critical overhangs.
// //
// Usage:
// thinning_wall(h, l, thick, [ang], [strut], [wall]);
//
// Arguments: // Arguments:
// h = Height of wall. // h = Height of wall.
// l = Length of wall. If given as a vector of two numbers, specifies bottom and top lengths, respectively. // l = Length of wall. If given as a vector of two numbers, specifies bottom and top lengths, respectively.
// thick = Thickness of wall. // thick = Thickness of wall.
// wall = The thickness of the thinned portion of the wall. Default: `thick/2` // ---
// ang = Maximum overhang angle of diagonal brace. // ang = Maximum overhang angle of diagonal brace.
// braces = If true, adds diagonal crossbraces for strength. // braces = If true, adds diagonal crossbraces for strength.
// strut = The width of the borders and diagonal braces. Default: `thick/2` // strut = The width of the borders and diagonal braces. Default: `thick/2`
// wall = The thickness of the thinned portion of the wall. Default: `thick/2`
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// //
// See Also: sparse_wall(), corrugated_wall(), thinning_triangle()
//
// Example: Typical Shape // Example: Typical Shape
// thinning_wall(h=50, l=80, thick=4); // thinning_wall(h=50, l=80, thick=4);
// Example: Trapezoidal // Example: Trapezoidal
@ -238,17 +328,20 @@ module thinning_wall(h=50, l=100, thick=5, ang=30, braces=false, strut, wall, an
// Module: thinning_triangle() // Module: thinning_triangle()
// //
// Usage:
// thinning_triangle(h, l, thick, [ang=], [strut=], [wall=], [diagonly=], [center=]) [ATTACHMENTS];
//
// Topics: FDM Optimized, Walls
//
// Description: // Description:
// Makes a triangular wall with thick edges, which thins to a smaller width in // Makes a triangular wall with thick edges, which thins to a smaller width in
// the center, with angled supports to prevent critical overhangs. // the center, with angled supports to prevent critical overhangs.
// //
// Usage:
// thinning_triangle(h, l, thick, [ang], [strut], [wall], [diagonly], [center]);
//
// Arguments: // Arguments:
// h = height of wall. // h = height of wall.
// l = length of wall. // l = length of wall.
// thick = thickness of wall. // thick = thickness of wall.
// ---
// ang = maximum overhang angle of diagonal brace. // ang = maximum overhang angle of diagonal brace.
// strut = the width of the diagonal brace. // strut = the width of the diagonal brace.
// wall = the thickness of the thinned portion of the wall. // wall = the thickness of the thinned portion of the wall.
@ -258,6 +351,8 @@ module thinning_wall(h=50, l=100, thick=5, ang=30, braces=false, strut, wall, an
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// //
// See Also: thinning_wall()
//
// Example: Centered // Example: Centered
// thinning_triangle(h=50, l=80, thick=4, ang=30, strut=5, wall=2, center=true); // thinning_triangle(h=50, l=80, thick=4, ang=30, strut=5, wall=2, center=true);
// Example: All Braces // Example: All Braces
@ -298,219 +393,48 @@ module thinning_triangle(h=50, l=100, thick=5, ang=30, strut=5, wall=3, diagonly
} }
// Module: sparse_strut() // Module: narrowing_strut()
//
// Description:
// Makes an open rectangular strut with X-shaped cross-bracing, designed to reduce
// the need for support material in 3D printing.
// //
// Usage: // Usage:
// sparse_strut(h, l, thick, [strut], [maxang], [max_bridge]) // narrowing_strut(w, l, wall, [ang=]) [ATTACHMENTS];
//
// Topics: FDM Optimized
//
// Description:
// Makes a rectangular strut with the top side narrowing in a triangle.
// The shape created may be likened to an extruded home plate from baseball.
// This is useful for constructing parts that minimize the need to support
// overhangs.
// //
// Arguments: // Arguments:
// h = height of strut wall. // w = Width (thickness) of the strut.
// l = length of strut wall. // l = Length of the strut.
// thick = thickness of strut wall. // wall = height of rectangular portion of the strut.
// maxang = maximum overhang angle of cross-braces. // ---
// max_bridge = maximum bridging distance between cross-braces. // ang = angle that the trianglar side will converge at.
// strut = the width of the cross-braces.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// //
// Example: Typical Shape // Example:
// sparse_strut(h=40, l=100, thick=3); // narrowing_strut(w=10, l=100, wall=5, ang=30);
// Example: Thinner Strut module narrowing_strut(w=10, l=100, wall=5, ang=30, anchor=BOTTOM, spin=0, orient=UP)
// sparse_strut(h=40, l=100, thick=3, strut=2);
// Example: Larger maxang
// sparse_strut(h=40, l=100, thick=3, strut=2, maxang=45);
// Example: Longer max_bridge
// sparse_strut(h=40, l=100, thick=3, strut=2, maxang=45, max_bridge=30);
module sparse_strut(h=50, l=100, thick=4, maxang=30, strut=5, max_bridge=20, anchor=CENTER, spin=0, orient=UP)
{ {
zoff = h/2 - strut/2; h = wall + w/2/tan(ang);
yoff = l/2 - strut/2;
maxhyp = 1.5 * (max_bridge+strut)/2 / sin(maxang);
maxz = 2 * maxhyp * cos(maxang);
zreps = ceil(2*zoff/maxz);
zstep = 2*zoff / zreps;
hyp = zstep/2 / cos(maxang);
maxy = min(2 * hyp * sin(maxang), max_bridge+strut);
yreps = ceil(2*yoff/maxy);
ystep = 2*yoff / yreps;
ang = atan(ystep/zstep);
len = zstep / cos(ang);
size = [thick, l, h];
attachable(anchor,spin,orient, size=size) {
yrot(90)
linear_extrude(height=thick, convexity=4*yreps, center=true) {
difference() {
square([h, l], center=true);
square([h-2*strut, l-2*strut], center=true);
}
ycopies(ystep, n=yreps) {
xcopies(zstep, n=zreps) {
skew(syx=tan(-ang)) square([(h-strut)/zreps, strut], center=true);
skew(syx=tan( ang)) square([(h-strut)/zreps, strut], center=true);
}
}
}
children();
}
}
// Module: sparse_strut3d()
//
// Usage:
// sparse_strut3d(h, w, l, [thick], [maxang], [max_bridge], [strut]);
//
// Description:
// Makes an open rectangular strut with X-shaped cross-bracing, designed to reduce the
// need for support material in 3D printing.
//
// Arguments:
// h = Z size of strut.
// w = X size of strut.
// l = Y size of strut.
// thick = thickness of strut walls.
// maxang = maximum overhang angle of cross-braces.
// max_bridge = maximum bridging distance between cross-braces.
// strut = the width of the cross-braces.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
//
// Example(Med): Typical Shape
// sparse_strut3d(h=30, w=30, l=100);
// Example(Med): Thinner strut
// sparse_strut3d(h=30, w=30, l=100, strut=2);
// Example(Med): Larger maxang
// sparse_strut3d(h=30, w=30, l=100, strut=2, maxang=50);
// Example(Med): Smaller max_bridge
// sparse_strut3d(h=30, w=30, l=100, strut=2, maxang=50, max_bridge=20);
module sparse_strut3d(h=50, l=100, w=50, thick=3, maxang=40, strut=3, max_bridge=30, anchor=CENTER, spin=0, orient=UP)
{
xoff = w - thick;
yoff = l - thick;
zoff = h - thick;
xreps = ceil(xoff/yoff);
yreps = ceil(yoff/xoff);
zreps = ceil(zoff/min(xoff, yoff));
xstep = xoff / xreps;
ystep = yoff / yreps;
zstep = zoff / zreps;
cross_ang = atan2(xstep, ystep);
cross_len = hypot(xstep, ystep);
supp_ang = min(maxang, min(atan2(max_bridge, zstep), atan2(cross_len/2, zstep)));
supp_reps = floor(cross_len/2/(zstep*sin(supp_ang)));
supp_step = cross_len/2/supp_reps;
size = [w, l, h]; size = [w, l, h];
attachable(anchor,spin,orient, size=size) { attachable(anchor,spin,orient, size=size) {
intersection() { xrot(90)
union() { fwd(h/2) {
ybridge = (l - (yreps+1) * strut) / yreps; linear_extrude(height=l, center=true, slices=2) {
xcopies(xoff) sparse_strut(h=h, l=l, thick=thick, maxang=maxang, strut=strut, max_bridge=ybridge/ceil(ybridge/max_bridge)); back(wall/2) square([w, wall], center=true);
ycopies(yoff) zrot(90) sparse_strut(h=h, l=w, thick=thick, maxang=maxang, strut=strut, max_bridge=max_bridge); back(wall-0.001) {
for(zs = [0:1:zreps-1]) { yscale(1/tan(ang)) {
for(xs = [0:1:xreps-1]) {
for(ys = [0:1:yreps-1]) {
translate([(xs+0.5)*xstep-xoff/2, (ys+0.5)*ystep-yoff/2, (zs+0.5)*zstep-zoff/2]) {
zflip_copy(offset=-(zstep-strut)/2) {
xflip_copy() {
zrot(cross_ang) {
down(strut/2) {
cube([strut, cross_len, strut], center=true);
}
if (zreps>1) {
back(cross_len/2) {
zrot(-cross_ang) {
down(strut) cube([strut, strut, zstep+strut], anchor=BOTTOM);
}
}
}
for (soff = [0:1:supp_reps-1] ) {
yflip_copy() {
back(soff*supp_step) {
skew(syz=tan(supp_ang)) {
cube([strut, strut, zstep], anchor=BOTTOM);
}
}
}
}
}
}
}
}
}
}
}
}
cube([w,l,h], center=true);
}
children();
}
}
// Module: corrugated_wall()
//
// Description:
// Makes a corrugated wall which relieves contraction stress while still
// providing support strength. Designed with 3D printing in mind.
//
// Usage:
// corrugated_wall(h, l, thick, [strut], [wall]);
//
// Arguments:
// h = height of strut wall.
// l = length of strut wall.
// thick = thickness of strut wall.
// strut = the width of the cross-braces.
// wall = thickness of corrugations.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
//
// Example: Typical Shape
// corrugated_wall(h=50, l=100);
// Example: Wider Strut
// corrugated_wall(h=50, l=100, strut=8);
// Example: Thicker Wall
// corrugated_wall(h=50, l=100, strut=8, wall=3);
module corrugated_wall(h=50, l=100, thick=5, strut=5, wall=2, anchor=CENTER, spin=0, orient=UP)
{
amplitude = (thick - wall) / 2;
period = min(15, thick * 2);
steps = quantup(segs(thick/2),4);
step = period/steps;
il = l - 2*strut + 2*step;
size = [thick, l, h];
attachable(anchor,spin,orient, size=size) {
union() {
linear_extrude(height=h-2*strut+0.1, slices=2, convexity=ceil(2*il/period), center=true) {
polygon(
points=concat(
[for (y=[-il/2:step:il/2]) [amplitude*sin(y/period*360)-wall/2, y] ],
[for (y=[il/2:-step:-il/2]) [amplitude*sin(y/period*360)+wall/2, y] ]
)
);
}
difference() { difference() {
cube([thick, l, h], center=true); zrot(45) square(w/sqrt(2), center=true);
cube([thick+0.5, l-2*strut, h-2*strut], center=true); fwd(w/2) square(w, center=true);
}
}
}
} }
} }
children(); children();

View file

@ -1,6 +1,6 @@
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
// LibFile: wiring.scad // LibFile: wiring.scad
// Rendering for wiring bundles // Rendering for wire bundles
// Includes: // Includes:
// include <BOSL2/std.scad> // include <BOSL2/std.scad>
// include <BOSL2/wiring.scad> // include <BOSL2/wiring.scad>
@ -10,51 +10,42 @@
include <rounding.scad> include <rounding.scad>
// Section: Functions
/// Function: _hex_offset_ring()
/// Usage:
/// _hex_offset_ring(d, lev)
/// Description:
/// Returns a hexagonal ring of points, with a spacing of `d`.
/// If `lev=0`, returns a single point at `[0,0]`. All greater
/// levels return `6 * lev` points.
/// Arguments:
/// d = Base unit diameter to build rings upon.
/// lev = How many rings to produce.
/// Example:
/// _hex_offset_ring(d=1, lev=3); // Returns a hex ring of 18 points.
function _hex_offset_ring(d, lev=0) =
(lev == 0)? [[0,0]] :
subdivide_path(reverse(hexagon(r=lev*d)), refine=lev);
// Function: hex_offset_ring() /// Function: _hex_offsets()
// Description: /// Usage:
// Returns a hexagonal ring of points, with a spacing of `d`. /// _hex_offsets(n, d)
// If `lev=0`, returns a single point at `[0,0]`. All greater /// Description:
// levels return 6 times `lev` points. /// Returns the centerpoints for the optimal hexagonal packing
// Usage: /// of at least `n` circular items, of diameter `d`. Will return
// hex_offset_ring(d, lev) /// enough points to fill out the last ring, even if that is more
// Arguments: /// than `n` points.
// d = Base unit diameter to build rings upon. /// Arguments:
// lev = How many rings to produce. /// n = Number of items to bundle.
// Example: /// d = How far to space each point away from others.
// hex_offset_ring(d=1, lev=3); // Returns a hex ring of 18 points. function _hex_offsets(n, d, lev=0, arr=[]) =
function hex_offset_ring(d, lev=0) =
(lev == 0)? [[0,0]] : [
for (
sideang = [0:60:359.999],
sidenum = [1:1:lev]
) [
lev*d*cos(sideang)+sidenum*d*cos(sideang+120),
lev*d*sin(sideang)+sidenum*d*sin(sideang+120)
]
];
// Function: hex_offsets()
// Description:
// Returns the centerpoints for the optimal hexagonal packing
// of at least `n` circular items, of diameter `d`. Will return
// enough points to fill out the last ring, even if that is more
// than `n` points.
// Usage:
// hex_offsets(n, d)
// Arguments:
// n = Number of items to bundle.
// d = How far to space each point away from others.
function hex_offsets(n, d, lev=0, arr=[]) =
(len(arr) >= n)? arr : (len(arr) >= n)? arr :
hex_offsets( _hex_offsets(
n=n, n=n,
d=d, d=d,
lev=lev+1, lev=lev+1,
arr=concat(arr, hex_offset_ring(d, lev=lev)) arr=concat(arr, _hex_offset_ring(d, lev=lev))
); );
@ -62,23 +53,25 @@ function hex_offsets(n, d, lev=0, arr=[]) =
// Section: Modules // Section: Modules
// Module: wiring() // Module: wire_bundle()
// Usage:
// wire_bundle(path, wires, [wirediam], [rounding], [wirenum=], [corner_steps=]);
// Description: // Description:
// Returns a 3D object representing a bundle of wires that follow a given path, // Returns a 3D object representing a bundle of wires that follow a given path,
// with the corners rounded to a given radius. There are 17 base wire colors. // with the corners rounded to a given radius. There are 17 base wire colors.
// If you have more than 17 wires, colors will get re-used. // If you have more than 17 wires, colors will get re-used.
// Usage:
// wiring(path, wires, [wirediam], [rounding], [wirenum], [bezsteps]);
// Arguments: // Arguments:
// path = The 3D path that the wire bundle should follow. // path = The 3D path that the wire bundle should follow.
// wires = The number of wires in the wiring bundle. // wires = The number of wires in the wire bundle.
// wirediam = The diameter of each wire in the bundle. // wirediam = The diameter of each wire in the bundle.
// rounding = The radius that the path corners will be rounded to. // rounding = The radius that the path corners will be rounded to.
// ---
// wirenum = The first wire's offset into the color table. // wirenum = The first wire's offset into the color table.
// corner_steps = The corner roundings in the path will be converted into this number of segments. // corner_steps = The corner roundings in the path will be converted into this number of segments.
// Example: // Example:
// wiring([[50,0,-50], [50,50,-50], [0,50,-50], [0,0,-50], [0,0,0]], rounding=10, wires=13); // wire_bundle([[50,0,-50], [50,50,-50], [0,50,-50], [0,0,-50], [0,0,0]], rounding=10, wires=13);
module wiring(path, wires, wirediam=2, rounding=10, wirenum=0, corner_steps=12) { module wire_bundle(path, wires, wirediam=2, rounding=10, wirenum=0, corner_steps=15) {
no_children($children);
colors = [ colors = [
[0.2, 0.2, 0.2], [1.0, 0.2, 0.2], [0.0, 0.8, 0.0], [1.0, 1.0, 0.2], [0.2, 0.2, 0.2], [1.0, 0.2, 0.2], [0.0, 0.8, 0.0], [1.0, 1.0, 0.2],
[0.3, 0.3, 1.0], [1.0, 1.0, 1.0], [0.7, 0.5, 0.0], [0.5, 0.5, 0.5], [0.3, 0.3, 1.0], [1.0, 1.0, 1.0], [0.7, 0.5, 0.0], [0.5, 0.5, 0.5],
@ -86,12 +79,11 @@ module wiring(path, wires, wirediam=2, rounding=10, wirenum=0, corner_steps=12)
[1.0, 0.5, 1.0], [0.5, 0.6, 0.0], [1.0, 0.7, 0.0], [0.7, 1.0, 0.5], [1.0, 0.5, 1.0], [0.5, 0.6, 0.0], [1.0, 0.7, 0.0], [0.7, 1.0, 0.5],
[0.6, 0.6, 1.0], [0.6, 0.6, 1.0],
]; ];
offsets = hex_offsets(wires, wirediam); sides = max(segs(wirediam/2), 8);
offsets = _hex_offsets(wires, wirediam);
rounded_path = round_corners(path, radius=rounding, $fn=(corner_steps+1)*4, closed=false); rounded_path = round_corners(path, radius=rounding, $fn=(corner_steps+1)*4, closed=false);
n = max(segs(wirediam), 8);
r = wirediam/2;
for (i = [0:1:wires-1]) { for (i = [0:1:wires-1]) {
extpath = [for (j = [0:1:n-1]) let(a=j*360/n) [r*cos(a)+offsets[i][0], r*sin(a)+offsets[i][1]]]; extpath = move(offsets[i], p=circle(d=wirediam, $fn=sides));
color(colors[(i+wirenum)%len(colors)]) { color(colors[(i+wirenum)%len(colors)]) {
path_sweep(extpath, rounded_path); path_sweep(extpath, rounded_path);
} }