mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
Fixed errors in ruler(). Moved trace_polyline() to debug.scad.
This commit is contained in:
parent
5c83313203
commit
95e97a81ad
3 changed files with 165 additions and 154 deletions
213
debug.scad
213
debug.scad
|
@ -9,6 +9,114 @@
|
|||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
// Section: Debugging Paths and Polygons
|
||||
|
||||
// Module: trace_polyline()
|
||||
// Description:
|
||||
// Renders lines between each point of a polyline path.
|
||||
// Can also optionally show the individual vertex points.
|
||||
// Arguments:
|
||||
// pline = The array of points in the polyline.
|
||||
// closed = If true, draw the segment from the last vertex to the first. Default: false
|
||||
// showpts = If true, draw vertices and control points.
|
||||
// N = Mark the first and every Nth vertex after in a different color and shape.
|
||||
// size = Diameter of the lines drawn.
|
||||
// color = Color to draw the lines (but not vertices) in.
|
||||
// Example(FlatSpin):
|
||||
// polyline = [for (a=[0:30:210]) 10*[cos(a), sin(a), sin(a)]];
|
||||
// trace_polyline(polyline, showpts=true, size=0.5, color="lightgreen");
|
||||
module trace_polyline(pline, closed=false, showpts=false, N=1, size=1, color="yellow") {
|
||||
assert(is_path(pline),"Input pline is not a path");
|
||||
sides = segs(size/2);
|
||||
pline = closed? close_path(pline) : pline;
|
||||
if (showpts) {
|
||||
for (i = [0:1:len(pline)-1]) {
|
||||
translate(pline[i]) {
|
||||
if (i%N == 0) {
|
||||
color("blue") sphere(d=size*2.5, $fn=8);
|
||||
} else {
|
||||
color("red") {
|
||||
cylinder(d=size/2, h=size*3, center=true, $fn=8);
|
||||
xrot(90) cylinder(d=size/2, h=size*3, center=true, $fn=8);
|
||||
yrot(90) cylinder(d=size/2, h=size*3, center=true, $fn=8);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (N!=3) {
|
||||
color(color) path_sweep(circle(d=size,$fn=sides), path3d(pline));
|
||||
} else {
|
||||
for (i = [0:1:len(pline)-2]) {
|
||||
if (N!=3 || (i%N) != 1) {
|
||||
color(color) extrude_from_to(pline[i], pline[i+1]) circle(d=size, $fn=sides);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Module: debug_polygon()
|
||||
// Description: A drop-in replacement for `polygon()` that renders and labels the path points.
|
||||
// Arguments:
|
||||
// points = The array of 2D polygon vertices.
|
||||
// paths = The path connections between the vertices.
|
||||
// convexity = The max number of walls a ray can pass through the given polygon paths.
|
||||
// Example(Big2D):
|
||||
// debug_polygon(
|
||||
// points=concat(
|
||||
// regular_ngon(or=10, n=8),
|
||||
// regular_ngon(or=8, n=8)
|
||||
// ),
|
||||
// paths=[
|
||||
// [for (i=[0:7]) i],
|
||||
// [for (i=[15:-1:8]) i]
|
||||
// ]
|
||||
// );
|
||||
module debug_polygon(points, paths=undef, convexity=2, size=1)
|
||||
{
|
||||
pths = is_undef(paths)? [for (i=[0:1:len(points)-1]) i] : is_num(paths[0])? [paths] : paths;
|
||||
echo(points=points);
|
||||
echo(paths=paths);
|
||||
linear_extrude(height=0.01, convexity=convexity, center=true) {
|
||||
polygon(points=points, paths=paths, convexity=convexity);
|
||||
}
|
||||
for (i = [0:1:len(points)-1]) {
|
||||
color("red") {
|
||||
up(0.2) {
|
||||
translate(points[i]) {
|
||||
linear_extrude(height=0.1, convexity=10, center=true) {
|
||||
text(text=str(i), size=size, halign="center", valign="center");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (j = [0:1:len(paths)-1]) {
|
||||
path = paths[j];
|
||||
translate(points[path[0]]) {
|
||||
color("cyan") up(0.1) cylinder(d=size*1.5, h=0.01, center=false, $fn=12);
|
||||
}
|
||||
translate(points[path[len(path)-1]]) {
|
||||
color("pink") up(0.11) cylinder(d=size*1.5, h=0.01, center=false, $fn=4);
|
||||
}
|
||||
for (i = [0:1:len(path)-1]) {
|
||||
midpt = (points[path[i]] + points[path[(i+1)%len(path)]])/2;
|
||||
color("blue") {
|
||||
up(0.2) {
|
||||
translate(midpt) {
|
||||
linear_extrude(height=0.1, convexity=10, center=true) {
|
||||
text(text=str(chr(65+j),i), size=size/2, halign="center", valign="center");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Section: Debugging Polyhedrons
|
||||
|
||||
|
||||
|
@ -277,56 +385,63 @@ module frame_ref(s=15) {
|
|||
// Example(2D,Big): Metric vs Imperial
|
||||
// ruler(12,width=50,inch=true,labels=true,maxscale=0);
|
||||
// fwd(50)ruler(300,width=50,labels=true);
|
||||
module ruler(length=100, width=undef, thickness=1, depth=3, labels=false, pipscale=1/3, maxscale=undef, colors=["black","white"], alpha=1.0, unit=1, inch=false, anchor=ALLNEG, spin=0, orient=UP)
|
||||
module ruler(length=100, width=undef, thickness=1, depth=3, labels=false, pipscale=1/3, maxscale=undef, colors=["black","white"], alpha=1.0, unit=1, inch=false, anchor=LEFT+BACK+TOP, spin=0, orient=UP)
|
||||
{
|
||||
inchfactor = 25.4;
|
||||
assert(depth<=5, "Cannot render scales smaller than depth=5");
|
||||
assert(len(colors)==2, "colors must contain a list of exactly two colors.");
|
||||
length = inch ? inchfactor * length : length;
|
||||
unit = inch ? inchfactor*unit : unit;
|
||||
maxscale = is_def(maxscale)? maxscale : floor(log(length/unit-EPSILON));
|
||||
scales = unit * [for(logsize = [maxscale:-1:maxscale-depth+1]) pow(10,logsize)];
|
||||
echo(scales=scales);
|
||||
widthfactor = (1-pipscale) / (1-pow(pipscale,depth));
|
||||
width = default(width, scales[0]);
|
||||
widths = width * widthfactor * [for(logsize = [0:-1:-depth+1]) pow(pipscale,-logsize)];
|
||||
offsets = concat([0],cumsum(widths));
|
||||
attachable(anchor,spin,orient, size=[length,width,thickness], offset=offset) {
|
||||
translate([-length/2, -width/2, 0])
|
||||
for(i=[0:1:len(scales)-1]){
|
||||
count = ceil(length/scales[i]);
|
||||
fontsize = 0.5*min(widths[i], scales[i]/ceil(log(count*scales[i]/unit)));
|
||||
back(offsets[i])
|
||||
xspread(scales[i], n=count, sp=[0,0,0])
|
||||
union(){
|
||||
actlen = ($idx<count-1) || approx(length%scales[i],0) ? scales[i] : length % scales[i];
|
||||
color(colors[$idx%2], alpha=alpha) {
|
||||
w = i>0 ? quantup(widths[i],1/1024) : widths[i]; // What is the i>0 test supposed to do here?
|
||||
cube([quantup(actlen,1/1024),quantup(w,1/1024),thickness], anchor=FRONT+LEFT);
|
||||
}
|
||||
mark = i == 0 && $idx % 10 == 0 && $idx != 0 ? 0 :
|
||||
i == 0 && $idx % 10 == 9 && $idx != count-1 ? 1 :
|
||||
$idx % 10 == 4 ? 1 :
|
||||
$idx % 10 == 5 ? 0 :
|
||||
-1;
|
||||
flip = 1-mark*2;
|
||||
if (mark >= 0){
|
||||
marklength = min(widths[i]/2, scales[i]*2);
|
||||
markwidth = marklength*0.4;
|
||||
translate([mark*scales[i],widths[i]])
|
||||
color(colors[1-$idx%2], alpha=alpha)
|
||||
linear_extrude(height=thickness+scales[i]/100, convexity=2, center=true)
|
||||
polygon(scale([flip*markwidth, marklength],p=[[0,0], [1, -1], [0,-0.9]]));
|
||||
}
|
||||
if (labels && scales[i]/unit+EPSILON >= 1)
|
||||
color(colors[($idx+1)%2], alpha=alpha)
|
||||
linear_extrude(height=thickness+scales[i]/100, convexity=2, center=true)
|
||||
back(scales[i]*.02)
|
||||
text(text=str( $idx * scales[i] / unit), size=fontsize, halign="left", valign="baseline");
|
||||
}
|
||||
}
|
||||
children();
|
||||
}
|
||||
inchfactor = 25.4;
|
||||
assert(depth<=5, "Cannot render scales smaller than depth=5");
|
||||
assert(len(colors)==2, "colors must contain a list of exactly two colors.");
|
||||
length = inch ? inchfactor * length : length;
|
||||
unit = inch ? inchfactor*unit : unit;
|
||||
maxscale = is_def(maxscale)? maxscale : floor(log(length/unit-EPSILON));
|
||||
scales = unit * [for(logsize = [maxscale:-1:maxscale-depth+1]) pow(10,logsize)];
|
||||
widthfactor = (1-pipscale) / (1-pow(pipscale,depth));
|
||||
width = default(width, scales[0]);
|
||||
widths = width * widthfactor * [for(logsize = [0:-1:-depth+1]) pow(pipscale,-logsize)];
|
||||
offsets = concat([0],cumsum(widths));
|
||||
attachable(anchor,spin,orient, size=[length,width,thickness]) {
|
||||
translate([-length/2, -width/2, 0])
|
||||
for(i=[0:1:len(scales)-1]) {
|
||||
count = ceil(length/scales[i]);
|
||||
fontsize = 0.5*min(widths[i], scales[i]/ceil(log(count*scales[i]/unit)));
|
||||
back(offsets[i]) {
|
||||
xspread(scales[i], n=count, sp=[0,0,0]) union() {
|
||||
actlen = ($idx<count-1) || approx(length%scales[i],0) ? scales[i] : length % scales[i];
|
||||
color(colors[$idx%2], alpha=alpha) {
|
||||
w = i>0 ? quantup(widths[i],1/1024) : widths[i]; // What is the i>0 test supposed to do here?
|
||||
cube([quantup(actlen,1/1024),quantup(w,1/1024),thickness], anchor=FRONT+LEFT);
|
||||
}
|
||||
mark =
|
||||
i == 0 && $idx % 10 == 0 && $idx != 0 ? 0 :
|
||||
i == 0 && $idx % 10 == 9 && $idx != count-1 ? 1 :
|
||||
$idx % 10 == 4 ? 1 :
|
||||
$idx % 10 == 5 ? 0 : -1;
|
||||
flip = 1-mark*2;
|
||||
if (mark >= 0) {
|
||||
marklength = min(widths[i]/2, scales[i]*2);
|
||||
markwidth = marklength*0.4;
|
||||
translate([mark*scales[i], widths[i], 0]) {
|
||||
color(colors[1-$idx%2], alpha=alpha) {
|
||||
linear_extrude(height=thickness+scales[i]/100, convexity=2, center=true) {
|
||||
polygon(scale([flip*markwidth, marklength],p=[[0,0], [1, -1], [0,-0.9]]));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (labels && scales[i]/unit+EPSILON >= 1) {
|
||||
color(colors[($idx+1)%2], alpha=alpha) {
|
||||
linear_extrude(height=thickness+scales[i]/100, convexity=2, center=true) {
|
||||
back(scales[i]*.02) {
|
||||
text(text=str( $idx * scales[i] / unit), size=fontsize, halign="left", valign="baseline");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
children();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
|
104
paths.scad
104
paths.scad
|
@ -847,110 +847,6 @@ module path_extrude(path, convexity=10, clipsize=100) {
|
|||
}
|
||||
|
||||
|
||||
// Module: trace_polyline()
|
||||
// Description:
|
||||
// Renders lines between each point of a polyline path.
|
||||
// Can also optionally show the individual vertex points.
|
||||
// Arguments:
|
||||
// pline = The array of points in the polyline.
|
||||
// closed = If true, draw the segment from the last vertex to the first. Default: false
|
||||
// showpts = If true, draw vertices and control points.
|
||||
// N = Mark the first and every Nth vertex after in a different color and shape.
|
||||
// size = Diameter of the lines drawn.
|
||||
// color = Color to draw the lines (but not vertices) in.
|
||||
// Example(FlatSpin):
|
||||
// polyline = [for (a=[0:30:210]) 10*[cos(a), sin(a), sin(a)]];
|
||||
// trace_polyline(polyline, showpts=true, size=0.5, color="lightgreen");
|
||||
module trace_polyline(pline, closed=false, showpts=false, N=1, size=1, color="yellow") {
|
||||
assert(is_path(pline),"Input pline is not a path");
|
||||
sides = segs(size/2);
|
||||
pline = closed? close_path(pline) : pline;
|
||||
if (showpts) {
|
||||
for (i = [0:1:len(pline)-1]) {
|
||||
translate(pline[i]) {
|
||||
if (i%N == 0) {
|
||||
color("blue") sphere(d=size*2.5, $fn=8);
|
||||
} else {
|
||||
color("red") {
|
||||
cylinder(d=size/2, h=size*3, center=true, $fn=8);
|
||||
xrot(90) cylinder(d=size/2, h=size*3, center=true, $fn=8);
|
||||
yrot(90) cylinder(d=size/2, h=size*3, center=true, $fn=8);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (N!=3) {
|
||||
color(color) path_sweep(circle(d=size,$fn=sides), path3d(pline));
|
||||
} else {
|
||||
for (i = [0:1:len(pline)-2]) {
|
||||
if (N!=3 || (i%N) != 1) {
|
||||
color(color) extrude_from_to(pline[i], pline[i+1]) circle(d=size, $fn=sides);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Module: debug_polygon()
|
||||
// Description: A drop-in replacement for `polygon()` that renders and labels the path points.
|
||||
// Arguments:
|
||||
// points = The array of 2D polygon vertices.
|
||||
// paths = The path connections between the vertices.
|
||||
// convexity = The max number of walls a ray can pass through the given polygon paths.
|
||||
// Example(Big2D):
|
||||
// debug_polygon(
|
||||
// points=concat(
|
||||
// regular_ngon(or=10, n=8),
|
||||
// regular_ngon(or=8, n=8)
|
||||
// ),
|
||||
// paths=[
|
||||
// [for (i=[0:7]) i],
|
||||
// [for (i=[15:-1:8]) i]
|
||||
// ]
|
||||
// );
|
||||
module debug_polygon(points, paths=undef, convexity=2, size=1)
|
||||
{
|
||||
pths = is_undef(paths)? [for (i=[0:1:len(points)-1]) i] : is_num(paths[0])? [paths] : paths;
|
||||
echo(points=points);
|
||||
echo(paths=paths);
|
||||
linear_extrude(height=0.01, convexity=convexity, center=true) {
|
||||
polygon(points=points, paths=paths, convexity=convexity);
|
||||
}
|
||||
for (i = [0:1:len(points)-1]) {
|
||||
color("red") {
|
||||
up(0.2) {
|
||||
translate(points[i]) {
|
||||
linear_extrude(height=0.1, convexity=10, center=true) {
|
||||
text(text=str(i), size=size, halign="center", valign="center");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (j = [0:1:len(paths)-1]) {
|
||||
path = paths[j];
|
||||
translate(points[path[0]]) {
|
||||
color("cyan") up(0.1) cylinder(d=size*1.5, h=0.01, center=false, $fn=12);
|
||||
}
|
||||
translate(points[path[len(path)-1]]) {
|
||||
color("pink") up(0.11) cylinder(d=size*1.5, h=0.01, center=false, $fn=4);
|
||||
}
|
||||
for (i = [0:1:len(path)-1]) {
|
||||
midpt = (points[path[i]] + points[path[(i+1)%len(path)]])/2;
|
||||
color("blue") {
|
||||
up(0.2) {
|
||||
translate(midpt) {
|
||||
linear_extrude(height=0.1, convexity=10, center=true) {
|
||||
text(text=str(chr(65+j),i), size=size/2, halign="center", valign="center");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Module: path_spread()
|
||||
//
|
||||
// Description:
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
BOSL_VERSION = [2,0,170];
|
||||
BOSL_VERSION = [2,0,171];
|
||||
|
||||
|
||||
// Section: BOSL Library Version Functions
|
||||
|
|
Loading…
Reference in a new issue