This commit is contained in:
RonaldoCMP 2020-08-20 22:41:00 +01:00
commit 9611bc54ec
2 changed files with 5 additions and 164 deletions

View file

@ -20,16 +20,6 @@
// point = The point to test. // point = The point to test.
// edge = Array of two points forming the line segment to test against. // edge = Array of two points forming the line segment to test against.
// eps = Acceptable variance. Default: `EPSILON` (1e-9) // eps = Acceptable variance. Default: `EPSILON` (1e-9)
function point_on_segment2d(point, edge, eps=EPSILON) =
assert( is_vector(point,2), "Invalid point." )
assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." )
assert( _valid_line(edge,eps=eps), "Invalid segment." )
approx(point,edge[0],eps=eps)
|| approx(point,edge[1],eps=eps) // The point is an endpoint
|| sign(edge[0].x-point.x)==sign(point.x-edge[1].x) // point is in between the
|| ( sign(edge[0].y-point.y)==sign(point.y-edge[1].y) // edge endpoints
&& approx(point_left_of_line2d(point, edge),0,eps=eps) ); // and on the line defined by edge
function point_on_segment2d(point, edge, eps=EPSILON) = function point_on_segment2d(point, edge, eps=EPSILON) =
assert( is_vector(point,2), "Invalid point." ) assert( is_vector(point,2), "Invalid point." )
assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." )
@ -98,10 +88,6 @@ function collinear(a, b, c, eps=EPSILON) =
: noncollinear_triple(points,error=false,eps=eps)==[]; : noncollinear_triple(points,error=false,eps=eps)==[];
//*** valid for any dimension
// Function: distance_from_line() // Function: distance_from_line()
// Usage: // Usage:
// distance_from_line(line, pt); // distance_from_line(line, pt);
@ -330,17 +316,6 @@ function segment_intersection(s1,s2,eps=EPSILON) =
// stroke(line, endcaps="arrow2"); // stroke(line, endcaps="arrow2");
// color("blue") translate(pt) sphere(r=1,$fn=12); // color("blue") translate(pt) sphere(r=1,$fn=12);
// color("red") translate(p2) sphere(r=1,$fn=12); // color("red") translate(p2) sphere(r=1,$fn=12);
function line_closest_point(line,pt) =
assert(is_path(line)&&len(line)==2)
assert(same_shape(pt,line[0]))
assert(!approx(line[0],line[1]))
let(
seglen = norm(line[1]-line[0]),
segvec = (line[1]-line[0])/seglen,
projection = (pt-line[0]) * segvec
)
line[0] + projection*segvec;
function line_closest_point(line,pt) = function line_closest_point(line,pt) =
assert(_valid_line(line), "Invalid line." ) assert(_valid_line(line), "Invalid line." )
assert( is_vector(pt,len(line[0])), "Invalid point or incompatible dimensions." ) assert( is_vector(pt,len(line[0])), "Invalid point or incompatible dimensions." )
@ -1042,23 +1017,6 @@ function closest_point_on_plane(plane, point) =
// Returns [POINT, U] if line intersects plane at one point. // Returns [POINT, U] if line intersects plane at one point.
// Returns [LINE, undef] if the line is on the plane. // Returns [LINE, undef] if the line is on the plane.
// Returns undef if line is parallel to, but not on the given plane. // Returns undef if line is parallel to, but not on the given plane.
function _general_plane_line_intersection(plane, line, eps=EPSILON) =
let(
p0 = line[0],
p1 = line[1],
n = plane_normal(plane),
u = p1 - p0,
d = n * u
) abs(d)<eps? (
points_on_plane(p0,plane,eps)? [line,undef] : // Line on plane
undef // Line parallel to plane
) : let(
v0 = closest_point_on_plane(plane, [0,0,0]),
w = p0 - v0,
s1 = (-n * w) / d,
pt = s1 * u + p0
) [pt, s1];
function _general_plane_line_intersection(plane, line, eps=EPSILON) = function _general_plane_line_intersection(plane, line, eps=EPSILON) =
let( a = plane*[each line[0],-1], let( a = plane*[each line[0],-1],
b = plane*[each(line[1]-line[0]),-1] ) b = plane*[each(line[1]-line[0]),-1] )
@ -1345,40 +1303,6 @@ function find_circle_2tangents(pt1, pt2, pt3, r, d, tangents=false) =
// translate(circ[0]) color("green") stroke(circle(r=circ[1]),closed=true,$fn=72); // translate(circ[0]) color("green") stroke(circle(r=circ[1]),closed=true,$fn=72);
// translate(circ[0]) color("red") circle(d=3, $fn=12); // translate(circ[0]) color("red") circle(d=3, $fn=12);
// move_copies(pts) color("blue") circle(d=3, $fn=12); // move_copies(pts) color("blue") circle(d=3, $fn=12);
function find_circle_3points(pt1, pt2, pt3) =
(is_undef(pt2) && is_undef(pt3) && is_list(pt1))
? find_circle_3points(pt1[0], pt1[1], pt1[2])
: assert( is_vector(pt1) && is_vector(pt2) && is_vector(pt3)
&& max(len(pt1),len(pt2),len(pt3))<=3 && min(len(pt1),len(pt2),len(pt3))>=2,
"Invalid point(s)." )
collinear(pt1,pt2,pt3)? [undef,undef,undef] :
let(
v1 = pt1-pt2,
v2 = pt3-pt2,
n = vector_axis(v1,v2),
n2 = n.z<0? -n : n
) len(pt1)+len(pt2)+len(pt3)>6? (
let(
a = project_plane(pt1, pt1, pt2, pt3),
b = project_plane(pt2, pt1, pt2, pt3),
c = project_plane(pt3, pt1, pt2, pt3),
res = find_circle_3points(a, b, c)
) res[0]==undef? [undef,undef,undef] : let(
cp = lift_plane(res[0], pt1, pt2, pt3),
r = norm(pt2-cp)
) [cp, r, n2]
) : let(
mp1 = pt2 + v1/2,
mp2 = pt2 + v2/2,
mpv1 = rot(90, v=n, p=v1),
mpv2 = rot(90, v=n, p=v2),
l1 = [mp1, mp1+mpv1],
l2 = [mp2, mp2+mpv2],
isect = line_intersection(l1,l2)
) is_undef(isect)? [undef,undef,undef] : let(
r = norm(pt2-isect)
) [isect, r, n2];
function find_circle_3points(pt1, pt2, pt3) = function find_circle_3points(pt1, pt2, pt3) =
(is_undef(pt2) && is_undef(pt3) && is_list(pt1)) (is_undef(pt2) && is_undef(pt3) && is_list(pt1))
? find_circle_3points(pt1[0], pt1[1], pt1[2]) ? find_circle_3points(pt1[0], pt1[1], pt1[2])
@ -1405,9 +1329,6 @@ function find_circle_3points(pt1, pt2, pt3) =
[ cp, r, n ]; [ cp, r, n ];
// Function: circle_point_tangents() // Function: circle_point_tangents()
// Usage: // Usage:
// tangents = circle_point_tangents(r|d, cp, pt); // tangents = circle_point_tangents(r|d, cp, pt);
@ -1607,19 +1528,6 @@ function furthest_point(pt, points) =
// Arguments: // Arguments:
// poly = polygon to compute the area of. // poly = polygon to compute the area of.
// signed = if true, a signed area is returned (default: false) // signed = if true, a signed area is returned (default: false)
function polygon_area(poly) =
assert(is_path(poly), "Invalid polygon." )
len(poly)<3? 0 :
len(poly[0])==2? 0.5*sum([for(i=[0:1:len(poly)-1]) det2(select(poly,i,i+1))]) :
let(
plane = plane_from_points(poly)
) plane==undef? undef :
let(
n = unit(plane_normal(plane)),
total = sum([for (i=[0:1:len(poly)-1]) cross(poly[i], select(poly,i+1))]),
res = abs(total * n) / 2
) res;
function polygon_area(poly, signed=false) = function polygon_area(poly, signed=false) =
assert(is_path(poly), "Invalid polygon." ) assert(is_path(poly), "Invalid polygon." )
len(poly)<3 ? 0 : len(poly)<3 ? 0 :
@ -1644,15 +1552,6 @@ function polygon_area(poly, signed=false) =
// Example: // Example:
// spiral = [for (i=[0:36]) let(a=-i*10) (10+i)*[cos(a),sin(a)]]; // spiral = [for (i=[0:36]) let(a=-i*10) (10+i)*[cos(a),sin(a)]];
// is_convex_polygon(spiral); // Returns: false // is_convex_polygon(spiral); // Returns: false
function is_convex_polygon(poly) =
assert(is_path(poly,dim=2), "The input should be a 2D polygon." )
let(
l = len(poly),
c = [for (i=idx(poly)) cross(poly[(i+1)%l]-poly[i],poly[(i+2)%l]-poly[(i+1)%l])]
)
len([for (x=c) if(x>0) 1])==0 ||
len([for (x=c) if(x<0) 1])==0;
function is_convex_polygon(poly) = function is_convex_polygon(poly) =
assert(is_path(poly,dim=2), "The input should be a 2D polygon." ) assert(is_path(poly,dim=2), "The input should be a 2D polygon." )
let( l = len(poly) ) let( l = len(poly) )
@ -1726,33 +1625,6 @@ function polygon_shift_to_closest_point(path, pt) =
// move_copies(concat(circ,pent)) circle(r=.1,$fn=32); // move_copies(concat(circ,pent)) circle(r=.1,$fn=32);
// color("red") move_copies([pent[0],circ[0]]) circle(r=.1,$fn=32); // color("red") move_copies([pent[0],circ[0]]) circle(r=.1,$fn=32);
// color("blue") translate(reindexed[0])circle(r=.1,$fn=32); // color("blue") translate(reindexed[0])circle(r=.1,$fn=32);
function reindex_polygon(reference, poly, return_error=false) =
assert(is_path(reference) && is_path(poly,dim=len(reference[0])),
"Invalid polygon(s) or incompatible dimensions. " )
assert(len(reference)==len(poly), "The polygons must have the same length.")
let(
dim = len(reference[0]),
N = len(reference),
fixpoly = dim != 2? poly :
polygon_is_clockwise(reference)? clockwise_polygon(poly) :
ccw_polygon(poly),
dist = [
// Matrix of all pairwise distances
for (p1=reference) [
for (p2=fixpoly) norm(p1-p2)
]
],
// Compute the sum of all distance pairs for a each shift
sums = [
for(shift=[0:1:N-1]) sum([
for(i=[0:1:N-1]) dist[i][(i+shift)%N]
])
],
optimal_poly = polygon_shift(fixpoly,min_index(sums))
)
return_error? [optimal_poly, min(sums)] :
optimal_poly;
function reindex_polygon(reference, poly, return_error=false) = function reindex_polygon(reference, poly, return_error=false) =
assert(is_path(reference) && is_path(poly,dim=len(reference[0])), assert(is_path(reference) && is_path(poly,dim=len(reference[0])),
"Invalid polygon(s) or incompatible dimensions. " ) "Invalid polygon(s) or incompatible dimensions. " )
@ -1774,7 +1646,6 @@ function reindex_polygon(reference, poly, return_error=false) =
optimal_poly; optimal_poly;
// Function: align_polygon() // Function: align_polygon()
// Usage: // Usage:
// newpoly = align_polygon(reference, poly, angles, [cp]); // newpoly = align_polygon(reference, poly, angles, [cp]);
@ -1819,26 +1690,6 @@ function align_polygon(reference, poly, angles, cp) =
// Given a simple 2D polygon, returns the 2D coordinates of the polygon's centroid. // Given a simple 2D polygon, returns the 2D coordinates of the polygon's centroid.
// Given a simple 3D planar polygon, returns the 3D coordinates of the polygon's centroid. // Given a simple 3D planar polygon, returns the 3D coordinates of the polygon's centroid.
// If the polygon is self-intersecting, the results are undefined. // If the polygon is self-intersecting, the results are undefined.
function centroid(poly) =
assert( is_path(poly), "The input must be a 2D or 3D polygon." )
len(poly[0])==2
? sum([
for(i=[0:len(poly)-1])
let(segment=select(poly,i,i+1))
det2(segment)*sum(segment)
]) / 6 / polygon_area(poly)
: let( plane = plane_from_points(poly, fast=true) )
assert( !is_undef(plane), "The polygon must be planar." )
let(
n = plane_normal(plane),
p1 = vector_angle(n,UP)>15? vector_axis(n,UP) : vector_axis(n,RIGHT),
p2 = vector_axis(n,p1),
cp = mean(poly),
proj = project_plane(poly,cp,cp+p1,cp+p2),
cxy = centroid(proj)
)
lift_plane(cxy,cp,cp+p1,cp+p2);
function centroid(poly) = function centroid(poly) =
assert( is_path(poly,dim=[2,3]), "The input must be a 2D or 3D polygon." ) assert( is_path(poly,dim=[2,3]), "The input must be a 2D or 3D polygon." )
len(poly[0])==2 len(poly[0])==2
@ -1915,21 +1766,11 @@ function point_in_polygon(point, path, eps=EPSILON) =
// Results for complex (self-intersecting) polygon are indeterminate. // Results for complex (self-intersecting) polygon are indeterminate.
// Arguments: // Arguments:
// path = The list of 2D path points for the perimeter of the polygon. // path = The list of 2D path points for the perimeter of the polygon.
function polygon_is_clockwise(path) =
assert(is_path(path,dim=2), "Input should be a 2d polygon")
let(
minx = min(subindex(path,0)),
lowind = search(minx, path, 0, 0),
lowpts = select(path, lowind),
miny = min(subindex(lowpts, 1)),
extreme_sub = search(miny, lowpts, 1, 1)[0],
extreme = select(lowind,extreme_sub)
) det2([select(path,extreme+1)-path[extreme], select(path, extreme-1)-path[extreme]])<0;
function polygon_is_clockwise(path) = function polygon_is_clockwise(path) =
assert(is_path(path,dim=2), "Input should be a 2d path") assert(is_path(path,dim=2), "Input should be a 2d path")
polygon_area(path, signed=true)<0; polygon_area(path, signed=true)<0;
// Function: clockwise_polygon() // Function: clockwise_polygon()
// Usage: // Usage:
// clockwise_polygon(path); // clockwise_polygon(path);

View file

@ -1555,8 +1555,8 @@ function rounded_prism(bottom, top, joint_bot, joint_top, joint_sides, k_bot, k_
k_sides_vec = is_num(k_sides) ? repeat(k_sides, N) : k_sides, k_sides_vec = is_num(k_sides) ? repeat(k_sides, N) : k_sides,
kbad = [for(i=[0:N-1]) if (k_sides_vec[i]<0 || k_sides_vec[i]>1) i], kbad = [for(i=[0:N-1]) if (k_sides_vec[i]<0 || k_sides_vec[i]>1) i],
joint_sides_vec = jssingleok ? repeat(joint_sides,N) : joint_sides, joint_sides_vec = jssingleok ? repeat(joint_sides,N) : joint_sides,
top_collinear = [for(i=[0:N-1]) if (points_are_collinear(select(top,i-1,i+1))) i], top_collinear = [for(i=[0:N-1]) if (collinear(select(top,i-1,i+1))) i],
bot_collinear = [for(i=[0:N-1]) if (points_are_collinear(select(bottom,i-1,i+1))) i] bot_collinear = [for(i=[0:N-1]) if (collinear(select(bottom,i-1,i+1))) i]
) )
assert(non_coplanar==[], str("Side faces are non-coplanar at edges: ",non_coplanar)) assert(non_coplanar==[], str("Side faces are non-coplanar at edges: ",non_coplanar))
assert(top_collinear==[], str("Top has collinear or duplicated points at indices: ",top_collinear)) assert(top_collinear==[], str("Top has collinear or duplicated points at indices: ",top_collinear))
@ -1622,14 +1622,14 @@ function rounded_prism(bottom, top, joint_bot, joint_top, joint_sides, k_bot, k_
vline = concat(select(subindex(top_patch[i],j),2,4), vline = concat(select(subindex(top_patch[i],j),2,4),
select(subindex(bot_patch[i],j),2,4)) select(subindex(bot_patch[i],j),2,4))
) )
if (!points_are_collinear(vline)) [i,j]], if (!collinear(vline)) [i,j]],
//verify horiz edges //verify horiz edges
verify_horiz=[for(i=[0:N-1], j=[0:4]) verify_horiz=[for(i=[0:N-1], j=[0:4])
let( let(
hline_top = concat(select(top_patch[i][j],2,4), select(select(top_patch, i+1)[j],0,2)), hline_top = concat(select(top_patch[i][j],2,4), select(select(top_patch, i+1)[j],0,2)),
hline_bot = concat(select(bot_patch[i][j],2,4), select(select(bot_patch, i+1)[j],0,2)) hline_bot = concat(select(bot_patch[i][j],2,4), select(select(bot_patch, i+1)[j],0,2))
) )
if (!points_are_collinear(hline_top) || !points_are_collinear(hline_bot)) [i,j]] if (!collinear(hline_top) || !collinear(hline_bot)) [i,j]]
) )
assert(debug || top_intersections==[], assert(debug || top_intersections==[],
"Roundovers interfere with each other on top face: either input is self intersecting or top joint length is too large") "Roundovers interfere with each other on top face: either input is self intersecting or top joint length is too large")