Merge pull request #430 from revarbat/revarbat_dev

skin.scad docs fixes.
This commit is contained in:
Revar Desmera 2021-02-20 22:50:49 -08:00 committed by GitHub
commit 962c3e6bd6
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -784,14 +784,14 @@ function _find_one_tangent(curve, edge, curve_offset=[0,0,0], closed=true) =
// sq = regular_ngon(4,side=2); // sq = regular_ngon(4,side=2);
// hex = apply(rot(60),hexagon(side=2)); // hex = apply(rot(60),hexagon(side=2));
// skin(associate_vertices([sq,hex],[[0,0]]), slices=10, refine=10, sampling="segment", z=[0,4]); // skin(associate_vertices([sq,hex],[[0,0]]), slices=10, refine=10, sampling="segment", z=[0,4]);
// Example: This example shows several polygons, with only a single vertex split at each step: // Example(3D): This example shows several polygons, with only a single vertex split at each step:
// sq = regular_ngon(4,side=2); // sq = regular_ngon(4,side=2);
// pent = pentagon(side=2); // pent = pentagon(side=2);
// hex = hexagon(side=2); // hex = hexagon(side=2);
// sep = regular_ngon(7,side=2); // sep = regular_ngon(7,side=2);
// profiles = associate_vertices([sq,pent,hex,sep], [1,3,4]); // profiles = associate_vertices([sq,pent,hex,sep], [1,3,4]);
// skin(profiles ,slices=10, refine=10, method="distance", z=[0,2,4,6]); // skin(profiles ,slices=10, refine=10, method="distance", z=[0,2,4,6]);
// Example: The polygons cannot shrink, so if you want to have decreasing polygons you'll need to concatenate multiple results. Note that it is perfectly ok to duplicate a profile as shown here, where the pentagon is duplicated: // Example(3D): The polygons cannot shrink, so if you want to have decreasing polygons you'll need to concatenate multiple results. Note that it is perfectly ok to duplicate a profile as shown here, where the pentagon is duplicated:
// sq = regular_ngon(4,side=2); // sq = regular_ngon(4,side=2);
// pent = pentagon(side=2); // pent = pentagon(side=2);
// grow = associate_vertices([sq,pent], [1]); // grow = associate_vertices([sq,pent], [1]);
@ -1154,10 +1154,10 @@ module sweep(shape, transforms, closed=false, caps, convexity=10,
// [ a * cos (3 * t) / (1 - b* sin (2 *t)), // [ a * cos (3 * t) / (1 - b* sin (2 *t)),
// a * sin( 3 * t) / (1 - b* sin (2 *t)), // a * sin( 3 * t) / (1 - b* sin (2 *t)),
// 1.8 * b * cos (2 * t) /(1 - b* sin (2 *t))]; // 1.8 * b * cos (2 * t) /(1 - b* sin (2 *t))];
// a = 0.8; b = sqrt (1 - a * a); // a = 0.8; b = sqrt (1 - a * a);
// ksteps = 400; // ksteps = 400;
// knot_path = [for (i=[0:ksteps-1]) 50 * knot(a,b,(i/ksteps)*360)]; // knot_path = [for (i=[0:ksteps-1]) 50 * knot(a,b,(i/ksteps)*360)];
// path_sweep(subdivide_path(pentagon(r=12),30), knot_path, closed=true, twist=-360*8, symmetry=5, method="natural", twist_by_length=false); // path_sweep(subdivide_path(pentagon(r=12),30), knot_path, closed=true, twist=-360*8, symmetry=5, method="natural", twist_by_length=false);
// Example: This torus knot example comes from list-comprehension-demos. The knot lies on the surface of a torus. When we use the "natural" method the swept figure is angled compared to the surface of the torus because the curve doesn't follow geodesics of the torus. // Example: This torus knot example comes from list-comprehension-demos. The knot lies on the surface of a torus. When we use the "natural" method the swept figure is angled compared to the surface of the torus because the curve doesn't follow geodesics of the torus.
// function knot(phi,R,r,p,q) = // function knot(phi,R,r,p,q) =
// [ (r * cos(q * phi) + R) * cos(p * phi), // [ (r * cos(q * phi) + R) * cos(p * phi),