mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2024-12-28 15:59:45 +00:00
Added convex_hull()
This commit is contained in:
parent
fde93d9991
commit
96739c3ea0
5 changed files with 556 additions and 25 deletions
200
convex_hull.scad
Normal file
200
convex_hull.scad
Normal file
|
@ -0,0 +1,200 @@
|
|||
//////////////////////////////////////////////////////////////////////
|
||||
// LibFile: convex_hull.scad
|
||||
// Functions to create 2D and 3D convex hulls.
|
||||
// To use, add the following line to the beginning of your file:
|
||||
// ```
|
||||
// include <BOSL/convex_hull.scad>
|
||||
// ```
|
||||
// Derived from Linde's Hull:
|
||||
// - https://github.com/openscad/scad-utils
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
include <BOSL/math.scad>
|
||||
|
||||
|
||||
|
||||
// Section: Generalized Hull
|
||||
|
||||
// Function: convex_hull()
|
||||
// Usage:
|
||||
// convex_hull(points)
|
||||
// Description:
|
||||
// When given a list of 3D points, returns a list of faces for
|
||||
// the minimal convex hull polyhedron of those points. Each face
|
||||
// is a list of indexes into `points`.
|
||||
// When given a list of 2D points, or 3D points that are all
|
||||
// coplanar, returns a list of indices into `points` for the path
|
||||
// that forms the minimal convex hull polygon of those points.
|
||||
// Arguments:
|
||||
// points = The list of points to find the minimal convex hull of.
|
||||
function convex_hull(points) =
|
||||
!(len(points) > 0) ? [] :
|
||||
len(points[0]) == 2 ? convex_hull2d(points) :
|
||||
len(points[0]) == 3 ? convex_hull3d(points) : [];
|
||||
|
||||
|
||||
|
||||
// Section: 2D Hull
|
||||
|
||||
// Function: convex_hull2d()
|
||||
// Usage:
|
||||
// convex_hull2d(points)
|
||||
// Description:
|
||||
// Takes a list of arbitrary 2D points, and finds the minimal convex
|
||||
// hull polygon to enclose them. Returns a path as a list of indices
|
||||
// into `points`.
|
||||
function convex_hull2d(points) =
|
||||
(len(points) < 3)? [] : let(
|
||||
a=0, b=1,
|
||||
c = _find_first_noncollinear([a,b], points, 2)
|
||||
) (c == len(points))? _convex_hull_collinear(points) : let(
|
||||
remaining = [ for (i = [2:len(points)-1]) if (i != c) i ],
|
||||
ccw = triangle_area2d(points[a], points[b], points[c]) > 0,
|
||||
polygon = ccw? [a,b,c] : [a,c,b]
|
||||
) _convex_hull_iterative_2d(points, polygon, remaining);
|
||||
|
||||
|
||||
// Adds the remaining points one by one to the convex hull
|
||||
function _convex_hull_iterative_2d(points, polygon, remaining, _i=0) =
|
||||
(_i >= len(remaining))? polygon : let (
|
||||
// pick a point
|
||||
i = remaining[_i],
|
||||
// find the segments that are in conflict with the point (point not inside)
|
||||
conflicts = _find_conflicting_segments(points, polygon, points[i])
|
||||
// no conflicts, skip point and move on
|
||||
) (len(conflicts) == 0)? _convex_hull_iterative_2d(points, polygon, remaining, _i+1) : let(
|
||||
// find the first conflicting segment and the first not conflicting
|
||||
// conflict will be sorted, if not wrapping around, do it the easy way
|
||||
polygon = _remove_conflicts_and_insert_point(polygon, conflicts, i)
|
||||
) _convex_hull_iterative_2d(points, polygon, remaining, _i+1);
|
||||
|
||||
|
||||
function _find_first_noncollinear(line, points, i) =
|
||||
(i>=len(points) || !collinear_indexed(points, line[0], line[1], i))? i :
|
||||
_find_first_noncollinear(line, points, i+1);
|
||||
|
||||
|
||||
function _find_conflicting_segments(points, polygon, point) = [
|
||||
for (i = [0:len(polygon)-1]) let(
|
||||
j = (i+1) % len(polygon),
|
||||
p1 = points[polygon[i]],
|
||||
p2 = points[polygon[j]],
|
||||
area = triangle_area2d(p1, p2, point)
|
||||
) if (area < 0) i
|
||||
];
|
||||
|
||||
|
||||
// remove the conflicting segments from the polygon
|
||||
function _remove_conflicts_and_insert_point(polygon, conflicts, point) =
|
||||
(conflicts[0] == 0)? let(
|
||||
nonconflicting = [ for(i = [0:len(polygon)-1]) if (!in_list(i, conflicts)) i ],
|
||||
new_indices = concat(nonconflicting, (nonconflicting[len(nonconflicting)-1]+1) % len(polygon)),
|
||||
polygon = concat([ for (i = new_indices) polygon[i] ], point)
|
||||
) polygon : let(
|
||||
before_conflicts = [ for(i = [0:min(conflicts)]) polygon[i] ],
|
||||
after_conflicts = (max(conflicts) >= (len(polygon)-1))? [] : [ for(i = [max(conflicts)+1:len(polygon)-1]) polygon[i] ],
|
||||
polygon = concat(before_conflicts, point, after_conflicts)
|
||||
) polygon;
|
||||
|
||||
|
||||
|
||||
// Section: 3D Hull
|
||||
|
||||
// Function: convex_hull3d()
|
||||
// Usage:
|
||||
// convex_hull3d(points)
|
||||
// Description:
|
||||
// Takes a list of arbitrary 3D points, and finds the minimal convex
|
||||
// hull polyhedron to enclose them. Returns a list of faces, where
|
||||
// each face is a list of indexes into the given `points` list.
|
||||
// If all points passed to it are coplanar, then the return is the
|
||||
// list of indices of points forming the minimal convex hull polygon.
|
||||
function convex_hull3d(points) =
|
||||
(len(points) < 3)? list_range(len(points)) : let (
|
||||
// start with a single triangle
|
||||
a=0, b=1, c=2,
|
||||
plane = plane3pt_indexed(points, a, b, c),
|
||||
d = _find_first_noncoplanar(plane, points, 3)
|
||||
) (d == len(points))? /* all coplanar*/ let (
|
||||
pts2d = [ for (p = points) xyz_to_planar(p, points[a], points[b], points[c]) ],
|
||||
hull2d = convex_hull2d(pts2d)
|
||||
) hull2d : let(
|
||||
remaining = [for (i = [3:len(points)-1]) if (i != d) i],
|
||||
// Build an initial tetrahedron.
|
||||
// Swap b, c if d is in front of triangle t.
|
||||
ifop = in_front_of_plane(plane, points[d]),
|
||||
bc = ifop? [c,b] : [b,c],
|
||||
b = bc[0],
|
||||
c = bc[1],
|
||||
triangles = [
|
||||
[a,b,c],
|
||||
[d,b,a],
|
||||
[c,d,a],
|
||||
[b,d,c]
|
||||
],
|
||||
// calculate the plane equations
|
||||
planes = [ for (t = triangles) plane3pt_indexed(points, t[0], t[1], t[2]) ]
|
||||
) _convex_hull_iterative(points, triangles, planes, remaining);
|
||||
|
||||
|
||||
// Adds the remaining points one by one to the convex hull
|
||||
function _convex_hull_iterative(points, triangles, planes, remaining, _i=0) =
|
||||
_i >= len(remaining) ? triangles :
|
||||
let (
|
||||
// pick a point
|
||||
i = remaining[_i],
|
||||
// find the triangles that are in conflict with the point (point not inside)
|
||||
conflicts = _find_conflicts(points[i], planes),
|
||||
// for all triangles that are in conflict, collect their halfedges
|
||||
halfedges = [
|
||||
for(c = conflicts, i = [0:2]) let(
|
||||
j = (i+1)%3
|
||||
) [triangles[c][i], triangles[c][j]]
|
||||
],
|
||||
// find the outer perimeter of the set of conflicting triangles
|
||||
horizon = _remove_internal_edges(halfedges),
|
||||
// generate a new triangle for each horizon halfedge together with the picked point i
|
||||
new_triangles = [ for (h = horizon) concat(h,i) ],
|
||||
// calculate the corresponding plane equations
|
||||
new_planes = [ for (t = new_triangles) plane3pt_indexed(points, t[0], t[1], t[2]) ]
|
||||
) _convex_hull_iterative(
|
||||
points,
|
||||
// remove the conflicting triangles and add the new ones
|
||||
concat(list_remove(triangles, conflicts), new_triangles),
|
||||
concat(list_remove(planes, conflicts), new_planes),
|
||||
remaining,
|
||||
_i+1
|
||||
);
|
||||
|
||||
|
||||
function _convex_hull_collinear(points) =
|
||||
let(
|
||||
a = points[0],
|
||||
n = points[1] - a,
|
||||
points1d = [ for(p = points) (p-a)*n ],
|
||||
min_i = min_index(points1d),
|
||||
max_i = max_index(points1d)
|
||||
) [min_i, max_i];
|
||||
|
||||
|
||||
|
||||
function _remove_internal_edges(halfedges) = [
|
||||
for (h = halfedges)
|
||||
if (!in_list(reverse(h), halfedges))
|
||||
h
|
||||
];
|
||||
|
||||
|
||||
function _find_conflicts(point, planes) = [
|
||||
for (i = [0:len(planes)-1])
|
||||
if (in_front_of_plane(planes[i], point))
|
||||
i
|
||||
];
|
||||
|
||||
|
||||
function _find_first_noncoplanar(plane, points, i) =
|
||||
(i >= len(points) || !coplanar(plane, points[i]))? i :
|
||||
_find_first_noncoplanar(plane, points, i+1);
|
||||
|
||||
|
||||
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
264
math.scad
264
math.scad
|
@ -44,6 +44,8 @@ include <compat.scad>
|
|||
|
||||
PHI = (1+sqrt(5))/2; // The golden ratio phi.
|
||||
|
||||
EPSILON = 1e-9; // A really small value useful in comparing FP numbers. ie: abs(a-b)<EPSILON
|
||||
|
||||
|
||||
|
||||
// Function: Cpi()
|
||||
|
@ -94,6 +96,36 @@ function quantup(x,y) = ceil(x/y)*y;
|
|||
function constrain(v, minval, maxval) = min(maxval, max(minval, v));
|
||||
|
||||
|
||||
// Function: min_index()
|
||||
// Usage:
|
||||
// min_index(vals);
|
||||
// Description:
|
||||
// Returns the index of the minimal value in the given list.
|
||||
function min_index(vals, _minval, _minidx, _i=0) =
|
||||
_i>=len(vals)? _minidx :
|
||||
min_index(
|
||||
vals,
|
||||
((_minval == undef || vals[_i] < _minval)? vals[_i] : _minval),
|
||||
((_minval == undef || vals[_i] < _minval)? _i : _minidx),
|
||||
_i+1
|
||||
);
|
||||
|
||||
|
||||
// Function: max_index()
|
||||
// Usage:
|
||||
// max_index(vals);
|
||||
// Description:
|
||||
// Returns the index of the maximum value in the given list.
|
||||
function max_index(vals, _maxval, _maxidx, _i=0) =
|
||||
_i>=len(vals)? _maxidx :
|
||||
max_index(
|
||||
vals,
|
||||
((_maxval == undef || vals[_i] > _maxval)? vals[_i] : _maxval),
|
||||
((_maxval == undef || vals[_i] > _maxval)? _i : _maxidx),
|
||||
_i+1
|
||||
);
|
||||
|
||||
|
||||
// Function: posmod()
|
||||
// Usage:
|
||||
// posmod(x,m)
|
||||
|
@ -788,6 +820,20 @@ function unique(arr) =
|
|||
|
||||
|
||||
|
||||
// Function: list_remove()
|
||||
// Usage:
|
||||
// list_remove(list, elements)
|
||||
// Description:
|
||||
// Remove all items from `list` whose indexes are in `elements`.
|
||||
// Arguments:
|
||||
// list = The list to remove items from.
|
||||
// elements = The list of indexes of items to remove.
|
||||
function list_remove(list, elements) = [
|
||||
for (i = [0:len(list)-1]) if (!search(i, elements)) list[i]
|
||||
];
|
||||
|
||||
|
||||
|
||||
// Internal. Not exposed.
|
||||
function _array_dim_recurse(v) =
|
||||
!is_list(v[0])? (
|
||||
|
@ -1114,6 +1160,42 @@ function xy_to_polar(x,y=undef) = let(
|
|||
) [norm([xx,yy]), atan2(yy,xx)];
|
||||
|
||||
|
||||
// Function: xyz_to_planar()
|
||||
// Usage:
|
||||
// xyz_to_planar(point, a, b, c);
|
||||
// Description:
|
||||
// Given three points defining a plane, returns the projected planar
|
||||
// [X,Y] coordinates of the closest point to a 3D `point`. The origin
|
||||
// of the planar coordinate system [0,0] will be at point `a`, and the
|
||||
// Y+ axis direction will be towards point `b`. This coordinate system
|
||||
// can be useful in taking a set of nearly coplanar points, and converting
|
||||
// them to a pure XY set of coordinates for manipulation, before convering
|
||||
// them back to the original 3D plane.
|
||||
function xyz_to_planar(point, a, b, c) = let(
|
||||
u = normalize(b-a),
|
||||
v = normalize(c-a),
|
||||
n = normalize(cross(u,v)),
|
||||
w = normalize(cross(n,u)),
|
||||
relpoint = point-a
|
||||
) [relpoint * w, relpoint * u];
|
||||
|
||||
|
||||
// Function: planar_to_xyz()
|
||||
// Usage:
|
||||
// planar_to_xyz(point, a, b, c);
|
||||
// Description:
|
||||
// Given three points defining a plane, converts a planar [X,Y]
|
||||
// coordinate to the actual corresponding 3D point on the plane.
|
||||
// The origin of the planar coordinate system [0,0] will be at point
|
||||
// `a`, and the Y+ axis direction will be towards point `b`.
|
||||
function planar_to_xyz(point, a, b, c) = let(
|
||||
u = normalize(b-a),
|
||||
v = normalize(c-a),
|
||||
n = normalize(cross(u,v)),
|
||||
w = normalize(cross(n,u))
|
||||
) a + point.x * w + point.y * u;
|
||||
|
||||
|
||||
// Function: cylindrical_to_xyz()
|
||||
// Usage:
|
||||
// cylindrical_to_xyz(r, theta, z)
|
||||
|
@ -1618,4 +1700,186 @@ function pointlist_bounds(pts) = [
|
|||
];
|
||||
|
||||
|
||||
// Function: triangle_area2d()
|
||||
// Usage:
|
||||
// triangle_area2d(a,b,c);
|
||||
// Description:
|
||||
// Returns the area of a triangle formed between three vertices.
|
||||
// Result will be negative if the points are in clockwise order.
|
||||
// Examples:
|
||||
// triangle_area2d([0,0], [5,10], [10,0]); // Returns -50
|
||||
// triangle_area2d([10,0], [5,10], [0,0]); // Returns 50
|
||||
function triangle_area2d(a,b,c) =
|
||||
(
|
||||
a.x * (b.y - c.y) +
|
||||
b.x * (c.y - a.y) +
|
||||
c.x * (a.y - b.y)
|
||||
) / 2;
|
||||
|
||||
|
||||
// Function: right_of_line2d()
|
||||
// Usage:
|
||||
// right_of_line2d(line, pt)
|
||||
// Description:
|
||||
// Returns true if the given point is to the left of the given line.
|
||||
// Arguments:
|
||||
// line = A list of two points.
|
||||
// pt = The point to test.
|
||||
function right_of_line2d(line, pt) =
|
||||
triangle_area2d(line[0], line[1], pt) < 0;
|
||||
|
||||
|
||||
// Function: collinear()
|
||||
// Usage:
|
||||
// collinear(a, b, c, [eps]);
|
||||
// Description:
|
||||
// Returns true if three points are co-linear.
|
||||
// Arguments:
|
||||
// a = First point.
|
||||
// b = Second point.
|
||||
// c = Third point.
|
||||
// eps = Acceptable max angle variance. Default: EPSILON (1e-9) degrees.
|
||||
function collinear(a, b, c, eps=EPSILON) =
|
||||
abs(vector_angle(b-a,c-a)) < eps;
|
||||
|
||||
|
||||
// Function: collinear_indexed()
|
||||
// Usage:
|
||||
// collinear_indexed(points, a, b, c, [eps]);
|
||||
// Description:
|
||||
// Returns true if three points are co-linear.
|
||||
// Arguments:
|
||||
// points = A list of points.
|
||||
// a = Index in `points` of first point.
|
||||
// b = Index in `points` of second point.
|
||||
// c = Index in `points` of third point.
|
||||
// eps = Acceptable max angle variance. Default: EPSILON (1e-9) degrees.
|
||||
function collinear_indexed(points, a, b, c, eps=EPSILON) =
|
||||
let(
|
||||
p1=points[a],
|
||||
p2=points[b],
|
||||
p3=points[c]
|
||||
) abs(vector_angle(p2-p1,p3-p1)) < eps;
|
||||
|
||||
|
||||
// Function: plane3pt()
|
||||
// Usage:
|
||||
// plane3pt(p1, p2, p3);
|
||||
// Description:
|
||||
// Generates the cartesian equation of a plane from three non-colinear points on the plane.
|
||||
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane.
|
||||
// Arguments:
|
||||
// p1 = The first point on the plane.
|
||||
// p2 = The second point on the plane.
|
||||
// p3 = The third point on the plane.
|
||||
function plane3pt(p1, p2, p3) =
|
||||
let(normal = normalize(cross(p3-p1, p2-p1))) concat(normal, [normal*p1]);
|
||||
|
||||
|
||||
// Function: plane3pt_indexed()
|
||||
// Usage:
|
||||
// plane3pt_indexed(points, i1, i2, i3);
|
||||
// Description:
|
||||
// Given a list of points, and the indexes of three of those points,
|
||||
// generates the cartesian equation of a plane that those points all
|
||||
// lie on. Requires that the three indexed points be non-collinear.
|
||||
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane.
|
||||
// Arguments:
|
||||
// points = A list of points.
|
||||
// i1 = The index into `points` of the first point on the plane.
|
||||
// i2 = The index into `points` of the second point on the plane.
|
||||
// i3 = The index into `points` of the third point on the plane.
|
||||
function plane3pt_indexed(points, i1, i2, i3) =
|
||||
let(
|
||||
p1 = points[i1],
|
||||
p2 = points[i2],
|
||||
p3 = points[i3],
|
||||
normal = normalize(cross(p3-p1, p2-p1))
|
||||
) concat(normal, [normal*p1]);
|
||||
|
||||
|
||||
// Function: distance_from_plane()
|
||||
// Usage:
|
||||
// distance_from_plane(plane, point)
|
||||
// Description:
|
||||
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
|
||||
// is Ax+By+Cz+D=0, determines how far from that plane the given point is.
|
||||
// The returned distance will be positive if the point is in front of the
|
||||
// plane; on the same side of the plane as the normal of that plane points
|
||||
// towards. If the point is behind the plane, then the distance returned
|
||||
// will be negative. The normal of the plane is the same as [A,B,C].
|
||||
// Arguments:
|
||||
// plane = The [A,B,C,D] values for the equation of the plane.
|
||||
// point = The point to test.
|
||||
function distance_from_plane(plane, point) =
|
||||
[plane.x, plane.y, plane.z] * point - plane[3];
|
||||
|
||||
|
||||
// Function: coplanar()
|
||||
// Usage:
|
||||
// coplanar(plane, point);
|
||||
// Description:
|
||||
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
|
||||
// is Ax+By+Cz+D=0, determines if the given point is on that plane.
|
||||
// Returns true if the point is on that plane.
|
||||
// Arguments:
|
||||
// plane = The [A,B,C,D] values for the equation of the plane.
|
||||
// point = The point to test.
|
||||
function coplanar(plane, point) =
|
||||
abs(distance_from_plane(plane, point)) <= EPSILON;
|
||||
|
||||
|
||||
// Function: in_front_of_plane()
|
||||
// Usage:
|
||||
// in_front_of_plane(plane, point);
|
||||
// Description:
|
||||
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
|
||||
// is Ax+By+Cz+D=0, determines if the given point is on the side of that
|
||||
// plane that the normal points towards. The normal of the plane is the
|
||||
// same as [A,B,C].
|
||||
// Arguments:
|
||||
// plane = The [A,B,C,D] values for the equation of the plane.
|
||||
// point = The point to test.
|
||||
function in_front_of_plane(plane, point) =
|
||||
distance_from_plane(plane, point) > EPSILON;
|
||||
|
||||
|
||||
// Function: simplify_path()
|
||||
// Description:
|
||||
// Takes a path and removes unnecessary collinear points.
|
||||
// Usage:
|
||||
// simplify_path(path, [eps])
|
||||
// Arguments:
|
||||
// path = A list of 2D path points.
|
||||
// eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees.
|
||||
function simplify_path(path, eps=EPSILON, _a=0, _b=2, _acc=[]) =
|
||||
(_b >= len(path))? concat([path[0]], _acc, [path[len(path)-1]]) :
|
||||
simplify_path(
|
||||
path, eps,
|
||||
(collinear_indexed(path, _a, _b-1, _b, eps=eps)? _a : _b-1),
|
||||
_b+1,
|
||||
(collinear_indexed(path, _a, _b-1, _b, eps=eps)? _acc : concat(_acc, [path[_b-1]]))
|
||||
);
|
||||
|
||||
|
||||
// Function: simplify_path_indexed()
|
||||
// Description:
|
||||
// Takes a list of points, and a path as a list of indexes into `points`,
|
||||
// and removes all path points that are unecessarily collinear.
|
||||
// Usage:
|
||||
// simplify_path_indexed(path, eps)
|
||||
// Arguments:
|
||||
// points = A list of points.
|
||||
// path = A list of indexes into `points` that forms a path.
|
||||
// eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees.
|
||||
function simplify_path_indexed(points, path, eps=EPSILON, _a=0, _b=2, _acc=[]) =
|
||||
(_b >= len(path))? concat([path[0]], _acc, [path[len(path)-1]]) :
|
||||
simplify_path_indexed(
|
||||
points, path, eps,
|
||||
(collinear_indexed(points, path[_a], path[_b-1], path[_b], eps=eps)? _a : _b-1),
|
||||
_b+1,
|
||||
(collinear_indexed(points, path[_a], path[_b-1], path[_b], eps=eps)? _acc : concat(_acc, [path[_b-1]]))
|
||||
);
|
||||
|
||||
|
||||
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
|
29
paths.scad
29
paths.scad
|
@ -55,18 +55,7 @@ use <triangulation.scad>
|
|||
// Arguments:
|
||||
// path = A list of 2D path points.
|
||||
// eps = Largest angle delta between segments to count as colinear. Default: 1e-6
|
||||
function simplify2d_path(path, eps=1e-6) = concat(
|
||||
[path[0]],
|
||||
[
|
||||
for (
|
||||
i = [1:len(path)-2]
|
||||
) let (
|
||||
v1 = path[i] - path[i-1],
|
||||
v2 = path[i+1] - path[i-1]
|
||||
) if (abs(cross(v1,v2)) > eps) path[i]
|
||||
],
|
||||
[path[len(path)-1]]
|
||||
);
|
||||
function simplify2d_path(path, eps=1e-6) = simplify_path(path, eps=eps);
|
||||
|
||||
|
||||
// Function: simplify3d_path()
|
||||
|
@ -77,18 +66,7 @@ function simplify2d_path(path, eps=1e-6) = concat(
|
|||
// Arguments:
|
||||
// path = A list of 3D path points.
|
||||
// eps = Largest angle delta between segments to count as colinear. Default: 1e-6
|
||||
function simplify3d_path(path, eps=1e-6) = concat(
|
||||
[path[0]],
|
||||
[
|
||||
for (
|
||||
i = [1:len(path)-2]
|
||||
) let (
|
||||
v1 = path[i] - path[i-1],
|
||||
v2 = path[i+1] - path[i-1]
|
||||
) if (vector_angle(v1,v2) > eps) path[i]
|
||||
],
|
||||
[path[len(path)-1]]
|
||||
);
|
||||
function simplify3d_path(path, eps=1e-6) = simplify_path(path, eps=eps);
|
||||
|
||||
|
||||
// Function: path_length()
|
||||
|
@ -119,7 +97,8 @@ function path_length(path) =
|
|||
// scale = [X,Y] scaling factors for each axis. Default: `[1,1]`
|
||||
// Example(2D):
|
||||
// trace_polyline(path2d_regular_ngon(n=12, r=50), N=1, showpts=true);
|
||||
function path2d_regular_ngon(n=6, r=undef, d=undef, cp=[0,0], scale=[1,1]) = let(
|
||||
function path2d_regular_ngon(n=6, r=undef, d=undef, cp=[0,0], scale=[1,1]) =
|
||||
let(
|
||||
rr=get_radius(r=r, d=d, dflt=100)
|
||||
) [
|
||||
for (i=[0:n-1])
|
||||
|
|
73
tests/test_convex_hull.scad
Normal file
73
tests/test_convex_hull.scad
Normal file
|
@ -0,0 +1,73 @@
|
|||
include <BOSL/math.scad>
|
||||
include <BOSL/convex_hull.scad>
|
||||
|
||||
|
||||
testpoints_on_sphere = [ for(p =
|
||||
[
|
||||
[1,PHI,0], [-1,PHI,0], [1,-PHI,0], [-1,-PHI,0],
|
||||
[0,1,PHI], [0,-1,PHI], [0,1,-PHI], [0,-1,-PHI],
|
||||
[PHI,0,1], [-PHI,0,1], [PHI,0,-1], [-PHI,0,-1]
|
||||
])
|
||||
normalize(p)
|
||||
];
|
||||
|
||||
testpoints_circular = [ for(a = [0:15:360-EPSILON]) [cos(a),sin(a)] ];
|
||||
|
||||
testpoints_coplanar = let(u = normalize([1,3,7]), v = normalize([-2,1,-2])) [ for(i = [1:10]) rands(-1,1,1)[0] * u + rands(-1,1,1)[0] * v ];
|
||||
|
||||
testpoints_collinear_2d = let(u = normalize([5,3])) [ for(i = [1:20]) rands(-1,1,1)[0] * u ];
|
||||
testpoints_collinear_3d = let(u = normalize([5,3,-5])) [ for(i = [1:20]) rands(-1,1,1)[0] * u ];
|
||||
|
||||
testpoints2d = 20 * [for (i = [1:10]) concat(rands(-1,1,2))];
|
||||
testpoints3d = 20 * [for (i = [1:50]) concat(rands(-1,1,3))];
|
||||
|
||||
// All points are on the sphere, no point should be red
|
||||
translate([-50,0]) visualize_hull(20*testpoints_on_sphere);
|
||||
|
||||
// 2D points
|
||||
translate([50,0]) visualize_hull(testpoints2d);
|
||||
|
||||
// All points on a circle, no point should be red
|
||||
translate([0,50]) visualize_hull(20*testpoints_circular);
|
||||
|
||||
// All points 3d but collinear
|
||||
translate([0,-50]) visualize_hull(20*testpoints_coplanar);
|
||||
|
||||
// Collinear
|
||||
translate([50,50]) visualize_hull(20*testpoints_collinear_2d);
|
||||
|
||||
// Collinear
|
||||
translate([-50,50]) visualize_hull(20*testpoints_collinear_3d);
|
||||
|
||||
// 3D points
|
||||
visualize_hull(testpoints3d);
|
||||
|
||||
|
||||
module visualize_hull(points) {
|
||||
hull = convex_hull(points);
|
||||
|
||||
%if (len(hull) > 0 && is_list(hull[0]) && len(hull[0]) > 0)
|
||||
polyhedron(points=points, faces = hull);
|
||||
else
|
||||
polyhedron(points=points, faces = [hull]);
|
||||
|
||||
for (i = [0:len(points)-1]) {
|
||||
p = points[i];
|
||||
$fn = 16;
|
||||
translate(p) {
|
||||
if (hull_contains_index(hull,i)) {
|
||||
color("blue") sphere(1);
|
||||
} else {
|
||||
color("red") sphere(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
function hull_contains_index(hull, index) =
|
||||
search(index,hull,1,0) ||
|
||||
search(index,hull,1,1) ||
|
||||
search(index,hull,1,2);
|
||||
}
|
||||
|
||||
|
||||
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
|
@ -630,6 +630,21 @@ module test_rotate_points3d() {
|
|||
test_rotate_points3d();
|
||||
|
||||
|
||||
module test_simplify_path()
|
||||
{
|
||||
path = [[-20,10],[-10,0],[-5,0],[0,0],[5,0],[10,0], [10,10]];
|
||||
assert(simplify_path(path) == [[-20,10],[-10,0],[10,0], [10,10]]);
|
||||
}
|
||||
test_simplify_path();
|
||||
|
||||
|
||||
module test_simplify_path_indexed()
|
||||
{
|
||||
points = [[-20,10],[-10,0],[-5,0],[0,0],[5,0],[10,0], [10,10]];
|
||||
path = list_range(len(points));
|
||||
assert(simplify_path_indexed(points, path) == [0,1,5,6]);
|
||||
}
|
||||
test_simplify_path_indexed();
|
||||
|
||||
|
||||
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
|
Loading…
Reference in a new issue